首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
山东省三次暖切变线极强降水的对比分析   总被引:4,自引:2,他引:2  
杨晓霞  吴炜  姜鹏  徐娟  胡顺起  刁秀广  高留喜  王文青  华雯丽 《气象》2013,39(12):1550-1560
应用加密观测、常规观测、卫星云图和雷达探测的资料及NCEP/NCAR(1°×1°)再分析资料,对山东省三次极强降水天气进行了诊断和对比分析。结果表明,低层暖式切变线和500 hPa西风槽是三次强降水的主要影响系统。强降水前低层大气高温、高湿、对流不稳定,有较高的对流不稳定能量。低层暖式切变线辐合和暖湿平流产生的上升运动与地面辐合线附近产生的上升运动相叠加,触发对流不稳定能量释放,产生强对流,造成强降水。较强的风垂直切变使得对流有组织地发展。强降水期间,中高层弱的干冷空气侵入,使得对流不稳定加强,中高层具有高位涡的干冷空气入侵诱发低层中尺度涡旋发展, 辐合上升运动加强。低层暖湿气流螺旋式辐合上升与中高层入侵的干冷空气相遇,水汽凝结率增大,降水强度增强。中高层干冷空气侵入的时段与极强降水的时段相对应。有利的地形对局地短时极强降水有重要作用。低层暖式切变线和500 hPa低槽的位置、强弱不同,中高层冷空气的强度和入侵路径不同,对流云团的发生发展、内部结构和移动方向不同,造成强降水的地理位置和强度不同。  相似文献   

2.
利用常规观测和区域自动气象站资料,对2000-2016年渤海湾北部地区5~11月出现的32次冰雹过程进行天气学分型,对比不同类型冰雹天气得环境参数特征,得出相应的预报方法。结果表明:渤海湾北部地区冰雹主要分为高空干冷气流强迫型及斜压锋生型。前者由对流层中高层的干冷平流强迫,配合中尺度低压及地面辐合线,午后近地面的太阳辐射加热起到关键作用(简称干冷强迫型);后者主要发生于低涡槽前的锋面气旋冷锋附近,锋面动力强迫是此类冰雹的主要触发机制(简称锋生型)。干冷强迫型较锋生型表现出更强的静力不稳定层结、更大的风向垂直切变、相对较低的低层湿度和0℃、-20℃层高度。渤海湾北部地区降雹多发生于东北冷涡天气背景之下,湿度条件高于西北地区低于中东部地区,层结不稳定度高于中东部地区低于西北地区。除中低层温度直减率、中层干层、低层湿层及深层垂直风切变等常用指标外,本文发现湿球0℃层高度及逆温层高度对渤海湾北部地区冰雹天气发生有着较好的指示意义。选取以上预报因子,运用指标叠套法对2017、2018年5~11月进行冰雹潜势预报,降雹过程无漏报,TS评分高于国家级强对流主观预报。  相似文献   

3.
利用地面观测资料、天气雷达资料和ECMWF-ERA5逐小时0.25°×0.25°再分析资料,主要从环境条件和触发机制两个方面,对2019年6月8日(简称过程A)、9日(简称过程B)影响江苏省北部的两次冷涡型强对流天气过程进行了对比分析。结果表明: 过程A是由暖湿气流引起的短时强降水伴随雷暴大风的湿对流天气;过程B则是在高层西北气流下由干冷平流强迫引起的大风冰雹伴随短时强降水的混合对流天气。过程A,由暖湿气流形成强对流不稳定层结,垂直风切变强度一般,湿层深厚,有利于短时强降水的发生;过程B,中高层的较强干冷平流叠加在低层暖湿平流上而形成强对流不稳定层结,强的垂直风切变位于中低层,配合较强的动力抬升条件,有利于冰雹的发生。两次天气过程的触发机制都是地面辐合线。过程A的预报重点为水汽条件和来自上游的对流系统与当地地面辐合线的耦合;过程B的预报重点为大气的不稳定度和冷涡后部冷空气的干侵入与地面辐合线的耦合。  相似文献   

4.
2005年3月22日华南飑线的综合分析   总被引:8,自引:1,他引:8  
罗建英  廖胜石  梁岱云  马艺  寿绍文 《气象》2006,32(10):70-75
2005年3月22日华南地区发生了一次飑线天气过程。利用常规观测、雷达回波、自动气象站资料及NCEP1°×1°的逐6小时资料,从天气形势、雷达回波、物理量场等多角度综合诊断分析了该飑线过程。结果表明:该过程具有低层增温、增湿,中高层降温、低湿的特征。飑线发生在快速东移的高空槽前上干冷、下暖湿的不稳定区域,华南地区700hPa低空急流的爆发及低层急流核向东传输对不稳定能量的突然释放有很大的触发作用。飑线系统在低空增温、增湿与对流层中层干侵入的相互作用下形成,产生大范围的雷雨大风、冰雹等强对流天气。  相似文献   

5.
利用常规气象资料和赤峰多普勒雷达资料,从环流背景、中尺度分析、温度对数压力蚓和雷达产品演变特征对2011年7月5日赤峰地区一次冰雹天气过程进行分析。结果表明:此次冰雹过程属高空冷涡型降雹,冰雹落区位于冷涡东南象限,距离冷涡中心大约7个纬度,发生在冷涡天气系统的对流多发区域。在冷涡形成过程中,干冷空气的不断南侵,高空槽在中低空逐渐前倾,在前倾槽和地面冷锋之间形成上干冷下暖湿的环境场,促使不稳定能最的不断积累。200hPa高空急流的发展促使低层切变线和地面系统的发展,触发了不稳定能量释放引发雹暴的生成。850hPa风场条件和湿度条件对出现冰雹非常有利。多普勒雷达资料表明,强对流属于超级单体风暴。可以分析出:发展旺盛时有中气旋,回波顶高在11kin以上,风暴底层有钩状回波和弱回波区,对应中高层回波悬垂,强回波达到55dBz以上且强回波垂直跨度在2~9km之间。垂直累积液态水最大值达到52kg.m-2。等特征,是典型的雹暴。  相似文献   

6.
利用2015—2020年陕西4月99站地面观测资料、灾情报告,高空探测资料,多普勒雷达资料等,对陕西4月冰雹天气发生的天气形势、对流潜势指标及雷达回波特征进行统计分析,结果表明:陕西4月冰雹多发生在午后至傍晚(12—20时),降雹相对高频区位于陕北南部和关中;按环流形势将冰雹天气分为槽后西北气流型和冷槽型两类,槽后西北气流型主要特征表现在中层强的干冷空气侵入造成强热力不稳定层结,冷槽型冰雹天气产生的主要原因为高层冷空气叠加于低层暖湿气流上,造成强的位势不稳定,天气尺度抬升促进对流进一步发展;共筛选出11个指标为4月冰雹天气潜势预报提供参考,业务应用中重点分析相比气候平均值差异较大的K指数、总指数、对流稳定度指数,作为冰雹天气潜势预报中不稳定层结及低层水汽条件的判别指标,同时需注意其他指标的配合使用,应用CAPE值做强对流天气潜势预报时必须要经过探空订正;降雹云团受地面中尺度系统触发,槽后西北气流型冰雹的雷达回波分散、持续时间短,冷槽型冰雹的雷达回波范围广,持续时间长。  相似文献   

7.
利用常规气象观测资料、雷达资料、探空资料、NCEP再分析资料,对2018年5月19日和7月29日喀什地区北部2次致灾冰雹天气的环境场及雷达特征进行对比分析。结果表明: (1)两次冰雹都是在中亚低涡的有利的环流背景下产生,午后垂直温度递减率增大,中高层干冷空气与低层暖湿空气交汇增强了大气不稳定性、冰雹发生前强对流指数明显增强、深层风切变加强、0℃~-20℃层高度适宜,为冰雹产生提供了有利的环境场条件。不同之处在于,两次过程中亚低涡中心强度和南伸的位置不同,“5.19”过程低涡位置偏南; 低层触发系统不同,“5.19”为地面中尺度辐合线触发对流,“7.29”为700 hPa切变线附近触发;θse能量锋区、比湿、中高层干冷空气入侵势力、深层风切变等变化上“7.29”冰雹比“5.19”冰雹偏强;(2)雷达回波形态和风暴类型上,前者为多单体线性风暴,后者为超级单体风暴,反射率因子剖面均出现弱回波区和悬垂回波等特征结构,≥50 dBZ 的回波伸展到-20 ℃层高度以上;径向速度图上均出现中小尺度辐合辐散特征;冰雹发生前VIL值出现跃增,冰雹结束后迅速下降,可以作为监测冰雹特征之一。上述特征结构在“7.29”过程表现的更明显。  相似文献   

8.
2009年早春南方地区一次高架雷暴天气过程的机理分析   总被引:1,自引:0,他引:1  
利用常规气象观测资料、6.7μm卫星水汽图像和TBB、闪电定位资料以及NCEP/NCAR 1°×1°再分析资料,对2009年3月3日南方地区一次高架雷暴天气过程进行诊断研究。结果表明,该过程主要影响系统是中低层低槽、低涡切变线、西南低空急流、南北支西风急流。低空急流造成暖湿气流输送和高空急流造成冷平流侵入是对流触发机制。近地层为层结稳定的"冷空气垫",位势不稳定出现在低空急流与中高层干冷气流之间,并因急流中的下沉运动得以加强;西南暖湿气流与其北部干冷气流在中低层形成湿斜压锋区,西南气流的下沉支和北方下沉气流汇合在近地层形成的东北风回流与上部西南风生成锋面次级环流圈及中高层上升气流与北支急流中的下沉气流耦合形成次级正环流圈有利于倾斜上升运动的发展;低空急流的强暖平流和水汽通量辐合、北支急流入口区右侧的强辐散和南支急流北侧的辐合均加强了中尺度上升运动。湿层浅薄、上下干层较为深厚、强垂直风切变、低层逆温、-20~0℃过冷水层气流强上升运动等有利于雷暴天气的发生。雷电和冰雹出现在TBB、低空急流风速、θse、水汽通量以及300 h Pa散度等值线密集区附近。  相似文献   

9.
利用ECMWF全球再分析资料、常规气象观测资料及多普勒雷达资料,采用中尺度分析方法对2016年3月29日云南德宏一次强冰雹对流天气过程的特征及成因进行分析。结果表明:(1)阶梯槽形势和前倾槽结构及700 h Pa的湿舌是此次冰雹天气过程的大尺度背景;(2)冰雹发生时0℃线和-20℃线的高度有明显下降,中层存在干冷空气侵入,Δθse850-500的走向对中高层干冷空气具有指示意义;(3)高空急流南移影响导致垂直风切变增加和上升运动加强;(4)雷达上强回波高度均在7 km以上,且探测到旁瓣回波、TBSS、钩状回波、"V"形缺口、有界弱回波区、弱回波区、回波悬垂、风暴顶辐散等特征。  相似文献   

10.
两次华北冷涡降水成因及预报偏差对比分析   总被引:1,自引:0,他引:1  
符娇兰  陈双  沈晓琳  张夕迪  权婉晴 《气象》2019,45(5):606-620
利用多种常规及非常规观测资料、美国国家环境预报中心全球模式业务系统分析资料(NCEP/FNL)以及三家全球确定性模式产品对2017年两次华北冷涡降水过程成因及模式预报偏差进行了对比分析。结果表明;个例1(6月22日)降水回波为层-积混合型,对流发展高度低,小时雨强小,先后经历了持续的稳定降水和弱对流降水两个阶段;个例2(7月6日)降水以积云状对流回波为主,对流发展高度高,短历时强降水特点明显。二者对应的环境场差异较大,前者冷涡处在成熟期,副热带高压位置偏南,前期暖区对流冷池降温明显,对流能量及水汽条件一般;后者冷涡为发展期,副热带高压位置偏北,中低纬相互作用明显,水汽与能量充沛。两次过程北京均出现了暴雨及以上量级降水,对应的中尺度对流系统(MCS)特征、对流触发机制以及对流不稳定能量重建过程存在明显差异。前者为层状云中发展的γ中尺度MCS,边界层偏东风增强为MCS提供了触发机制,中低层偏东风暖湿输送以及对流层高层干冷平流有利于对流不稳定能量重建;后者为组织化的β中尺度MCS,列车效应明显,偏南低空急流及其气旋式切变配合地形为MCS发展提供了抬升条件,对流不稳定能量建立与中低层偏南低空急流强暖湿输送有关。各家数值模式对不同类型冷涡降水的预报偏差特征一致,即对冷涡成熟期的降水,因对动力条件预报过强导致空报降水;而对冷涡发展期的降水,由于对槽前暖区辐合及其对流性降水预报不足导致强降水出现漏报。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号