首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
佟华  陈仲良  桑建国 《大气科学》2004,28(6):957-978
由于城市表面复杂的下垫面的影响,使得城市边界层风温场结构较其他下垫面有很大不同.作者通过将城市中500 m网格内的各种地表类型,按照各自在网格中所占的百分比及各自的地表参数加权平均,得到此网格的平均的地表参数,以此准确反映下垫面的情况,建立分辨率为500 m的城市边界层能量平衡模式,将此城市边界层能量平衡模式嵌入动力学框架,并用中尺度模式MM5作为初始条件和边界条件,建立一个既考虑中尺度背景场又详细考虑城市下垫面复杂性与多样性的城市边界层模式系统.将模式系统运用于香港复杂地形下的边界层特点的模拟研究.通过与观测值的比较,模式能够较准确的模拟出海陆风、城市热岛等热力过程,及气流过山引起的绕流等动力过程,并且通过对边界层高度的模拟预测污染扩散的条件等.说明模式系统具有模拟在中尺度的背景场的控制下海陆风环流、过山堆积和绕流及城市热力影响的能力.  相似文献   

2.
Summary A simple one dimensional wind model, designed for diffusion calculations in flat environments with obstructions, is proposed. It covers the surface layer and up to a maximum height of 500 m with three levels. The lowest level is the internal boundary layer, in which the influence of the immediate environment is manifest. The second is the surface layer in which the wind profile is characterized by the fetch conditions further upstream. The third is the spiral layer, where the wind turns with height. The actual depth of the surface layer is estimated by the model. In both the surface layer and the internal boundary layer, Monin-Obukhov theory is applied. The spiral layer is represented by a classical Ekman-Taylor solution matched at the top of the surface layer. This conceptual model is then tested with data from a meteorological mast at Garching (near Munich, Germany).With 11 Figures  相似文献   

3.
The adaptation of the atmospheric boundary layer to a change in the underlying surface roughness is an interesting problem and hence much research, theoretical, experimental, and numerical, has been undertaken. Within the atmospheric boundary layer an accurate numerical model for the turbulent properties of the atmospheric boundary layer needs to be implemented if physically realistic results are to be obtained. Here, the adaptation of the atmospheric boundary layer to a change in surface roughness is investigated using a first-order turbulence closure model, a one-and-a-half-order turbulence closure model and a second-order turbulence closure model. Perturbations to the geostrophic wind and the pressure gradients are included and it is shown that the second-order turbulence closure model, namely the standard k - model, is inferior to a lower-order closure model if a modification to limit the turbulent eddy size within the atmospheric boundary layer is not included within the model.  相似文献   

4.
In this paper,an interactive model between land surface physical process and atmosphereboundary layer is established,and is used to simulate the features of soil environmental physics,surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures ofatmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged inprimary physics parameters.The results show that this model can obtain reasonable simulation fordiurnal variations of heat balance,soil volumetric water content,resistance of vegetationevaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulentmomentum,potential temperature,and specific humidity.The model developed can be used tostudy the interaction between land surface processes and atmospheric boundary layer in cityregions,and can also be used in the simulation of regional climate incorporating a mesoscalemodel.  相似文献   

5.
In this paper,an interactive model between land surface physical process and atmosphere boundary layer is established,and is used to simulate the features of soil environmental physics,surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures of atmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged in primary physics parameters.The results show that this model can obtain reasonable simulation for diurnal variations of heat balance,soil volumetric water content,resistance of vegetation evaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulent momentum,potential temperature,and specific humidity.The model developed can be used to study the interaction between land surface processes and atmospheric boundary layer in city regions,and can also be used in the simulation of regional climate incorporating a mesoscale model.  相似文献   

6.
陆面过程和大气边界层相互作用敏感性实验   总被引:18,自引:1,他引:18  
文中建立了一个研究陆面物理过程与大气边界层相互作用的模式。模拟了草原下垫面的土壤 环境物理、地面热量通量、蒸发、蒸散及大气边界层结构特征。并对主要的环境物理参数进 行了敏感性实验。结果表明,本模式能合理地模拟地表热量平衡、土壤体积含水量、植被蒸 发阻抗、地表水汽通量日变化和湍流交换系数、湍流动能、位温和比湿廓线等。该模式还可 进一步应用于研究城市陆面物理过程与大气边界层相互作用机制,及与中尺度大气模式耦合用于区域气候的研究。  相似文献   

7.
Land surface parameterization schemes play a significant role in the accuracy of meso-local scale numerical models by accounting for the exchange of energy and water between the soil and the atmosphere. The role of land surface processes during large-scale cold-pooling events was studied with two land surface schemes (LSMs) in the Advanced Research Weather Forecasting model (ARW). Model evaluation was complex due to the surface and boundary layer interactions at different temporal and spatial scales as revealed by a scale dependent variance analysis. Wavelet analysis was used for the first time to analyze the model errors with specific focus on land surface processes. The ARW model was also evaluated for the formation of a low-level jet (LLJ). It is shown that vertical resolution in the model boundary layer played a significant role in determining the characteristics of LLJ, which influenced the lower boundary layer structure and moisture distribution. The results showed that the simulated low-level jet over southern Georgia was sensitive to the land surface parameterization and led to a significant difference in the boundary layer exchange. The jet shear played a crucial role in the maintenance of turbulence and weak shear caused excessive radiative cooling leading to unrealistic cold pools in the model. The results are important for regional downscaling as the excessive cold pools that are simulated in the model can go unnoticed.  相似文献   

8.
对流边界层的大涡模拟研究   总被引:5,自引:0,他引:5  
吴涧  蒋维楣 《气象科学》1999,19(1):33-41
本文建立了一个均匀平坦地面上对流边界层的大涡模式,模式考虑了水汽,采用了考虑浮力和固壁影响订正的一阶闭合。并用所建模式进行了由热扰动发展的对流边界层的模拟及其对地表热状况变化响应的初步探讨性模拟工作。通过模拟认为,模式较好地反映了对流边界层的主要结构。  相似文献   

9.
桑建国  刘丽杰 《高原气象》1990,9(3):245-255
本文采用二阶闭合的湍流边界层模式,进行一系列数值试验以模拟边界层中连续线源的扩散状况。试验表明:无论在稳定的或不稳定的边界层中,高源的扩散能力都低于低源;在稳定层中,粗糙地表上的大气扩散能力高于光滑表面;在相同风速和地表净辐射情况下,粗糙表面上的大气扩散能力反而低于光滑表面;对流边界层中存在反梯度输送,因而K理论的应用受到限制。试验还表明,修正的Kazanski-Monin参数可能比Monin-Obukhov长度更能反映大气的扩散能力。  相似文献   

10.
A three-dimensional model of the mesoscale surface boundary layer of the open ocean is developed through scale analysis of the primitive equations with mixing included. A set of surface boundary-layer equations appropriate for a broad range of oceanic and atmospheric scales is thereby derived. The essential basis of the model is a coupling between quasigeostrophic dynamics away from the boundary layer and arbitrary mixing models within the mixed layer. The coupling consists of advection of the boundary layer by the horizontal and vertical components of the interior quasigeostrophic flow and forcing of the interior by the boundary layer in the form of divergence within the boundary layer which leads to vortex stretching/compression in the interior. The divergence is generalized for mesoscale wind-driven flows and includes nonlinear interaction between the directly wind-driven boundary-layer flow and the interior flow in the form of interior relative vorticity advection by the wind-driven flow. The nature of the equations leads us to apply a numerical algorithm to their solution. This algorithm is calibrated through application to idealized problems to determine the temporal and spatial grid requirements. The model is initialized with a realistic ocean flow having the properties of the Gulf Stream.  相似文献   

11.
In this study the role of atmospheric boundary layer schemes in climate models is investigated. Including a boundary layer scheme in an Earth system model of intermediate complexity (EMIC) produces only minor differences in the estimated global distribution of sensible and latent heat fluxes over land (upto about 15% of the net radiation at the surface). However, neglecting of boundary layer processes, such as the development of a well-mixed layer over land or the impact of stability on the exchange coefficient in the surface layer, leads to erroneous surface temperatures, especially in convective conditions with low wind speeds. As these conditions occur frequently, introducing a boundary layer scheme in an EMIC gives reductions in June-July-August averaged surface temperature of 1–2 °C in wet areas, to 5–7 °C in desert areas. Even a relatively simple boundary layer scheme provides reasonable estimates of the surface fluxes and surface temperatures. Detailed schemes that solve explicitly the turbulent fluxes within the boundary layer are only required when vertical profiles of potential temperature are needed.  相似文献   

12.
A vertically integrated model of a developing boundary layer over a wet surface is presented, and the expected change in the relative humidity is discussed. For the case of cold air moving over a water surface of constant temperature, analytical solutions of the model equations are obtained, giving the height, temperature and relative humidity of the boundary layer as functions of the distance travelled by the air column. The relation to the problem of sea smoke is discussed.  相似文献   

13.
The interaction between radiation and turbulence in the stable boundary layer over land is explored using an idealized model, with a focus on the surface layer after the evening transition. It is shown that finer vertical resolution is required in transitional boundary layers than in developed ones. In very light winds radiative cooling determines the temperature profile, even if similarity functions without a critical Richardson number are used; standard surface similarity theory applied over thick layers then yields poor forecasts of near-surface air temperatures. These points are illustrated with field data. Simulations of the developing nocturnal boundary layer are used to explore the wider role of radiation. Comparatively, radiation is less significant within the developed stable boundary layer than during the transition; although, as previous studies have found, it remains important towards the top of the stable layer and in the residual layer. Near the ground, reducing the surface emissivity below one is found to yield modest relative radiative warming rather than intense cooling, which reduces the potential importance of radiation in the developed surface layer. The profile of the radiative heating rate may be strongly dependent on other processes, leading to quite varied behaviour.  相似文献   

14.
A new approach to investigations of the structure of the boundary layer above waves is discussed. The approach is based on direct numerical simulation of wave motions in the boundary layer produced by a moving curved surface. Model equations are derived, which are the Reynolds equations in a curvilinear nonstationary system of co-ordinates, evolution equations for turbulent kinetic energy, and Kolmogorov's approximate similarity formulae relating the coefficient of turbulent viscosity to the dissipation of turbulent energy; the length scale is assumed to grow linearly with increasing distance from the surface. Principles of constructing the model numerical scheme are described. Results are given of modelling the structure of the boundary layer above a nonsteady surface, which, in a general case, is a superposition of progressive waves with assigned dispersion relations and amplitudes. Mechanisms of energy and momentum transfer to the surface, effects of density stratification and energy structure in the boundary layer are studied. Merits and demerits of the approach are discussed.  相似文献   

15.
半干旱区植被覆盖度对边界层气候热力影响的数值模拟   总被引:14,自引:0,他引:14  
在陆-气相互作用的中小尺度系统研究中,水平非均匀下垫面的强迫作用是主要的物理过程。本文利用能量闭合二维陆面过程与大气边界层耦合模式,研究了我国西北半干旱地区(38°N,105°E)夏季下垫面物理特征的变化对区域边界层气候的影响。结果表明:土壤湿度、植被覆盖度对局地环流和区域边界层气候的形成起着决定性的作用。模拟结果揭示了在半干旱地区大面积植树造林、提高植被覆盖度,可涵养土壤水分,改善局地生态环境,是人工持续改造干旱、半干旱荒漠地区局地气候的重要途径。  相似文献   

16.
A model of the evolution of the nocturnal stable boundary layer height, based on the heat conservation equation for a turbulent flow, is presented. This model is valid for nights with weak winds and little cloudiness in rural areas. The model includes an expression of vertical profile of potential temperature within the boundary layer, which is obtained using micrometeorological information from Prairie Grass, Wangara and O'Neill Projects. The expression turned out to be a second-grade polynomial of the dimensionless height of the nocturnal stable boundary layer. The resulting model is a function of the Monin–Obukhov length, the surface potential temperature of air and the roughness length. This model was satisfactorily compared with micrometeorological data. It was applied at three stations of Argentina, using surface hourly meteorological information. From the results that were obtained, the monthly average values of the stable boundary layer thickness were analysed. The maximum monthly average values occur during the cold season and the minimum ones take place during the hot season. It was observed that the monthly average thickness increases with latitude.  相似文献   

17.
A model that couples the surface energy balance equation, a surface hydraulic resistance equation, and the force-restore soil temperature model to a mixed-layer model of the planetary boundary layer is described. The mixed layer is separated from the soil by a relatively thin surface layer and is overlain by a stable free atmosphere with prescribed profiles of potential temperature and water vapour density. The model is in reasonably good agreement with daytime micrometeorological measurements made at a wet bare site at Agassiz, British Columbia, and a desert site at Pampa de La Joya, Peru. The sensitivity of the mixed-layer model to conditions in the free atmosphere, to the parameters describing the growth of the mixed layer, and to surface roughness lengths, surface hydraulic resistance, and windspeed is examined.  相似文献   

18.
An important parameterization in large-eddy simulations (LESs) of high- Reynolds-number boundary layers, such as the atmospheric boundary layer, is the specification of the surface boundary condition. Typical boundary conditions compute the fluctuating surface shear stress as a function of the resolved (filtered) velocity at the lowest grid points based on similarity theory. However, these approaches are questionable because they use instantaneous (filtered) variables, while similarity theory is only valid for mean quantities. Three of these formulations are implemented in simulations of a neutral atmospheric boundary layer with different aerodynamic surface roughness. Our results show unrealistic influence of surface roughness on the mean profile, variance and spectra of the resolved velocity near the ground, in contradiction of similarity theory. In addition to similarity-based surface boundary conditions, a recent model developed from an a priori experimental study is tested and it is shown to yield more realistic independence of the results to changes in surface roughness. The optimum value of the model parameter found in our simulations matches well the value reported in the a priori wind-tunnel study.  相似文献   

19.
When air blows across a change in surface roughness, an internal boundary layer (IBL) develops within which the wind adapts to the new surface. This process is well described for short fetches, > 1 km. However, few data exist for large fetches on how the IBL grows to become a new equilibrium boundary layer where again the drag laws can be used to estimate the surface wind.To study this problem, data have been sampled for two years from four 30-m meteorological masts placed from 0 to 30 km inland from the North Sea coast of Jutland in Denmark. The present analysis is limited to neutral stratification, and the surface roughness is the main parameter. The analysis of wind data and two simple models, a surface layer and a planetary boundary layer (PBL) model, are described.Results from both models are discussed and compared with data analysis. Model parameters have been evaluated and the model sensitivity to those parameters has been investigated. Using the model parameters, a large-scale roughness length has been estimated.Istituto Di Fisica dell' Atmosfera I.F.A. — CNR, Rome, Italy.  相似文献   

20.
Two formulations of the stable atmospheric boundary layer are proposed for use in weather forecasting or climate models. They feature the log-linear profile near the surface, but are free from the associated critical Richardson number. The diffusion coefficients in the Ekman layer are a natural extension of the surface layer. They are locally determined using wind shear in one case and turbulent kinetic energy in the other. The parameterizations are tested in a one-dimensional model simulating the evolution of the nocturnal boundary layer with and without radiative cooling. Both formulations give very similar results, except near the top of the boundary layer where the transition to the free atmosphere is smoother with the wind shear formulation. A distinctive feature of these schemes is that they retain their simulating skill when resolution is reduced. This is verified for a wide range of situations. In practice, this means that there is no need for a large-scale model to have a level below 50 m or so.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号