首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This study investigated the relationship between near-surface lithology and the spatial variability of As concentrations using sediment grain-size analysis and electromagnetic induction survey in the southeast Bangladesh. It has been observed that the aquifers overlain by finer sediments have higher concentrations of As in groundwater, whereas As concentrations are remarkably low in aquifers having permeable sandy materials or thinner silt/clay layer at the surface. The near-surface lithology acts as a controlling factor for spatial distributions of groundwater As within the very shallow depths (<15 m). Shallow alluvial aquifers can provide low-As drinking water in many areas of the country when tube wells are properly installed after investigation of the overlying near-surface sediment attributes and hydraulic properties.  相似文献   

2.
Arsenic contamination of groundwater used as drinking water in South Asia poses a serious health threat to the inhabitants living on alluvial plains of the Himalayan foreland of countries like Bangladesh, India, Nepal and Myanmar. Although the geological and geochemical conditions favoring the release of the highly poisonous contaminant from the sediments hosting the groundwater are meanwhile quite well understood, there is still a significant debate about the origin of arsenic. The sediments forming a huge proportion of the Terai (lowlands of Nepal) aquifers are derived from two main sources, (i) sediments deposited by large rivers that erode the upper Himalayan crystalline rocks and (ii) weathered meta-sediments carried by smaller rivers originating in the Siwalik foothills adjacent to the Terai. In this article a so far underestimated source of As is discussed: the peraluminous leucogranites found ubiquitously in the Nepal Himalaya. The relationship between the trace elements analyzed in the groundwater in the Terai and trace elements found in such felsic rocks reflect the origin of the arsenic in the high Himalayas of Nepal. In addition to the high concentration of As, a striking feature is the presence of the lithophile trace elements like Li, B, P, Mn, Br, Sr and U in the groundwater. The mentioned elements point to a felsic initial source like metapelites or leucogranites—all rocks showing a high abundance of especially B, P and As as well as Cd and Pb.  相似文献   

3.
Arsenic contamination in groundwater affecting West Bengal (India) and Bangladesh is a serious environmental problem. Contamination is extensive in the low-lying areas of Bhagirathi–Ganga delta, located mainly to the east of the Bhagirathi River. A few isolated As-contaminated areas occur west of the Bhagirathi River and over the lower parts of the Damodar river fan-delta. The Damodar being a Peninsular Indian river, the arsenic problem is not restricted to Himalayan rivers alone. Arsenic contamination in the Bengal Delta is confined to the Holocene Younger Delta Plain and the alluvium that was deposited around 10,000–7,000 years bp, under combined influence of the Holocene sea-level rise and rapid erosion in the Himalaya. Further, contaminated areas are often located close to distribution of abandoned or existing channels, swamps, which are areas of surface water and biomass accumulation. Extensive extraction of groundwater mainly from shallow aquifers cause recharge from nearby surface water bodies. Infiltration of recharge water enriched in dissolved organic matter derived either from recently accumulated biomass and/or from sediment organic matter enhanced reductive dissolution of hydrated iron oxide that are present mainly as sediment grain coatings in the aquifers enhancing release of sorbed arsenic to groundwater.  相似文献   

4.
High arsenic levels in groundwater of the aquifers, belonging to the Pliocene terrestrial layers and Quaternary alluvial sediments, have become a significant problem for the inhabitants living in Sarkisla (Turkey). The main objective of this study was to determine the origin and arsenic contamination mechanisms of the Sarkisla drinking water aquifer systems. The highest arsenic concentrations were found in Pliocene layers and alluvial sediments with concentrations ranging from 2.1 to 155 mg/kg. These rocks are the main aquifers in the study area, and most of the drinking groundwater demand is met by these aquifers. Groundwater from the Pliocene aquifer is mainly Ca-HCO3 and Ca-SO4 water type with high EC values reaching up to 3,270 μS/cm, which is due to the sulfate dissolution in some parts of the alluvial aquifer. Stable isotope values showed that the groundwater was of meteoric origin. Tritium values for the groundwater were between 8.31 and 14.06 TU, representing a fast circulation in the aquifer. Arsenic concentrations in the aquifers were between 0.5 and 345 μg/L. The highest arsenic concentrations detected in the Pliocene aquifer system reached up to 345 μg/L with an average value of 60.38 μg/L. The arsenic concentrations of the wells were high, while the springs had lower arsenic concentrations. These springs are located in the upper parts of the study area where the rocks are less weathered. The hydrogeochemical properties demonstrated that the water–rock interaction processes in sulfide-bearing rocks were responsible for the remarkably high groundwater arsenic contamination in the study area. In the study area, the arsenic levels determined in groundwater exceeded the levels recommended by the WHO. Therefore, it is suggested that this water should not be used for drinking purposes and new water sources should be investigated.  相似文献   

5.
The present study has examined the relationship of groundwater arsenic (As) levels in alluvial aquifers with topographic elevation, slope, and groundwater level on a large basinal-scale using high-resolution (90 m × 90 m) Shuttle Radar Topography Mission (SRTM) digital elevation model and water-table data in Bangladesh. Results show that high As (>50 μg/l) tubewells are located in low-lying areas, where mean surface elevation is approximately 10 m. Similarly, high As concentrations are found within extremely low slopes (<0.7°) in the country. Groundwater elevation (weekly measured by Bangladesh Water Development Board) was mapped using water-table data from 950 shallow (depth <100 m) piezometers distributed over the entire country. The minimum, maximum and mean groundwater elevation maps for 2003 were generated using Universal Kriging interpolation method. High As tubewells are located mainly in the Ganges–Brahmaputra–Meghna delta, Sylhet Trough, and recent floodplains, where groundwater elevation in shallow aquifers is low with a mean value of 4.5 m above the Public Works Datum (PWD) level. Extremely low groundwater gradients (0.01–0.001 m/km) within the GBM delta complex hinder groundwater flow and cause slow flushing of aquifers. Low elevation and gentle slope favor accumulation of finer sediments, As-carrying iron-oxyhydroxide minerals, and abundant organic matter within floodplains and alluvial deposits. At low horizontal hydraulic gradients and under reducing conditions, As is released in groundwater by microbial activity, causing widespread contamination in the low-lying deltaic and floodplain areas, where As is being recycled with time due to complex biogeochemical processes.  相似文献   

6.
In order to examine the extent of the As enrichment and the factors influencing this enrichment in the groundwater of Eastern Croatia, groundwater samples were collected from 56 production wells in two counties, Osijek-Baranja and Vukovar-Srijem, suspected to be more affected. Hydrochemical analyses were performed at all locations including in situ As speciation at 32 locations. Arsenic was detected in 46 out of 56 groundwater samples with total As concentrations up to 491 μg/L. Thirty-six of the studied wells yielded groundwater with total As concentrations that exceeded the WHO Maximum Contaminant Level for arsenic in drinking water of 10 μg/L. Only inorganic As species were detected with arsenite As(III) as the predominant form. The spatial distribution of As in the groundwater was significantly linked with geological, geomorphological and hydrogeological development of the alluvial basin of the Drava and Sava rivers. The most probable groundwater As sources are deeper sediments from the Middle and Upper Pleistocene. The results obtained suggest that biogeochemical processes controlling As concentration in the groundwater are complex and location-specific. Reductive dissolution of Fe oxides, desorption of As from Fe oxides and/or clay minerals as well as competition for the sorption sites with organic matter and phosphate could be the principal mechanisms that control As mobilization. The extent of those processes vary in the different parts of the Drava and Sava depressions and could be linked to different site related parameters, such as lithology, mineralogy, local hydrology and hydrogeology; thus different processes of As mobilization have been proposed for the different types of water in relation to groundwater evolution.  相似文献   

7.
Although high As groundwater has been observed in shallow groundwater of the Hetao basin, little is known about As distribution in deep groundwater. Quantitative investigations into relationships among chemical properties and among samples in different areas were carried out. Ninety groundwater samples were collected from deep aquifers of the northwest of the basin. Twenty-two physicochemical parameters were obtained for each sample. Statistical methods, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), were used to analyze those data. Results show that As species were highly correlated with Fe species, NH4-N and pH. Furthermore, result of PCA indicates that high As groundwater was controlled by geological, reducing and oxic factors. The samples are classified into three clusters in HCA, which corresponded to the alluvial fans, the distal zone and the flat plain. Moreover, the combination of PCA with HCA shows the different dominant factors in different areas. In the alluvial fans, groundwater is influenced by oxic factors, and low As concentrations are observed. In the distal zone, groundwater is under suboxic conditions, which is dominated by reducing and geological factors. In the flat plain, groundwater is characterized by reducing conditions and high As concentrations, which is dominated by the reducing factor. This investigations indicate that deep groundwater in the alluvial fans mostly contains low As concentrations but high NO3 and U concentrations, and needs to be carefully checked prior to being used for drinking water sources.  相似文献   

8.
This study aims at finding out possible relation between lithology and spatial pattern of dissolved arsenic (As) in groundwater around Chakdaha municipality, West Bengal, India. Satellite image, coupled with electrical resistivity survey and borehole drilling helps to delineate surface and sub-surface lithological framework of the As affected alluvial aquifers. The satellite imagery demonstrate that the high As area are presumably under active flood plain environment (low-lying areas), that constantly receive organics due to periodic flooding. Thick low resistive (fine-grained) layer was observed at the top around the high As areas, which, however, not found in low As areas. The result suggests that hydraulic properties of the surface/sub-surface soil/sediment have an important control on the fate and transport of As in the aquifer. This study demonstrates that electrical resistivity tools can be effectively used for the reconnaissance survey in characterizing the plausible lithological framework of an alluvial aquifer containing As.  相似文献   

9.
1990年报道了在中国内蒙古河套平原由于饮用污染的地下水而患砷中毒的病例.估计目前内蒙受到砷中毒影响的居民已超过41万人.从1997年至2004年,在长达8年的时间里,我们进行了水文地质调查、地质调查和医学调查,并装置了管道输送的供水系统.这些调查揭示了河套平原地下水受砷污染的机理:由于被吸收的砷释放进入地下水,蓄水层中不断加强的还原环境造成铁氢氧化物的溶解.为了防止砷中毒病人数量的进一步增加,停止饮用污染过的水和供应安全的饮用水是重要的.我们需要根据当地的地质和水文地质条件来了解砷污染的机理.  相似文献   

10.
A logistic regression model for the probability of arsenic exceeding the drinking water guidelines (10 μg/L) in bedrock groundwater was developed for a selected county in Korea, where arsenic occurrence and release reactions have been investigated. Arsenic was enriched naturally by the oxidation of sulfide minerals in metasedimentary rocks and mineralized zones, and due to high mobility in alkaline pH conditions, concentrations were high in groundwater of the county. When considering these reactions of arsenic release and water quality characteristics, several geological and geochemical factors were selected as influencing variables in the model. In the final logistic regression model, geological units of limestone and metasedimentary rocks, the concentrations of nitrate and sulfate, and distances to closed mines and adjacent granite were retained as statistically significant variables. Predicted areas of high probability agreed well with known spatial contamination patterns in the county. The model was also applied to an adjacent county, where the groundwater has not previously been tested for the presence of arsenic, and a probability map for arsenic contamination was then produced. Through the analysis of arsenic concentrations at the wells of high probability, it was determined that the applied model accurately indicated the arsenic contamination of groundwater. The logistic regression approach of this study can be applied to predict arsenic contamination in areas of similar geological and geochemical conditions to the county used in this model.  相似文献   

11.
Massive deleterious impacts to human health are resulting from the use of arsenic-bearing groundwaters in South-East Asia deltas and elsewhere in the world for drinking, cooking and/or irrigation. In Bangladesh alone, a fifth of all deaths are linked to arsenicosis. In the natural and engineered subsurface environment, the fate of arsenic is, to a large extent, controlled by redox potential, pH, as well as total iron, sulfur and carbonate content, via sorption and coprecipitation on a variety of natural and engineered (nano)particles. In the present article, we address: (1) new insights in the sorption mechanisms of As on Fe(II) and Fe(III) nanophases recognized to play an important role in the microbial cycling of As and Fe; (2) artifacts often encountered in field and laboratory studies of As speciation due to the extreme redox sensitivity of the Fe-As-O-H phases; and (3) as a conclusion, the implications for water treatment. Indeed the specific reactivity of nanoparticles accounts not only for the As bioavailability within soils and aquifers, but also opens new avenues in water treatment.  相似文献   

12.
The authors’ survey of the Ganga–Meghna–Brahmaputra (GMB) plain (area 569,749 km2; population >500 million) over the past 20 years and analysis of more than 220,000 hand tube-well water samples revealed groundwater arsenic contamination in the floodplains of the Ganga–Brahmaputra river (Uttar Pradesh, Bihar, Jharkhand, West Bengal, and Assam) in India and the Padma–Meghna–Brahmaputra river in Bangladesh. On average, 50 % of the water samples contain arsenic above the World Health Organization guideline value of 10 μg/L in India and Bangladesh. More than 100 million people in the GMB plain are potentially at risk. The authors’ medical team screened around 155,000 people from the affected villages and registered 16,000 patients with different types of arsenical skin lesions. Arsenic neuropathy and adverse pregnancy outcomes have been recorded. Infants and children drinking arsenic-contaminated water are believed to be at high risk. About 45,000 biological samples analyzed from arsenic-affected villages of the GMB plain revealed an elevated level of arsenic present in patients as well as non-patients, indicating that many are sub-clinically affected. In West Bengal and Bangladesh, there are huge surface water in rivers, wetlands, and flooded river basins. In the arsenic-affected GMB plain, the crisis is not over water scarcity but about managing the available water resources.  相似文献   

13.
This paper gives impact of Arsenic contaminated water on human health as well as overview of the extent and severity of groundwater arsenic contamination in Bangladesh. Scalp hair is the most important part of the human body to monitor the accumulation of this type of poison. Therefore, an experiment has been carried out by Neutron Activation Analysis (NAA) at Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh on human hair of corresponding tube well water users of these areas to determine the total accumulation of arsenic to their body. Hair samples collected from the region where the groundwater was found highly contaminated with arsenic. The obtained results of arsenic concentration in the lower age (Hb) categories of users (below 12 years of age users) is in the range of 0.33 to 3.29 /gmg/g (ppm) and that in the Hu categories (upper 12 years of age users) is 0.47 to 6.64 μg/g (ppm). Where as maximum permissible range is 1 ppm certified from WHO. Results show that the peoples are highly affected where the groundwater is highly contaminated with arsenic and acts as the primary source of arsenic poisoning among the peoples of those areas. The results indicate that human population is affected with arsenic locally using the contaminated water for a long time.  相似文献   

14.
Natural arsenic(As)contamination of groundwater which provides drinking water and/or irrigation supplies remains a major public health issue,particularly in South and Southeast Asia.A number of studies have evaluated various aspects of the biogeochemical controls on As mobilization in aquifers typical to this region,however many are predicated on the assumption that key biogeochemical processes may be deduced by sampled water chemistry.The validity of this assumption has not been clearly established even though the role of sorption/desorption of As and other heavy metals onto Fe/Mn(hydr)oxides is an important control in As mobilization.Here,selective chemical extractions of sand-rich and clay-rich sediments from an As-affected aquifer in Kandal Province,Cambodia,were undertaken to explore the potential role of partial re-equilibrium through sorption/desorption reactions of As and related solutes(Fe,Mn and P)between groundwater and the associated solid aquifer matrix.In general,groundwater As is strongly affected by both pH and Eh throughout the study area.However,contrasting sorption behaviour is observed in two distinct sand-dominated(T-Sand)and clay dominated(T-Clay)transects,and plausibly attributed to differing dominant lithologies,biogeochemical and/or hydrogeological conditions.Sorption/desorption processes appear to be re-setting groundwater As concentrations in both transects,but to varying extents and in different ways.In T-Sand,which is typically highly reducing,correlations suggest that dissolved As may be sequestered by sorption/re-adsorption to Fe-bearing mineral phases and/or sedimentary organic matter;in T-Clay Eh is a major control on As mobilization although binding/occlusion of Fe-bearing minerals to sedimentary organic matter may also occur.Multiple linear regression analysis was conducted with groups categorised by transect and by Eh,and the output correlations support the contrasting sorption behaviours encountered in this study area.Irrespective of transect,however,the key biogeochemical processes which initially control As mobilization in such aquifers,may be "masked" by the re-setting of As concentrations through in-aquifer sorption/desorption processes.  相似文献   

15.
Targeting shallow low-As aquifers based on sediment colour may be a viable solution for supplying As-safe drinking water to rural communities in some regions of Bangladesh and West Bengal in India. The sustainability of this solution with regard to the long-term risk of As-safe oxidized aquifers becoming enriched with As needs to be assessed. This study focuses on the adsorption behaviour of shallow oxidized sediments from Matlab Region, Bangladesh, and their capacity to attenuate As if cross-contamination of the oxidized aquifers occurs. Water quality analyses of samples collected from 20 tube-wells in the region indicate that while there may be some seasonal variability, the groundwater chemistry in the reduced and oxidized aquifers was relatively stable from 2004 to 2009. Although sediment extractions indicate a relatively low amount of As in the oxidized sediments, below 2.5 mg kg−1, batch isotherm experiments show that the sediments have a high capacity to adsorb As. Simulations using a surface complexation model that considers adsorption to amorphous Fe(III) oxide minerals only, under-predict the experimental isotherms. This suggests that a large proportion of the adsorption sites in the oxidized sediments may be associated with crystalline Fe(III) oxides, Mn(IV) and Al(III) oxides, and clay minerals. Replicate breakthrough column experiments conducted with lactose added to the influent solution demonstrate that the high adsorption capacity of the oxidized sediments may be reduced if water drawn down into the oxidized aquifers contains high levels of electron donors such as reactive dissolved organic C.  相似文献   

16.
Arsenic contamination occurs in groundwater of Bangladesh mainly from the alluvial and deltaic sediments. Arsenic contamination of groundwater in Bangladesh was first detected more than a decade ago and the ’shallow tubewells’ were reported as the main source of arsenic contaminated water. From the nutritional and metabolic points of view, arsenic is likely to adversely affect human health and nutrition. Up to now, several studies have been carried out on this context; however, inadequate knowledge on arsenic sources, mobilization and transport still remains as a constraint due to lack of data, information and technological advances. Thus, a review study has been undertaken on the sources of arsenic, its causes, mobilization, transport, effects on human health, arsenic test procedures and removal methods, in the context of groundwater contamination in Bangladesh, and finally sustainable remedial measures of arsenic have been proposed. This study suggests that laboratory facilities for testing of arsenic and effects of enhanced groundwater pumping, phosphate fertilizer etc., need to be updated, expanded and studied. This review work is significant to further knowledge improvement, as the topic is general and worldwide. It can be concluded that the integration of the proposed remedial measures with the national geographic information system interface database relating to arsenic for analysis, production of hazard maps, and dissemination on television show for the planners, engineers, managers, field supervisors and affected people, can reach at the sustainable solution for mitigating arsenic and associated problems successfully in Bangladesh.  相似文献   

17.
Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25–40 m depth, 9.6–4.8 cal ka BP) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25–94 μg/L) than in the HUA (5.2–42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.  相似文献   

18.
Arsenic is present in groundwater at Siliguri–Jalpaiguri area, West Bengal, India. This is the place where Tista river descending from the Himalayas meets the alluvial plain. The area represents alluvial fan and floodplains of Tista, Mahananda-Balasan, Jaladhaka and its tributaries. In the river sediment samples, para- and ferro-magnetic minerals within 0.3–0.05 mm fraction contain 9–80 ppm of arsenic. The study indicates that iron bearing minerals viz. biotite, hornblende as well as iron coated grains of the sediment are major contributors towards arsenic budget. Though magnetite as a mineral shows maximum arsenic content (22 ppm), it is volumetrically not of much significance. Measurement of groundwater collected from tube wells shows up to 0.05 ppm of arsenic. These arsenic contaminated tube wells occur in a linear fashion along the course of the rivers. Moreover, localization of contaminated tube wells coincides with the change of channel gradient as observed in longitudinal section. The study enumerates a cause–effect relationship of arsenic occurrence with river gradient and fluvial sedimentation.  相似文献   

19.
Groundwater arsenic distribution in South-western Uruguay   总被引:1,自引:0,他引:1  
This is the first specific information regarding arsenic distribution of groundwater in SW Uruguay. Twenty-eight wells were sampled on the aquifers of Mercedes, Raigón and Chuy in five localities. The pH, specific conductivity and temperature were determined in the field. The hydrochemical characterization (major and trace elements) was carried out by both inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry. The occurring arsenic concentrations exceed the recommended threshold for drinking water of the World Health Organization (10 μg/l of As) in 22 samples, with more than 50 μg/l of As in two cases. The median, minimum and maximum concentrations were 0.1, 16.9 and 58.0 μg/l of As, respectively. The studied aquifers present a horizontal and a vertical variation of the concentrations as a whole as well as individually. The highest values were observed in the Mercedes Aquifer in the areas near the Uruguay River.  相似文献   

20.
More than 2.5 billion people on the globe rely on groundwater for drinking and providing high-quality drinking water has become one of the major challenges of human society.Although groundwater is considered as safe,high concentrations of heavy metals like arsenic(As) can pose potential human health concerns and hazards.In this paper, we present an overview of the current scenario of arsenic contamination of groundwater in various countries across the globe with an emphasis on the Indian Peninsula.With several newly affected regions reported during the last decade, a significant increase has been observed in the global scenario of arsenic contamination.It is estimated that nearly 108 countries are affected by arsenic contamination in groundwater(with concentration beyond maximum permissible limit of 10 ppb recommended by the World Health Organization.The highest among these are from Asia(32) and Europe(31), followed by regions like Africa(20), North America(11), South America(9) and Australia(4).More than 230 million people worldwide, which include 180 million from Asia, are at risk of arsenic poisoning.Southeast Asian countries, Bangladesh, India, Pakistan,China, Nepal, Vietnam, Burma, Thailand and Cambodia, are the most affected.In India, 20 states and 4 Union Territories have so far been affected by arsenic contamination in groundwater.An attempt to evaluate the correlation between arsenic poisoning and aquifer type shows that the groundwater extracted from unconsolidated sedimentary aquifers, particularly those which are located within the younger orogenic belts of the world, are the worst affected.More than 90% of arsenic pollution is inferred to be geogenic.We infer that alluvial sediments are the major source for arsenic contamination in groundwater and we postulate a strong relation with plate tectonic processes, mountain building, erosion and sedimentation.Prolonged consumption of arsenic-contaminated groundwater results in severe health issues like skin, lung, kidney and bladder cancer; coronary heart disease;bronchiectasis; hyperkeratosis and arsenicosis.Since the major source of arsenic in groundwater is of geogenic origin, the extend of pollution is complexly linked with aquifer geometry and aquifer properties of a region.Therefore, remedial measures are to be designed based on the source mineral, climatological and hydrogeological scenario of the affected region.The corrective measures available include removing arsenic from groundwater using filters, exploring deeper or alternative aquifers, treatment of the aquifer itself, dilution method by artificial recharge to groundwater, conjunctive use, and installation of nano-filter, among other procedures.The vast majority of people affected by arsenic contamination in the Asian countries are the poor who live in rural areas and are not aware of the arsenic poisoning and treatment protocols.Therefore, creating awareness and providing proper medical care to these people remain as a great challenge.Very few policy actions have been taken at international level over the past decade to reduce arsenic contamination in drinking water, with the goal of preventing toxic impacts on human health.We recommend that that United Nations Environment Programme(UNEP) and WHO should take stock of the global arsenic poisoning situation and launch a global drive to create awareness among people/medical professionals/health workers/administrators on this global concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号