首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
Hydrogeochemistry and environmental isotope data were utilized to understand origin, geochemical evolution, hydraulic interconnection, and renewability of groundwater in Qingshuihe Basin, northwestern China. There are four types of groundwater: (1) shallow groundwater in the mountain front pluvial fans, originating from recent recharge by precipitation, (2) deep paleo-groundwater of the lower alluvial plains, which was formed long ago, (3) shallow groundwater in the lower alluvial plains, which has undergone evaporation during the recharge process, and (4) mixed groundwater (shallow and deep groundwater in the plain). The main water types are Na–HCO3, which dominates type (1), and Na–SO4, which dominates types (2) and (3). Geochemical evolution in the upper pluvial fans is mainly the result of CO2 gas dissolution, silicates weathering and cation exchange; in the lower alluvial plains, it is related to mineral dissolution. The evaporative enrichment only produces significant salinity increases in the shallow groundwater of the lower alluvial plains. Shallow groundwater age in the upper plain is 10 years or so, showing a strong renewability. Deep groundwater ages in the lower plain are more than 200 years, showing poor renewability. In the exploitation areas, the renewability of groundwater evidently increases and the circulation period is 70–100 years.  相似文献   

2.
Although arsenic (As) contamination has been extensively investigated in the aquifers of the lower and middle Gangetic plains, less attention has been given to the distribution and fate of As in the groundwater of the upper Gangetic plain, India. In the current study, groundwater samples (n = 40) were collected from Moradabad district in the upper Gangetic plain and analyzed for several physicochemical parameters to characterize the groundwater chemistry and evaluate various geogenic and anthropogenic factors controlling the occurrence, mobilization, and fate of As in the plain. Arsenic concentrations in groundwater ranged from 0.17 μg/L to 139 μg/L, with the majority of high-As groundwater associated with high Fe, Mn, and HCO3 and low NO3, SO42−, and negative Eh values, implying that As was released via reductive dissolution of Fe and Mn oxyhydroxides in reducing conditions under the influence of organic matter degradation. Interrelationships between various geochemical variables and the natural background level (NBL) quantification of As suggested the influence of anthropogenic processes on the mobility of As in groundwater. Piper and Gibbs diagrams and various bivariate plots revealed that the majority of groundwater was of the Ca2+ − Mg2+ − HCO3 type and that the major ions in groundwater were derived from carbonate and silicate weathering, cation exchange and reverse ion exchange processes, and anthropogenic activities. Moreover, the results of principal component analysis (PCA), and hierarchical cluster analysis (HCA) also suggested geogenic and anthropogenic sources for the ion concentration in groundwater. The health risk assessment showed a higher non-carcinogenic risk for children and a higher carcinogenic risk for adults, respectively, due to the daily intake of As contaminated groundwater. Overall, this study represents the first systematic investigation of the distribution, geochemical behavior, and release process of As in groundwater in the study area and provides a strong base for future research in the alluvial aquifers of the upper Gangetic plain.  相似文献   

3.
Interplay of S and As in Mekong Delta sediments during redox oscillations   总被引:1,自引:1,他引:0  
The cumulative effects of periodic redox cycling on the mobility of As,Fe,and S from alluvial sediment to groundwater were investigated in bioreactor experiments.Two particular sediments from the alluvial floodplain of the Mekong Delta River were investigated:Matrix A(14 m deep)had a higher pyrite concentration than matrix B(7 m deep)sediments.Gypsum was present in matrix B but absent in matrix A.In the reactors,the sediment suspensions were supplemented with As(Ⅲ)and SO_4~(2-),and were subjected to three full-redox cycles entailing phases of nitrogen/CO_2,compressed air sparging,and cellobiose addition.Major differences in As concentration and speciation were observed upon redox cycling.Evidences support the fact that initial sediment composition is the main factor controlling arsenic release and its speciation during the redox cycles.Indeed,a high pyrite content associated with a low SO_4~(2-)content resulted in an increase in dissolved As concentrations,mainly in the form of As(Ⅲ),after anoxic half-cycles;whereas a decrease in As concentrations mainly in the form of As(Ⅴ),was instead observed after oxic half-cycles.In addition,oxic conditions were found to be responsible for pyrite and arsenian pyrite oxidation,increasing the As pool available for mobilization.The same processes seem to occur in sediment with the presence of gypsum,but,in this case,dissolved As were sequestered by biotic or abiotic redox reactions occurring in the Fe—S system,and by specific physico-chemical condition(e.g.pH).The contrasting results obtained for two sediments sampled from the same core show that many complexes and entangled factors are at work,and further refinement is needed to explain the spatial and temporal variability of As release to groundwater of the Mekong River Delta(Vietnam).  相似文献   

4.
天山北麓中段受构造控制,水文地质条件较为复杂.研究孔隙水水化学特征及苏打水(NaHCO3型)形成机制对了解天山北麓中段地下水水文地球化学过程与地质条件之间的联系具有重要意义.基于新疆天山北麓中段平原区209组地下水水样,结合地质条件,采用半变异函数模型、绝对主成分得分多元线性回归模型(PCA/APCS-MLR)剖析了潜水和承压水中水化学类型空间分布特征、地下水化学组分源贡献率、苏打水形成的地质条件控制因素以及水文地球化学作用.结果表明:山前倾斜平原潜水、冲积平原潜水和承压水分别以Na2SO4、NaHCO3和Na2SO4型水为主,其中苏打水分别占总水样的7.18%、14.83%、6.22%.承压水中Na+、HCO3-、TDS空间自相关性较强,潜水中Na+、HCO3-、TDS空间自相关性较弱,当水中TDS < 1 000 mg/L时更有利于NaHCO3型水的形成.溶滤-富集因子(F1)、外界输入因子(F2)、原生地质因子(F3)和地质环境因子(F4)对地下水中水化学指标的平均贡献率分别为29.44%、15.99%、7.70%和6.71%.苏打水形成过程不仅受控于矿物溶滤、阳离子交换、混合作用和脱硫酸作用等多种水文地球化学作用,还受到地质环境、地质构造及水文地质条件的影响.   相似文献   

5.
A regional assessment of multi-decadal changes in nitrate concentrations was done using historical data and a spatially stratified non-biased approach. Data were stratified into physiographic subregions on the basis of geomorphology and soils data to represent zones of historical recharge and discharge patterns in the basin. Data were also stratified by depth to represent a shallow zone generally representing domestic drinking-water supplies and a deep zone generally representing public drinking-water supplies. These stratifications were designed to characterize the regional extent of groundwater with common redox and age characteristics, two factors expected to influence changes in nitrate concentrations over time. Overall, increasing trends in nitrate concentrations and the proportion of nitrate concentrations above 5 mg/L were observed in the east fans subregion of the Central Valley. Whereas the west fans subregion has elevated nitrate concentrations, temporal trends were not detected, likely due to the heterogeneous nature of the water quality in this area and geologic sources of nitrate, combined with sparse and uneven data coverage. Generally low nitrate concentrations in the basin subregion are consistent with reduced geochemical conditions resulting from low permeability soils and higher organic content, reflecting the distal portions of alluvial fans and historical groundwater discharge areas. Very small increases in the shallow aquifer in the basin subregion may reflect downgradient movement of high nitrate groundwater from adjacent areas or overlying intensive agricultural inputs. Because of the general lack of regionally extensive long-term monitoring networks, the results from this study highlight the importance of placing studies of trends in water quality into regional context. Earlier work concluded that nitrate concentrations were steadily increasing over time in the eastern San Joaquin Valley, but clearly those trends do not apply to other physiographic subregions within the Central Valley, even where land use and climate are similar.  相似文献   

6.
通过主要对分层专门监测井进行取样,从水位、水质、水温及氘、氧-18、碳-14等方面进行分析,认为本区在扇缘及以下的冲洪积平原区地下水具有明显的呈层性,层间联系较差;运用氘、氧-18稳定同位素方法及碳-14定年确定出15个古水点,认为扇缘以下冲洪积平原区平均大致250m深度以下多出现古水点,表明深部水交替整体非常缓慢,局部滞留。据此分析,产生分层、深部交替缓慢及局部滞留的主要原因是由于黏土类地层的阻隔及地层的沉积压实,尤其是差异性压实,会形成相对封闭的滞留含水层。并认为地下水交替缓慢及局部滞留而不能及时获得补给是本区地面沉降发生的另一重要原因。  相似文献   

7.
《Applied Geochemistry》2003,18(9):1453-1477
Observed As concentrations in groundwater from boreholes and wells in the Huhhot Basin of Inner Mongolia, northern China, range between <1 μg l−1 and 1480 μg l−1. The aquifers are composed of Quaternary (largely Holocene) lacustrine and fluvial sediments. High concentrations are found in groundwater from both shallow and deep boreholes as well as from some dug wells (well depths ranging between <10 m and 400 m). Populations from the affected areas experience a number of As-related health problems, the most notable of which are skin lesions (keratosis, melanosis, skin cancer) but with internal cancers (lung and bladder cancer) also having been reported. In both the shallow and deep aquifers, groundwaters evolve down the flow gradient from oxidising conditions along the basin margins to reducing conditions in the low-lying central part of the basin. High As concentrations occur in anaerobic groundwaters from this low-lying area and are associated with moderately high dissolved Fe as well as high Mn, NH4, dissolved organic C (DOC), HCO3 and P concentrations. Many of the deep groundwaters have particularly enriched DOC concentrations (up to 30 mg l−1) and are often brown as a result of the high concentrations of organic acid. In the reducing groundwaters, inorganic As(III) constitutes typically more than 60% of the total dissolved As. The highest As concentrations tend to be found in groundwater with low SO4 concentrations and indicate that As mobilisation occurs under strongly reducing conditions, where SO4 reduction has been an active process. High concentrations of Fe, Mn, NH4, HCO3 and P are a common feature of reducing high-As groundwater provinces (e.g. Bangladesh, West Bengal). High concentrations of organic acid (humic, fulvic acid) are not a universal feature of such aquifers, but have been found in groundwaters from Taiwan and Hungary for example. The observed range of total As concentrations in sediments is 3–29 mg kg−1 (n=12) and the concentrations correlate positively with total Fe. Up to 30% of the As is oxalate-extractable and taken to be associated largely with Fe oxides. The release of As into solution under the reducing conditions is believed to be by desorption coupled with reductive dissolution of the Fe oxide minerals. The association of dissolved As with constituents such as HCO3, DOC and P may be a coincidence related to the prevalent reducing conditions and slow groundwater flow, but they may also be directly involved because of their competition with As for binding sites on the Fe oxides. The Huhhot groundwaters also have some high concentrations of dissolved U (up to 53 μg l−1) and F (up to 6.8 mg l−1). In contrast to As, U occurs predominantly under the more oxidising conditions along the basin margins. Fluoride occurs dominantly in the shallow groundwaters which have Na and HCO3 as the dominant ions. The combination of slow flow of groundwater and the young age of the aquifer sediments are also considered potentially important causes of the high dissolved As concentrations observed as the sediments are likely to contain newly-formed and reactive minerals and have not been well flushed since burial.  相似文献   

8.
塔城盆地地下水氟分布特征及富集机理   总被引:2,自引:0,他引:2  
塔城盆地位于新疆维吾尔自治区西北部,干旱少雨,蒸发强烈。但相对于新疆其他盆地,塔城盆地地下水水质相对较好,溶解性总固体和F-含量相对较低。为解译这种差异及盆地内高氟地下水的成因,本文在对盆地地下水样品水化学组分系统分析的基础上,结合多种水文地质调查数据,利用数理统计、离子比及主成分分析等手段,研究高氟水的成因及其分布规律。结果表明:受气候以及地质等因素控制,研究区地下水氟浓度总体较低,高氟水主要分布于扇前洼地及盆地中部的低洼地带;受承压含水层的顶托补给,地下水氟浓度呈现出上高下低的垂向分带特征。研究区地下水径流途径短,水循环快,水岩相互作用时间较短,且山区地下水以深径流形式循环补给平原区深层承压含水层,再顶托补给潜水,避免了强烈的蒸发浓缩作用。山前洪积扇地下水氟富集主要受控于沉积地层中含氟矿物的风化溶解,而岩石风化、蒸发浓缩、阳离子交换、竞争吸附为平原区地下水氟浓度的主要影响因素。  相似文献   

9.
Evaluation of major ion chemistry and solute acquisition process controlling water chemical composition were studied by collecting a total of fifty-one groundwater samples in shallow (<25 m) and deep aquifer (>25 m) in the Varanasi area. Hydrochemical facies, Mg-HCO3 dominated in the largest part of shallow groundwater followed by Na-HCO3 and Ca-HCO3 whereas Ca-HCO3 is dominated in deep groundwater followed by Mg-HCO3 and Na-HCO3. High As concentration (>50 μg/l) is found in some of the villages situated in northeastern parts (i.e. adjacent to the concave part of the meandering Ganga river) of the Varanasi area. Arsenic contamination is confined mostly in tube wells (hand pump) within the Holocene newer alluvium deposits, whereas older alluvial aquifers are having arsenic free groundwater. Geochemical modeling using WATEQ4F enabled prediction of saturation state of minerals and indicated dissolution and precipitation reactions occurring in groundwater. Majority of shallow and deep groundwater samples of the study area are oversaturated with carbonate bearing minerals and under-saturated with respect to sulfur and amorphous silica bearing minerals. Sluggish hydraulic conductivity in shallow aquifer results in higher mineralization of groundwater than in deep aquifer. But the major processes in deep aquifer are leakage of shallow aquifer followed by dominant ion-exchange and weathering of silicate minerals.  相似文献   

10.
High As contents in groundwater were found in two neighboring catchments – the Chianan plain and the southern Choushui river alluvial fan in Taiwan. The groundwater quality, the redox potential and the As distribution of the Chianan plain were characterized using factor analysis, redox zoning and a geochemical program. The results were compared with those of the southern Choushui river alluvial fan. Possible As release mechanisms are also elucidated. Factors 1 and 2 of the groundwater in the Chianan plain – the salinization factor and the As enrichment factor – are similar to those in the southern Choushui river alluvial fan. However, the spatial distribution of reductive tendency in the Chianan plain is different to that in the Choushui river alluvial fan, and yields spatially distinct hydrogeochemical environments in these two neighboring areas. The reduction potential in the Chianan plain is stronger than that in the Choushui river alluvial fan. The difference between the reduction potentials in these two vicinal areas influences the concentrations of As in groundwater. The reductive dissolution of As-rich Fe oxyhydroxide is suggested to be the major mechanism for release of As to the groundwater in the Chianan plain and the Choushui river alluvial fan of Taiwan.  相似文献   

11.
In Scopia basin, central Greece, a hydrochemical investigation was completed. Groundwater samples from 41 sites were used to assess the natural and anthropogenic impacts in groundwater, utilizing the principal component analysis (PCA) involved with the inverse distance weighted (IDW) interpolation modeling and hierarchical cluster analysis (HCA). Best fit model to explain the spatial distribution of both hydrochemical parameters and PCA was chosen by optimizing the IDW interpolator’s parameters. Precision of the model was picked based on less root-mean-squared prediction error (RMSPE) amongst predicted and actual values measured at the same locations. Groundwater exhibit Ca–Mg–HCO3 as the dominant hydrochemical type and their greater part are mixed waters with non-dominant ion. Interpolation models demonstrate high estimations of nitrates in zones with agricultural activities and high estimations of nickel and chromium in regions with the strong presence of ultrabasic rocks. Dominant part of the groundwater samples surpasses in many cases the European Community (EC) drinking water permissible limits. Thus, they are unsuitable for human consumption. PCA illustrated four factors, which clarified 80.62% of the aggregate variance of data and HCA classified two statistically significant clusters of sampling sites. Results show natural procedures ascribed to the weathering of the minerals contained in the ultrabasic rocks and anthropogenic influences related to the use of fertilizers and wastewater leak. In light of FAO standards and Richards’s classification, the groundwaters are reasonable for irrigation purposes, featuring waters with low sodium hazard and moderate salinity hazard.  相似文献   

12.
Groundwater resources in the North China Plain (NCP) are undergoing tremendous changes in response to the operation of groundwater exploitation reduction (GWER) project. To identify groundwater evolution in this complex context, hierarchical cluster analysis (HCA) and principal component analysis (PCA) were combined to interpret an integrated dataset of stable isotopes and chemical data from four sampling campaigns in a pilot area of groundwater control. We proposed a novel HCA approach integrating stable isotopes and chemical signals, which successfully partitioned the groundwater samples into the unconfined and the confined water samples. Stable isotopic evidence showed that the lateral inflow and the surface water may contribute more to groundwater recharge in this region than local modern precipitation. The unconfined water’s main hydrochemical types were Na type with mixed anions, and Na–Cl–SO4 type, while the confined water was mainly Na–Cl and Na–SO4 types. Geochemical processes mainly involved the dissolution/precipitation of halite, gypsum, Glauber's salt, feldspar, calcite and dolomite, as well as the cation exchange. PCA results showed that water–rock interaction (i.e., salinity-based and alkalinity-based processes) predominated the hydrochemical evolution, along with local nitrate contamination resulting from fertilizers and domestic sewage. The GWER project regulated the natural evolution of unconfined water chemistry, and significantly reduced the unconfined water’s salinity (mainly Na+, Mg2+, SO42?). This may be attributed to upward leakage from low-salinity confined water at some parts of the aquifer. Additionally, insignificant changes in the confined water’s salinity reflected that the impact of GWER on the confined aquifer was negligible. This study facilitates the groundwater classification effectively in the areas lack of geological data, and enhances the knowledge of groundwater chemical evolution in such a region where groundwater restoration is in progress, with important implications for groundwater sustainable management in similar basins worldwide.  相似文献   

13.
In order to examine the extent of the As enrichment and the factors influencing this enrichment in the groundwater of Eastern Croatia, groundwater samples were collected from 56 production wells in two counties, Osijek-Baranja and Vukovar-Srijem, suspected to be more affected. Hydrochemical analyses were performed at all locations including in situ As speciation at 32 locations. Arsenic was detected in 46 out of 56 groundwater samples with total As concentrations up to 491 μg/L. Thirty-six of the studied wells yielded groundwater with total As concentrations that exceeded the WHO Maximum Contaminant Level for arsenic in drinking water of 10 μg/L. Only inorganic As species were detected with arsenite As(III) as the predominant form. The spatial distribution of As in the groundwater was significantly linked with geological, geomorphological and hydrogeological development of the alluvial basin of the Drava and Sava rivers. The most probable groundwater As sources are deeper sediments from the Middle and Upper Pleistocene. The results obtained suggest that biogeochemical processes controlling As concentration in the groundwater are complex and location-specific. Reductive dissolution of Fe oxides, desorption of As from Fe oxides and/or clay minerals as well as competition for the sorption sites with organic matter and phosphate could be the principal mechanisms that control As mobilization. The extent of those processes vary in the different parts of the Drava and Sava depressions and could be linked to different site related parameters, such as lithology, mineralogy, local hydrology and hydrogeology; thus different processes of As mobilization have been proposed for the different types of water in relation to groundwater evolution.  相似文献   

14.
Hydrogeochemical characteristics and elemental features of groundwater and core sediments have been studied to better understand the sources and mobilization process responsible for As-enrichment in part of the Gangetic plain (Barasat, West Bengal, India). Analysis of water samples from shallow tubewells (depth 24.3–48.5 m) and piezometer wells (depth 12.2–79.2 m) demonstrate that the groundwater is mostly the Ca-HCO3 type and anoxic in nature (mean EhSHE = 34 mV). Arsenic concentrations ranged from <10–538 μg/L, with high concentrations only present in the shallow to medium depth (30–50 m) of the aquifer along with high Fe (0.07–9.8 mg/L) and relatively low Mn (0.15–3.38 mg/L) as also evidenced in core sediments. Most groundwater samples contained both As(III) and As(V) species in which the concentration of As(III) was generally higher than that of As(V), exhibiting the reducing condition. Results show lower concentrations of NO3, SO4 and NO2 along with higher values of DOC and HCO3, indicating the reducing nature of the aquifer with abundant organic matter that can promote the release of As from sediments into groundwater. Positive correlations of As with Fe and DOC were also observed. The presence of DOC may actively drive the redox processes. This study revealed that reduction processes of FeOOH was the dominant mechanism for the release of As into the groundwater in this part of the Ganges Delta plain.  相似文献   

15.
Environmental geochemistry of high arsenic groundwater at Hetao plain was studied on the basis of geochemical survey of the groundwater and a core sediment. Arsenic concentration in groundwater samples varies from 76 to 1093 μg/L. The high arsenic groundwater mostly appears to be weakly alkaline. The concentrations of NO3 and SO42− are relatively low, while the concentrations of DOC, NH4+, dissolved Fe and sulfide are relatively great. Analysis of arsenic speciation in 21 samples shows that arsenic is present in the solution predominantly as As(III), while particulate arsenic constitutes about 10% of the total arsenic. Methane is detected in five samples with the greatest content being 5107 μg/L. The shallow aquifer in Hangjinhouqi of western Hetao plain is of strongly reducing condition. The arsenic content in 23 core sediment samples varies from 7.7 to 34.6 mg/kg, with great value in clay and mild clay layer. The obvious positive relationship in content between Fe2O3, Mn, Sb, B, V and As indicates that the distribution of arsenic in the sediments may be related to Fe and Mn oxides, and the mobilization of Sb, B and V may be affected by similar geochemical processes as that of As.  相似文献   

16.
To identify impacts of air pollution, sewage drainage, agricultural production, over-pumping and reservoir storage on groundwater, a field survey was conducted in the Baiyangdian catchment of the North China Plain. Major ions and water isotopes were measured. Results show that hydrological processes and hydrogeochemical evolution of shallow groundwater were greatly disturbed by human activities. Excessive pumping resulted in significant declines of groundwater levels over the study area. This also induced infiltration of surface water into groundwater. A groundwater depression cone was the conflux center of groundwater surrounded by recharge zones including alluvial fans and surface water in alluvial plain. Pumping almost was the only way to discharge groundwater. Emission of SO x and NO x contributed at least 11% of rock weathering by dissolving into infiltrating precipitation. Surface waters containing sewage replenished ambient groundwater with an average mixing ratio of 74 ± 17% due to groundwater level drawdown. As a result, groundwater had elevated concentrations of Na+ and SO4 2? with Na+ exchanged into aquifer sediments. About 29 ± 16% of Na+ was exchanged from groundwater into soil matrix. Agriculture nitrate was high only in the recharge zones. The most important result is that the transformation of the study area from a place rich in water resource into an area lack of water just took several decades with the joint action of the heavily human activities. Our study also indicates that shallow groundwater could sensitively respond to and record environmental changes.  相似文献   

17.
The hydrochemical composition of surface water and groundwater is a key parameter for understanding the evolution of water and its quality.In particular, little is known about the impact of transferred water on surface water and groundwater.In this study, Baiyangdian Lake was selected as a typical area for extensive groundwater exploration and surface water transfer in the North China Plain.Surface water and groundwater samples were sampled in dry/wet seasons and then analyzed before/after the water transfer, respectively.Generally, surface water and groundwater are extensively hydrologically connected based on hydrochemical evidence.It was found that the hydrochemical composition of the shallow groundwater is affected by the surface water and that the water quality of the deep groundwater is stable.However, inter-aquifer recharge processes from the shallow groundwater to the deep groundwater existed in the anthropogenic region impacted with high nitrate-ion concentrations.Also, the hydrochemical composition of the surface water and groundwater was dominated by rock-weathering and evaporation-precipitation processes.Due to the existence of the deep vadose zone in the alluvial fan, Na~+was exchanged into soil matrices during the leakage of the surface water.In addition, the transferred water resulted in surface water with good quality, and it also played as an important recharge source to groundwater.As the most important water resource for irrigation and drinking, deep groundwater should be paid more attention in the alluvial fan with frequent water transfer and extensive groundwater exploration.  相似文献   

18.
Abstract

Alluvial fans are abundant in many valleys of the Alps, consisting of important sites for human settlements. Relationships between alluvial fan morphometry and drainage basin characteristics have been investigated in six valleys of the Eastern Italian Alps, displaying different geological and morphological conditions. Both debris flow fans and fluvial fans are present in the studied region, the latest occurring only in quite large basins. Expansion of alluvial fans is greatly determined by the topographic characteristics of receiving valleys. Fan gradient is mainly affected by basin ruggedness conditioning depositional processes, by debris size, and, in some cases, by post-depositional reworking of fan surfaces.  相似文献   

19.
The Vaal River Basin is an economically significant area situated in the interior of South Africa (SA), where mining, industrial, domestic and agricultural activities are very intense. The purpose of the study was to assess the influence of geology and anthropogenic activities on groundwater chemistry, and identify the predominant hydrochemical processes in the basin. Data from seventy groundwater sites were retrieved from the national database, and attention was paid to fifteen water quality parameters. Groundwater samples were clustered into seven hydrochemically distinct groups using Hierarchical Cluster Analysis (HCA), and three samples treated independently. A Piper plot revealed two major water types, Ca–Mg–HCO3 and Ca–Mg–SO4-Cl, which were linked to dissolution of the underlying geology and mine pollution. The Ca?+?Mg vs HCO3?+?SO4 plot indicated that reverse ion exchange is an active process than cation exchange in the area. Principal component analysis (PCA) was used to identify the main natural and anthropogenic processes causing variation in groundwater chemistry. Four principal components were extracted using PCA that explains 82% of the total variance in the chemical parameters. The PCA results can be categorized by four components: (1) evaporites and silicates weathering enrichment of Na, K, Cl, SO4 and F, and anthropogenic Cl; (2) dissolution of dolomite, limestone and gypsum; (3) agricultural fertilizers (4) wastewater treatment. This study reveals that both natural and anthropogenic activities are the cause of groundwater variation in the basin.  相似文献   

20.
The spatial distribution of arsenic (As) concentrations along three classified hydrogeomorphological zones in the Brahmaputra River Valley in Assam (India) have been investigated: zone I, comprising the piedmont and alluvial fans; zone II, comprising the runoff areas; and zone III, comprising the discharge zones. Groundwater (150 samples) from shallow hand-pumped and public water supply wells (2–60 m in depth) was analysed for chemical composition to examine the geochemical processes controlling As mobilization. As concentrations up to 0.134 mg/L were recorded, with concentrations below the World Health Organization and the Bureau of Indian Standards drinking-water limits of 0.01 mg/L being found mainly in the proximal recharge areas. Eh and other redox indicators (i.e., dissolved oxygen, Fe, Mn and As) indicate that, except for samples taken in the recharge zone, groundwater is reducing and exhibits a systematic decrease in redox conditions along the runoff and discharge zones. Hydrogeochemical evaluation indicated that zone I, located along the proximal recharge areas, is characterized by low As concentration, while zones II and III are areas with high and moderate concentrations, respectively. Systematic changes in As concentrations along the three zones support the view that areas of active recharge with high hydraulic gradient are potential areas hosting low-As aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号