首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 791 毫秒
1.
应用遥感(RS)与地理信息系统(GIS)技术, 分析了位于青藏高原东北部, 可可西里地区、昆仑山脉中段的新青峰和马兰冰帽近30 a来的冰川变化.1971-2000年间新青峰冰帽总面积呈减小变化, 马兰冰帽面积有所增加;结合以往研究结果, 发现新青峰冰帽面积变化在1979年前后为突变点, 1979年前冰帽总体面积扩大, 之后面积迅速减小, 期间经历了1989-1994年相对稳定的时期. 进一步分析新青峰冰帽东南侧新青峰冰川和西北侧西新青峰冰川长度变化过程, 发现新青峰冰帽面积变化在很大程度上取决于这两条冰川的变化. 研究时段内两条冰川末端进退变化有较大差异, 西新青峰冰川在1971-1976和1994年之后为退缩期, 1976-1994年间为前进, 而新青峰冰川则有所不同, 该冰川1971年以来一直处于退缩之中, 但不同时段退缩速率不同, 且1994年后有加速退缩的趋势. 根据马兰冰帽冰芯δ18 O记录所反映的夏季气温变化, 近50 a来研究区在1976年之前为相对高温期, 之后为相对低温期, 两冰川不同的长度变化趋势可能与两冰川对气候变化具有不同的动力响应特征有关.根据两条冰川冰面地形特征分析认为, 受地形条件制约, 两条冰川可能具有不同的冰川表面物质平衡梯度, 这也可能是两冰川具有不同的动力响应特征的影响要素之一.  相似文献   

2.
1960-2010年黑河流域冰川变化的遥感监测   总被引:8,自引:6,他引:2  
别强  强文丽  王超  何磊  赵传燕 《冰川冻土》2013,35(3):574-582
利用1960年地形图、 1990年、 2000年和2010年TM影像, 采用基于冰雪指数(NDSII)和原始波段的面向对象解译方法, 提取黑河流域4个时期的冰川分布, 结合30 m分辨率的DEM数据, 利用遥感、 地理信息系统技术对冰川的时空分布变化及原因和不确定性进行分析. 结果表明: 从1960-2010年50 a间黑河流域上游冰川持续退缩, 面积共减少138.90 km2, 减少率为35.6%, 平均每年减少2.78 km2, 祁连山中段冰川属于强烈退缩型. 祁连山中段黑河流域冰川主要分布在海拔4 200~5 300 m之间, 冰川分布下限为海拔4 000 m; 冰川退缩主要发生在低海拔地区, 冰川的退缩上限为海拔4 600 m.气温的显著上升是研究区冰川退缩的关键因素, 气候持续变暖将会导致冰川退缩加剧.  相似文献   

3.
可可西里马兰山冰川的近期变化   总被引:5,自引:11,他引:5  
位于可可西里地区的马兰山冰帽,冰川覆盖了整个山体,冰川面积达195km^2,属极大陆型冰川,雪线海拔在5340-5540m之间,大多数冰川末端存在小冰期的碛垄,一般可分辨出3道,自小冰期以来,随着气候的变化,马兰山冰帽表现出波动退缩趋势。小冰期时,冰舌末端南坡比现在低20m,北坡低20-40m,由冰川退缩引起的冰川面积的减小相当于现代冰川面积的4.6%,略小于整个羌塘高原地区小冰期以来冰川面积减小的幅度(8%)。近百年来,冰川的退缩量为45-60m左右,而从1970年以来的30a中,马兰山冰川的退缩量为30-50m,平均年退缩量为1-1.7m。虽然小于高原边缘和其它地区冰川退缩幅度,但是退缩速率正在逐渐增大,这将对高原内陆脆弱的生态系统和生态环境产生较大的影响。  相似文献   

4.
从1970、1990、2000年和2010年4个时段的MSS、TM、ETM影像中提取了敦德冰川的边界,并结合距敦德冰川较近的托勒、大柴旦和德令哈3个气象站点的1957-2010年年降水量数据、年平均气温和夏季平均气温(6-8月)数据进行分析,对近40a来敦德冰川变化和气候变化的关系进行了研究.结果表明:近40a来的敦德冰川处在持续退缩状态;最近几十年敦德冰川退缩有相对加速之势;冰川在退缩过程中不断分解,部分分解后的小面积冰川融化消失.近半个世纪以来该区的气候增温趋势较明显,降水虽有少量增加,但是趋势却不明显.冰川变化与气候变化的关系表现为温度的升高是敦德冰川退缩的主要原因.  相似文献   

5.
1958-2005年祁连山老虎沟12号冰川变化特征研究   总被引:23,自引:8,他引:15  
老虎沟12号冰川是祁连山最大的冰川, 面积为21.9 km2, 为极大陆型冷性复式山谷冰川. 该冰川监测开始于1958年, 1962年监测被迫终止;其后于20世纪70-80年代有过短期考察, 2005年恢复全面观测. 基于野外GPS观测, 两期1∶50 000地形图和两期1∶10 000地形图及Landsat ETM 遥感影像, 分析了过去近50 a来多时间段冰川的变化特征及其对气候变化的响应过程. 结果表明: 1957-1976年间冰川退缩约100 m, 平均退缩速率5 m·5a-1, 此后冰川归于平稳态; 1985-2005年间冰川退缩140.12 m, 退缩速率较之前(1957-1976年)提高了40.2%. 结合玉门镇气象资料分析认为, 升温幅度的增大是影响20世纪90年代中期以来老虎沟12号冰川退缩加剧的根本原因, 冰川在持续高温情景下的气候响应要敏感于低温情景.  相似文献   

6.
运用遥感(RS)与地理信息系统(GIS)技术, 结合波密县1960-2010年气象数据, 分析了西藏波密地区冰川的主要分布特征和典型大冰川1980-2010年的时空变化. 结果显示: 波密县共有冰川数量2 040条, 总面积为4 382.5 km2, 其中, 分布在海拔4 000~6 000 m的高山冰川总面积达4 086 km2, 占冰川总面积的93.2%; 南坡分布冰川1 504条, 面积3 180.04 km2, 分别占波密冰川总量的73.73%和72.56%, 而北坡占还不到三分之一. 提取1980、 1990、 2000和2010年4期面积大于20 km2的24条大冰川面积进行对比分析, 1980-2010年间波密县大冰川面积总体呈减小趋势, 由1980年的1 592.78 km2退缩至2010年1 567.04 km2, 共退缩了25.74 km2; 其中, 1980-1990年冰川变化贡献最大, 冰川面积退缩了16.62 km2, 占冰川总面积退缩量的64.6%. 波密县气象站数据显示, 50 a来冰川退缩主要受温度持续上升的影响, 降水量变化对冰川变化影响不大.  相似文献   

7.
祁连山冰川融水是维系我国西北地区生态平衡的重要因素。为评估祁连山冰川在全球气候变暖背景下的状态, 利用Landsat-TM、 ETM+、 OLI等遥感影像, 基于波段比值阈值法提取1987 - 2018年共计7期冰川边界进行时序变化分析。结果显示: 近31年来祁连山冰川面积从2 080.39 km2退缩到1 442.09 km2, 年均退缩率达0.99%, 相比1956 - 1990年间的退缩率(0.58%)大幅增加; 近31年来冰川物质平衡线高度稳步上升; 冰川主要分布在海拔4 700 ~ 5 100 m之间, 冰川退缩随海拔降低而增加; 约93%的冰川的面积小于2.0 km2, 小于0.1 km2的冰川的总数和总面积呈增加态势; 0.5 ~ 1.0 km2的冰川退缩最快, 年均退缩率达1.53%, 而大于10.0 km2的冰川退缩最慢, 年均退缩率为0.59%; 祁连山冰川退缩主要由夏季均温升高引起, 且最近十年间冰川呈现出加速退缩的态势。  相似文献   

8.
基于遥感和GPS的贡嘎山地区1966—2008年现代冰川变化研究   总被引:6,自引:5,他引:1  
以对气候变化最为敏感的季风温冰川——贡嘎山冰川为研究对象,利用2002年的ETM+遥感影像和第一次冰川编目数据,提取两期冰川边界并叠加到一起,分析冰川变化趋势.结果表明:从1966年到2002年,贡嘎山冰川总体处于退缩状态,冰川总面积减少6.36%,年均减小0.447 km2,西坡冰川由41条减少到39条,面积减小7.89 km2,减小率为7.97%;东坡冰川由33条增加到36条,但冰川面积减少7.20 km2,减小率为4.71%.2008年5月GPS野外实地测量结果显示,1966—2008年的42 a,海螺沟冰川退缩约943 m,燕子沟冰川退缩494 m,小贡巴冰川退缩210 m,而大贡巴冰川长度基本保持不变,但冰储量在减少.在全球气候变暖的大背景下,温度升高可能是导致贡嘎山地区现代冰川退缩的主要原因.  相似文献   

9.
青藏高原现代冰川变化是对气候变化的响应, 对区域水资源评估有着重要的理论意义和现实意义.采用GIS分析方法, 利用三期卫星遥感数据研究青藏高原中部念青唐古拉山西段冰川在2个时间段(1977-2001和2001-2010)的时空分布和变化, 并对比分析其在南坡和北坡变化速率趋势以及在不同海拔高度的变化特征.研究发现: (1)2010年念青唐古拉山西段冰川面积为571.81±16.01 km2, 主要分布在5 500~6 200 m的高山区; (2)1977-2010年念青唐古拉山西段冰川退缩明显, 总面积减少22.42%±2.90%;(3)相比于1977-2001年时间段, 近十年来该区冰川退缩速率呈明显加剧趋势; (4)与前一个时段相比, 低于5 700 m海拔区域, 各海拔段的冰川年均面积退缩速率呈减缓趋势; 而在5 700~7 000 m海拔区域, 则呈加剧趋势; (5)北坡冰川退缩率(23.6%±2.88%)高于南坡(21.97%±2.90%), 且南北坡2001-2010年年均冰川面积减少最大的海拔段比1977-2001年都升高了200 m, 研究区冰川的持续退缩有向高海拔转移的趋势; (6)南坡拉萨河流域内的冰川年均减少面积最大的海拔段比北坡高100 m左右.气温升高是影响近十年以来研究区的冰川退缩加剧的根本原因, 将对区域水文和生态环境产生重大的影响.   相似文献   

10.
1970-2007年西藏念青唐古拉峰南、北坡冰川显著退缩   总被引:7,自引:3,他引:4  
1999年和2007年夏季,利用GPS技术先后对念青唐古拉峰(念峰)南、北坡的5条冰川末端位置进行了实地测量.结果表明:同1970年比较发现,过去近40 a来5条冰川退缩显著,1970-2007年间念峰北坡的拉弄和扎当冰川与南坡的爬努冰川末端平均退缩速率均接近10.0 m.a-1;西布冰川在1970-1999年间达到38.9 m.a-1,而爬努冰川流域海拔较高的小冰川5O270C0049退缩幅度较小,为4.8 m.a-1.2007年野外观测发现,爬努冰川1970年代的积累区有冰面河形成.念峰周围的冰川变化,不仅仅是末端的显著退缩,而且消融区面积也在扩大.  相似文献   

11.
深入了解全球变暖背景下青藏高原东南部海洋型冰川的变化趋势及其对气候变化的响应,对认识不同类型冰川对气候变化的响应方式有重要意义.根据Landsat系列遥感影像和数字高程等数据提取了青藏高原东南部雀儿山地区1987—2016年期间多年的冰川边界,并对其变化过程和特征进行了分析.结果表明:1987—2016年雀儿山地区冰川...  相似文献   

12.
研究冰川面积变化对气温变化的响应模式,对于冰川资源的保护和利用具有重要意义。利用Landsat MSS、TM和OLI影像,采用比值阈值法结合目视修正,提取了阿尔金山地区1973—2020年8个时期的冰川边界信息,分析了冰川的时空变化特征,并结合距离阿尔金山较近的且末、若羌、茫崖和冷湖等四个气象站点的气象数据,分析了冰川变化对气温变化的响应规律。主要结论如下:1973—2020年阿尔金山地区冰川整体处于退缩状态,面积减少了(64.89±12.36) km2(19.21%±2.90%);1973—1990年冰川退缩较快,年均退缩率为(0.49±0.07)%·a-1;1990—1995年和1995—2000年这两个时期冰川退缩最快,年均退缩率分别为(1.07±0.08)%·a-1和(1.08±0.08)%·a-1;2000年后,冰川退缩速率较慢,比较稳定,年均退缩率均低于0.2%·a-1。气温是影响阿尔金山地区1973—2020年冰川变化的主要气候因子。阿尔金山地区冰川对不同气温变化阶段的响应模式为:气温升高阶段,冰川消融,冰川面积减少;气温稳定阶段,冰川逐渐进入新的动态均衡状态,冰川面积也相对稳定;气温降低阶段,因冰川运动的滞后性,冰川面积在短时间内无明显变化。  相似文献   

13.
中国冰川变化对气候变化的响应程度研究   总被引:3,自引:2,他引:1  
理清冰川变化对气候变化的响应程度、揭示响应度的空间变化规律,是开展冰川变化预估及其对社会经济影响程度量化研究的基础。使用1958-2010年西部地区150个气象站点的夏季平均气温和年降水量资料、中国第一、二次冰川编目数据,通过夏季平均气温和年降水量变化趋势值定量反映气候变化,以冰川面积变化率表征冰川变化,借助GIS技术平台,采用参照对比方法,从宏观层面研究了中国西部冰川变化对气候变化的响应程度。依据等分分类法(Equal Interval),将响应程度分为极低度响应、低度响应、中度响应、高度响应、极高度响应5级。结果表明:中国冰川变化对气候变化的响应方式与程度不同,对夏季平均气温变化表现为正响应,而对年降水量变化主要表现为负响应,冰川分布区年降水量增加带来的冰川积累量增多不足以抵消因温度升高而增加的消融量,升温是中国西部冰川快速退缩的主导性因素。就整体而言,冰川变化对夏季平均气温变化的响应程度相对较低,但局部地区冰川变化对温度变化高度敏感,响应程度高与极高。不同类型冰川的变化对夏季平均气温变化的响应程度亦不同,海洋型冰川的变化以中高度响应为主,极大陆型冰川的变化主要呈现极低、低响应程度,而大陆型冰川变化的响应程度呈两级化。  相似文献   

14.
2008—2018年中国冰川变化分析   总被引:5,自引:3,他引:2  
调查冰川资源的分布与变化,对区域乃至全球的自然环境与经济社会发展都具有十分重要的意义。基于315景Landsat 8 OLI遥感影像,结合中国第二次冰川编目数据与Google Earth软件,通过人工目视解译等方法调查了2018年中国冰川的分布与变化。结果表明:中国现存冰川53 238条,总面积为(47 174.21±19.93) km2,72%的冰川面积<0.5 km2,规模在1~32 km2的冰川的面积占中国冰川总面积的60%。2008—2018年,中国冰川总面积减少1 393.97 km2,面积变化率为-0.43%?a-1。冰川面积变化率表现出明显的空间差异,面积退缩最快的是冈底斯山,达-1.07%?a-1;最慢的是羌塘高原,为-0.05%?a-1。坡度上,各山系之间的冰川面积变化率差异较为明显。超过70%的山系位于正东和东南方向的冰川面积退缩快,2008—2018年退缩率为-5.0%;正北方向的冰川面积退缩相对缓慢,同时期退缩率为-3.8%。气温和降水变化率差异以及海拔、坡度、坡向等地形差异,共同影响中国冰川的变化。  相似文献   

15.
雪冰反照率能够改变冰川表面能量收支平衡,是影响冰川消融的重要因素之一。利用祁连山地区冰川面积矢量数据、MODIS逐日积雪反照率、气温和降水以及冰川物质平衡等数据,探讨了祁连山典型冰川区雪冰反照率特征及其对冰川物质平衡的影响。结果表明:祁连山地区冰川多年平均反照率为0.532,冰川区面积大小与其多年平均反照率之间呈显著正相关(R2=0.16,P<0.05,N=91),即冰川面积缩减1 km2,对应的平均反照率下降0.0025。祁连山老虎沟12号冰川反照率在夏季有明显的海拔效应,且强于其他时段,达到0.047?(100m)-1。典型冰川年均物质平衡量与冰川表面夏季(6—8月)平均反照率之间存在显著的正相关关系,老虎沟12号冰川和七一冰川决定系数R2分别达到了0.48(P<0.05)和0.66(P <0.05)。冰川表面夏季平均反照率这一指标能够较好地衡量青藏高原北部祁连山地区冰川物质平衡的变化。  相似文献   

16.
Great change, associated with global warming, has occurred at the Hailuogou (海螺沟)has retreated 1 822 m in the past 106 years, with an annual mean retreat of 17.2 m, and the front elevation has risen by 300 m since 1823. Comparison of glacier variations and temperature fluctuations in China and the Northern Hemisphere, over the last 100 years, indicates that glacier retreat stages occurred during the warm phase, and vice versa. Mass balance records during 1959/60--2003/04 have shown that the glacier has suffered a constant mass loss of snow and ice. The accumulated mass balance, -10.83 m water equivalent, indicates an annual mean value of -0.24 m water equivalent. The correlation between the mass balance and temperature is significant, which also indicates that climate warming is the crucial cause of glacier loss.Local hydrological and climatic data demonstrate that runoff from the glacier has been increasing both seasonally and annually.The correlation analysis and trend analysis indicate that ice and snow melted water is the main cause of an increase in the runoff. As the climate has become warmer, changes in the glacier surface morphology have obviously occurred. These include a decrease in glacier thickness, enlargement of glacial caves, and reduction of the size of clefts on the glacier surface. The ablation period has lengthened and the ablation area has expanded. A variety of factors thus provide evidence that the Hailuogou glacier has suffered a rapid loss of snow and ice as a result of climatic warming.  相似文献   

17.
1980-2015年青藏高原东南部岗日嘎布山冰川变化的遥感监测   总被引:9,自引:7,他引:2  
基于地形图、航空摄影相片和Landsat OLI遥感影像,对青藏高原东南部岗日嘎布山1980-2015年间的冰川变化进行了研究。结果表明: 1980-2015年,岗日嘎布山冰川面积减少679.50 km2(-24.91%),年平均面积退缩率为0.71%·a-1,末端海拔平均抬升了111 m。研究区范围内有10条冰川处于前进状态,冰川长度平均增加566.17 m;其余冰川均处于退缩状态,冰川长度平均减少823.49 m。与中国其他山系冰川相比,岗日嘎布山冰川面积年平均退缩速率较大,冰川长度变化速率最大,是冰川退缩最强烈的地区之一。岗日嘎布山冰川变化与气候变化关系密切,对研究区附近三个气象站5-9月平均气温和降水变化分析表明,自1980年以来,岗日嘎布山5-9月平均气温显著上升,降水变化不明显,是导致该区域冰川呈现快速退缩的主要原因。  相似文献   

18.
太白山最近1000年的孢粉记录与古气候重建尝试   总被引:13,自引:2,他引:11  
秦岭太白山佛爷池最近1000年的孢粉记录及据此所重建古气候参数的时间序列,揭示了历史时期小冰期和中世纪温暖期的气候特征。小冰期的起止时间为1420-1920aAD。其1月与7月平均温度反映本区夏季风与冬季风的变化有很大的不一致性。小冰期开始时,冬季风突然增强,夏季风显示不稳定波动,并相对变弱,而降水一度增多。小冰期的结束是以冬季风逐渐减弱为先导,而夏季风呈突然增强势态,降水偏少。在中世纪温暖期中,1200-1340aAD发生快速气候波动,出现暖夏、冷冬等特征气候,成为历史上少见的灾害性气候时段。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号