首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Abstract

Digital Ocean is a new research domain of Digital Earth. Because of the spatio-temporal, three-dimensional (3D) and intrinsically dynamic nature of ocean data, it is more difficult to make a breakthrough in this domain. The construction of the China Digital Ocean Prototype System (CDOPS) pushes Digital Ocean a step forward from its operation as a mere concept to its achievement as a realistic system. In this paper, the technical framework of the CDOPS is discussed, including its data, function, and application layers. Then, two key technologies are studied in detail that will enable the construction of the 3D ocean environment and the visualization of the ocean model output data. Practical demonstrations show that the CDOPS provides a technical reference for the development of Digital Ocean. This paper is based on an ongoing research project of the development of CDOPS that aims at the facilitation, integration, sharing, accessing, visualization, and use of the ocean data and model computing data from the Digital Earth perspective.  相似文献   

2.
针对数字地球的开源框架平台的搭建,研究了OSGEarth数字地球开源库的整体框架、实时地形渲染机制及三维地形场景中的交互响应机制,并结合Qt绘图引擎,设计了基于Qt平台下的数字地球平台,利用该框架实现矢量、影像、高程数据的加载和坐标查询、距离测量、注记符号添加等地理信息查询功能,通过加载Google全球影像与地形数据实现三维地形场景的渲染,实现地理信息查询功能验证了该数字地球平台的可用性,拓展了三维地理信息系统的研究方向。  相似文献   

3.
NASA World Wind海量离散地形显示技术研究   总被引:1,自引:0,他引:1  
胡庆武  余飞 《测绘科学》2011,36(5):52-54
虚拟数字地球需要解决大范围海量地形快速显示问题。本文在对World Wind海量地形显示机理和地形数据LOD分层组织深入研究基础上,提出了基于ArcMap的离散地形分层切割流程,开发了与World Wind三维地形显示数据模型匹配的分层切割软件,对海量离散地形按不同分块大小和层次切割后的显示效率和效果进行了分析,结果表明World Wind能实现不同尺度地形数据的快速三维可视化。  相似文献   

4.
Geospatial data are gathered through a variety of different methods. The integration and handling of such datasets within a Digital Earth framework are very important in many aspects of science and engineering. One means of addressing these tasks is to use a Discrete Global Grid System and map points of the Earth's surface to cells. An indexing mechanism is needed to access the data and handle data queries within these cells. In this paper, we present a general hierarchical indexing mechanism for hexagonal cells resulting from the refinement of triangular spherical polyhedra representing the Earth. In this work, we establish a 2D hexagonal coordinate system and diamond-based hierarchies for hexagonal cells that enables efficient determination of hierarchical relationships for various hexagonal refinements and demonstrate its usefulness in Digital Earth frameworks.  相似文献   

5.
借助GIS强大的三维建模及可视化分析功能,以湖北省崇阳地区1:50 000区域地质成果为例,基于地理矢量数据、地质矢量数据和遥感影像数据,利用地形数据构建数字高程模型(DEM),将DEM与遥感图像叠合生成三维影像图,建立集地形、地质、遥感等数据为一体的三维可视化模型,解决传统二维地质图件用于表示三维地质不直观等问题,提...  相似文献   

6.
The effect of Digital Earth on our life is vital. Developing and updating Geospatial data in Digital Earth is also essential. This paper presents the application of a new approach of image registration in Digital Earth. The approach was developed based on registering a mono photograph on a master 3D model. The result is a 3D vector model, which can be broadly applied in visualisation, mapping, geographic information system (GIS), planning, change detection, as well as Digital Earth. The approach does not require parameters of correction for transformation. The accuracy of the output depends on the accuracy of the master data. This approach is very versatile and able to register any image on the digital elevation model, digital surface model and topographic 3D model.  相似文献   

7.
张宗伟  张冉 《东北测绘》2012,(8):175-177,180
数字高程模型(DEM)是地理信息系统地理数据库中最为重要的空间信息资料和赖以进行地形分析的核心数据。数字地形模型从已知3维坐标的散乱点和已知高程的等高线出发,构筑地形表面,以数字的形式表示实际地形特征的空间分布,从而建立起相关区域内任一点的地形情况。利用数字高程模型进行宏观地形因子和微观地形因子的分析,直观地显示研究区域的地貌形态,为水土流失监测、分析、治理提供了重要的科学依据。  相似文献   

8.
A spatial web portal (SWP) provides a web-based gateway to discover, access, manage, and integrate worldwide geospatial resources through the Internet and has the access characteristics of regional to global interest and spiking. Although various technologies have been adopted to improve SWP performance, enabling high-speed resource access for global users to better support Digital Earth remains challenging because of the computing and communication intensities in the SWP operation and the dynamic distribution of end users. This paper proposes a cloud-enabled framework for high-speed SWP access by leveraging elastic resource pooling, dynamic workload balancing, and global deployment. Experimental results demonstrate that the new SWP framework outperforms the traditional computing infrastructure and better supports users of a global system such as Digital Earth. Reported methodologies and framework can be adopted to support operational geospatial systems, such as monitoring national geographic state and spanning across regional and global geographic extent.  相似文献   

9.
地景模型的简化与快速绘制方法研究   总被引:2,自引:0,他引:2  
在分析地景模型数据特点的基础上,提出了地景模型简化的判决准则,并根据该则提出了基于视点的区域数据抽取与简化方法以及基于法矢量的细节模型简化方法。实验结果表明,使用该方法数据压缩量大,绘制速度快,且逼真度无明显变化。  相似文献   

10.
数字高程模型是数字地形模拟的重要成果,作为空间数据框架中的主要内容,也成为各种地理信息的载体。在铁路、城轨、公路等线形构筑物的设计和建设中,沿线两边的地形信息是工程设计和建设的基础。本文结合带状区域的特点以及数字高程模型本身的特点,从工程实用的角度出发,围绕带状区域中多块不等采样间隔DEM数据在工程应用中的问题,重点分析了多块不等采样间隔DEM之间拼接的问题,确定了一种不等采样间隔的DEM间无缝拼接的方法,简单介绍了多块不等间隔数字高程模型的裁剪方法和三维可视化方法。  相似文献   

11.
Abstract

Digital Earth's framework can be traced to evolutionary threads with historic foundations that fostered the fertile conceptual and technological incubation. These threads incorporate writings, such as those of the visionary engineering-genius, Buckminster Fuller, in conjunction with an array of space age developments in computers, internet and communications, satellites, and education. In 1998, when Vice President Al Gore articulated the Digital Earth Vision, he portrayed the vision based upon myriad technology factors for the intellectual foundation and sparked a worldwide phenomenon that fortuitously included the Chinese leadership's recognition and acceptance. The Beijing Declaration is recognised for its role promulgating the International Digital Earth Symposium series to promote better understanding of the impacts of Digital Earth technology and applications on behalf of all humankind. Combinations of industrial, academic, and government organisations have advanced the technological components necessary for implementing the Digital Earth Vision at a prodigious rate. Commercial leaders, such as Google, have accelerated the influence of large segments of society towards components of the Digital Earth Vision. However, challenges still remain regarding requisite collaboration on international standards for metadata, interoperability, and data formats for space and time that will affect Digital Earth implementation scenarios. Functional requirements for the model Digital Earth geobrowser remain to be fully articulated. The current paper presents an overview of the historical components, the key players on the international scene, the catalytic technological advances, and the societal response to the growth of the Digital Earth community.  相似文献   

12.
全球离散网格是面向空间大数据的模型框架,常用于构建数字地球平台。基于球体的剖分瓦块不仅可以构建真三维的数字地球模型,而且可以实现天地一体化的空间数据集成、融合、表达和应用。本文详细论述了球体大圆弧QTM八叉树网格的剖分原理、网格几何特征分析和编解码方法等理论体系,并利用剖分瓦块实现了球体的任意分割以及地下、地表和空中实体的可视化建模。研究表明,球体QTM网格具有剖分规则简单、体系规整、几何特征明晰,适用性强等特点,尤其是可以推广到椭球。因而,该方案可用于天地一体化的空间数据的组织、管理与应用。  相似文献   

13.
Abstract

While significant progress has been made to implement the Digital Earth vision, current implementation only makes it easy to integrate and share spatial data from distributed sources and has limited capabilities to integrate data and models for simulating social and physical processes. To achieve effectiveness of decision-making using Digital Earth for understanding the Earth and its systems, new infrastructures that provide capabilities of computational simulation are needed. This paper proposed a framework of geospatial semantic web-based interoperable spatial decision support systems (SDSSs) to expand capabilities of the currently implemented infrastructure of Digital Earth. Main technologies applied in the framework such as heterogeneous ontology integration, ontology-based catalog service, and web service composition were introduced. We proposed a partition-refinement algorithm for ontology matching and integration, and an algorithm for web service discovery and composition. The proposed interoperable SDSS enables decision-makers to reuse and integrate geospatial data and geoprocessing resources from heterogeneous sources across the Internet. Based on the proposed framework, a prototype to assist in protective boundary delimitation for Lunan Stone Forest conservation was implemented to demonstrate how ontology-based web services and the services-oriented architecture can contribute to the development of interoperable SDSSs in support of Digital Earth for decision-making.  相似文献   

14.
1 Map projectionandtheinversetransformationofmapprojectionNowadays,nearlyallGISstakecertainmappro jectionastheirownspatialmathematicalbasis.Thatis,theplanemeasurespaceisexpressedbythefollowingformula :X =f1 (Φ ,λ)Y =f2 (Φ ,λ) (1 )WhereΦ ,λarethelatitudeandlongitude…  相似文献   

15.
The Google Earth terrain model could prove beneficial for extraction of positional data in the future. At present, only an aging independent benchmark study (Potere, D., 2008. Horizontal position accuracy of Google Earth's high-resolution imagery archive. Sensors, 8, 7973–7981) provides constraints on positional accuracy for Google Earth imagery. In this investigation, we compared virtually traced positions against high-precision (<1 m) field measurements along three stratigraphic unconformity sub-sections in the Big Bend region to determine current positional accuracy for the Google Earth terrain model. A horizontal position accuracy of 2.64 m RMSEr was determined for the Google Earth terrain model with mean offset distance being 6.95 m. A vertical position accuracy of 1.63 m RMSEz with mean offset distance of 2.66 m was also calculated for the terrain model. Results suggest data extracted from the Google Earth terrain model could plausibly be used in future studies. However, we urge caution in using Google Earth data due to limited information disclosures by developers.  相似文献   

16.
The problem of spatial mathematical basis has been encountered by both large scale GIS and spatial digital products theoretically and practically. It is also a basic problem in the development of the whole geo-information science. After analyzing the status quo and the limitations of the space mathematical base of GIS, this paper points out definitely that the geodetic coordinate system is uniform, which can show the location of any point of the global exactly and uniquely in form of (B, L, H) and is the most proper reference system of largescale GIS and Digital Earth. Moreover, this paper also puts forward a set of practical model of the standard “map projection”. Finally, this paper introduces a DRG system based on this model.  相似文献   

17.
Abstract

Global challenges (such as economy and natural hazards) and technology advancements have triggered international leaders and organizations to rethink geosciences and Digital Earth in the new decade. The next generation visions pose grand challenges for infrastructure, especially computing infrastructure. The gradual establishment of cloud computing as a primary infrastructure provides new capabilities to meet the challenges. This paper reviews research conducted using cloud computing to address geoscience and Digital Earth needs within the context of an integrated Earth system. We also introduce the five papers selected through a rigorous review process as exemplar research in using cloud capabilities to address the challenges. The literature and research demonstrate that spatial cloud computing provides unprecedented new capabilities to enable Digital Earth and geosciences in the twenty-first century in several aspects: (1) virtually unlimited computing power for addressing big data storage, sharing, processing, and knowledge discovering challenges, (2) elastic, flexible, and easy-to-use computing infrastructure to facilitate the building of the next generation geospatial cyberinfrastructure, CyberGIS, CloudGIS, and Digital Earth, (3) seamless integration environment that enables mashing up observation, data, models, problems, and citizens, (4) research opportunities triggered by global challenges that may lead to breakthroughs in relevant fields including infrastructure building, GIScience, computer science, and geosciences, and (5) collaboration supported by cloud computing and across science domains, agencies, countries to collectively address global challenges from policy, management, system engineering, acquisition, and operation aspects.  相似文献   

18.
Jakob Flury 《Journal of Geodesy》2006,79(10-11):624-640
The GRACE (gravity recovery and climate experiment) and GOCE (gravity field and steady-state ocean circulation explorer) dedicated gravity satellite missions are expected to deliver the long-wavelength scales of the Earth’s gravity field with extreme precision. For many applications in Earth sciences, future research activities will have to focus on a similar precision on shorter scales not recovered by satellite missions. Here, we investigate the signal power of gravity anomalies at such short scales. We derive an average degree variance and power spectral density model for topography-reduced gravity anomalies (residual terrain model anomalies and de-trended refined Bouguer anomalies), which is valid for wavelengths between 0.7 and 100  km. The model is based on the analysis of gravity anomalies from 13 test regions in various geographical areas and geophysical settings, using various power spectrum computation approaches. The power of the derived average topography-reduced model is considerably lower than the Tscherning–Rapp free air anomaly model. The signal power of the individual test regions deviates from the obtained average model by less than a factor of 4 in terms of square-root power spectral amplitudes. Despite the topographic reduction, the highest signal power is found in mountainous areas and the lowest signal power in flat terrain. For the derived average power spectral model, a validation procedure is developed based on least-squares prediction tests. The validation shows that the model leads to a good prediction quality and realistic error measures. Therefore, for least-squares prediction, the model could replace the use of autocovariance functions derived from local or regional data.  相似文献   

19.
一种基于视觉特征的地形模型数据提取与快速显示方法   总被引:4,自引:0,他引:4  
汤晓安  陈敏  孙茂印 《测绘学报》2002,31(3):266-269
DEM模型是一种重要的地形模型,由于其数据量极其巨大,如何实现快速显示是一个难题。针对DEM地形模型,提出基于视点与观察分辨率的数据抽取及基于法矢量的模型简化的快速绘制方法算法,最后进行实验验证。结果表明,该方法数据压缩量大,绘制速度快,且逼真度无明显变化。  相似文献   

20.
This study proposes a virtual globe-based vector data model named the quaternary quadrangle vector tile model (QQVTM) in order to better manage, visualize, and analyze massive amounts of global multi-scale vector data. The model integrates the quaternary quadrangle mesh (a discrete global grid system) and global image, terrain, and vector data. A QQVTM-based organization method is presented to organize global multi-scale vector data, including linear and polygonal vector data. In addition, tile-based reconstruction algorithms are designed to search and stitch the vector fragments scattered in tiles to reconstruct and store the entire vector geometries to support vector query and 3D analysis of global datasets. These organized vector data are in turn visualized and queried using a geometry-based approach. Our experimental results demonstrate that the QQVTM can satisfy the requirements for global vector data organization, visualization, and querying. Moreover, the QQVTM performs better than unorganized 2D vectors regarding rendering efficiency and better than the latitude–longitude-based approach regarding data redundancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号