首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
利用昌吉州8站1971—2007年37a的地面观测资料,对该地区雾的气候特征以及气象条件进行了分析。结果表明,该地区雾存在中东部多西部少的分布特征;其季节变化和日变化明显,每年11月至翌年3月9—12时是雾的多发时段;温度、相对湿度、风速和风向等气象要素对昌吉雾的预报具有较好的指示意义。温度在-6~-20℃、相对湿度在78%~92%、风速在0~4m/s范围里且在偏西风和偏南风情况下,雾频率最高。  相似文献   

2.
利用1960-2009年石河子垦区3个国家级气象站的气象资料,分析大雾天气的气候变化特征。结果表明:石河子垦区年均雾日空间分布特征明显,西北多,东南少,时间分布极不均匀,石河子站雾日呈逐渐减少型,莫索湾站和炮台站呈逐步增多型;石河子垦区雾日在全年的分布状况是春季最多,冬季次之,秋季最少;大雾的逐月变化呈显著季节性特征,集中出现在10-3月,而4-9月,基本无发生;下半夜至翌日上午较易出现大雾,起雾时间为00:00-13:00,其中10:00-12:00最易起雾,雾消时间为14:00-23:00,16:00-22:00雾最易消散;温度在-10~-20℃、相对湿度在91%~100%、风速0~2m/s、风向偏东风和偏南风下石河子雾最易发生。雾天气气候特征及气象条件的分析是预报其发生时间和地点的基础,充分认识其特征和规律是提高雾天预报准确率的前提。  相似文献   

3.
利用1951--2006年汕头气候资料,分析大雾天气的气候变化特征。结果表明:汕头年雾日总体呈明显下降趋势。20世纪90年代以前雾日相对偏多,90年代以后雾日明显偏少;大雾的逐月变化呈1峰1谷的特征,峰值出现在3月,谷值出现在8月;下半夜至翌日上午较易出现大雾。起雾时间为04:00—07:00,其中07:00最易起雾,雾消时间为04:00-12:00,09:00-11:00雾最易消散;雾日时静风概率为52%,风速小于等于3m/s的概率超过95%,不利于近地层空气的水平交换;雾日多伴有逆温层存在且逆温层具有底高较低、厚度较厚、强度较强的特点,不利于近地层空气的上下交换,因而雾日空气质量较差。  相似文献   

4.
以湖北西部山区宣恩站为例,利用1959-2009年的地面气象观测资料,对鄂西山区雾和轻雾的气候特征进行分析.结果表明,宣恩年雾日数平均为29 d,总体上呈减少趋势.该地区雾在每个月都有发生,冬季发生频率最高,夏季发生频率最低;该地区年轻雾日数总体上与年雾日数变化趋势相反,呈上升趋势,各月月平均轻雾日数在9~15 d之间,12月平均轻雾日最多,5月平均轻雾日最少.通过分析宣恩51 a来各气象要素的特征发现,夜晚最低气温呈上升趋势,相对湿度和降水变化不明显,14时能见度≥20 km的年日数呈下降趋势.分析认为,雾和轻雾发生频次的非对称变化趋势可能与大气中气溶胶粒子增多有关.  相似文献   

5.
丁国香  刘安平  杨彬  姚叶青 《气象科技》2018,46(6):1287-1290
利用2004—2016年黄山气象站逐日、逐时地面气象观测资料分析了雾凇的时间分布特征及气象条件。结果表明:(1)黄山年平均雾凇日61.6d,年份之间差异明显;雾凇初日主要在11月,终日主要在3—4月;连续雾凇日数多在3~4d,占40%,各年均出现了连续雾凇日数≥10d的情况。(2)雾凇出现在10月至次年4月,其中12月至次年3月雾凇日数占89.8%;月平均雾凇日数与月平均气温呈显著负相关。雾凇还存在一定的日变化,08:00—09:00最多,18:00最少。(3)逐日资料统计表明,适宜雾凇出现的气象条件是雾日且日平均气温在-8~2℃之间、平均相对湿度≥80%、平均风速2~9m/s。(4)逐时资料统计表明,雾凇的形成主要受气温影响,雾凇形成前需7h以上的累计低温(≤0℃),适宜雾凇形成的气象条件是有雾且气温在-6~1℃之间,湿度≥95%,风速2~11m/s,较好地反映了雾凇形成的临界气象条件。  相似文献   

6.
雷州半岛雾的气候特征及生消机理   总被引:2,自引:0,他引:2  
利用分别位于雷州半岛北部、中部和南部的湛江站59a、雷州站46a和徐闻站42a的气象资料,分析了雷州半岛雾发生的规律及生消机理。结果表明:三站年雾日数变化趋势基本一致,呈"W"状,局部峰值明显升高。三站的年平均雾日数分别为24.7d、30.4d和21.0d。雷州半岛雾日主要出现在每年的1—4月及12月,3月雾日数最多,7月雾日数最少。近10a湛江站夜间雾发生频率为90%;短雾多,持续时间在4h以内的占75%。雾形成的天气形势可分为高压入海型、低压前型、冷锋前型、静止锋前型、鞍形场或均压场型5类,主要是平流雾、锋面雾和辐射雾。3种雾消散的天气形势是新冷空气补充南下、雾滴出现碰并沉降形成小雨或日出后雾滴蒸发。统计雷州半岛三站2000—2009年雾次频数得出,成雾概率最大的气象条件是气温为15~25℃、T-Td≤1.0℃、Δp3在-3.5~-2hPa和1.5~2.5hPa之间、风向为NNE-ESE及风速小于5m/s。L波段雷达探空大雾个例分析表明:雾顶高度在1.5km左右,雾中温度随高度增加而减小;雾中相对湿度大于92%,1.5km之上急剧减小,3km以上保持不变;T-Td为1.2~6.4℃;近地面风速为2~6m/s,风向随高度顺时针旋转,雾中有暖平流。  相似文献   

7.
简要介绍了中国气象局成都高原气象研究所设立在青藏高原东侧和成都平原的两个大气边界层观测站:理塘站和温江站,并利用2007年2~4月两站获得的近地层气象要素观测资料,对这两个地区风速、气温和湿度日变化特征及廓线规律,土壤温湿变化特征,以及辐射情况进行了分析和对比,得到了如下一些有意义的结果:(1)两站风温湿均表现出明显的日变化特征。理塘站风速极大值和极小值出现时间均比温江站晚2小时。理塘站温度梯度值日变化较一致而温江站早晚温度梯度值要大于白天。两站湿度梯度值都是白天较小早晚较大。(2)两站风速廓线规律相似,基本满足对数律关系。理塘站在18:00~6:00,温江站在18:00~8:00均有逆温现象出现,相邻两层高度最大温度差分别达到0.54℃和1.02℃。理塘站8:00~18:00在8m和24m高度,温江站10:00~14:00在9.05m和18.25m高度上能观测到逆湿现象,相邻两层高度最大比湿差分别为0.1g/kg和0.04g/kg。(3)理塘站浅层(0cm和5cm)土壤温度表现出明显的日变化特征,而10cm以下土壤温度日变化幅度很小。温江站4cm,10cm和20cm土壤温度都表现出明显的日变化特征,较之理塘站影响的深度更深。理塘站土壤温度的垂直变化程度要小于温江站。两站各层土壤湿度均无明显日变化特征。(4)温江站向下长波辐射通量日变化不大,其他各个辐射量日变化都很明显。理塘站向下总辐射和反射辐射明显强于温江站。  相似文献   

8.
利用海南省儋州市1979~2008年常规大雾观测资料,对该市大雾天气发生的频率等主要特征进行了分析,结果表明:儋州市年雾日30a来总体呈明显下降趋势,90年代以后雾日明显偏少;城市热岛效应、气候变暖等因素可能是90年代后儋州市大雾日数明显减少的主要原因;儋州市大雾天气以冬春季发生频率较高,大雾日的月分布呈1峰1谷的特征;相对湿度在81%以上,地表温度在11.0~30.0℃之间,风速小于3 m·s-1时易发生雾.  相似文献   

9.
梅婵娟  张灿 《山东气象》2016,36(3):28-35
利用威海市6个基本气象站40a(1971—2010年)的气象观测资料,对威海沿海地区雾的时空分布特征、气候变化特征和雾过程持续时间等进行了统计分析,探讨了影响沿海雾生成的相关因子,其中还针对典型个例进行了统计分析。结果表明:威海地区雾呈现沿海大于内陆,东部大于西部地区的分布特点;其年代际变化特征表现并不一致,成山头和荣成的年雾日数呈明显的上升趋势,而威海,石岛和文登年雾日数也呈现增长趋势,但变化相对缓慢,只有乳山的年雾日数40a来呈现减小的趋势;除了文登和乳山,其他各站雾日数变化有着明显的季节变化特征,基本上呈春、夏季多、秋、冬季少的分布特点,各站大雾的日变化特征并不一致,其中乳山站日变化特征最为明显,其次是威海站,总体表现为夜间到早晨为大雾多发期,中午为大雾的低发期的特点,而成山头站除了夏季,日变化特征并不明显;各地雾过程出现的雾持续时间各不相同,威海的雾主要以<4h的短时雾为主,成山头雾持续性较长,而乳山站的雾基本在02—08时之间;从风向、风速上来看,大雾主要发生在偏南风的流场下,成山头雾主要出现在3~4级风的情况下,而威海站雾则主要在3级风以下;大雾发生时海温不能高于25℃,且海温在10~25℃之间,海温越接近气温时,大雾更易发生;大雾主要发生在高空脊和西北气流影响下,夏季在弱低槽,弱低涡和副高边缘时大雾也可能发生,地面形势主要为均压场和低压前部型,同时大雾前和大雾期间大气层结稳定,地面湿度大,温度露点差大雾时在0~1℃之间,轻雾时在1~5℃之间。  相似文献   

10.
华北平原雾发生的气象条件   总被引:41,自引:9,他引:41  
毛冬艳  杨贵名 《气象》2006,32(1):78-83
根据1995-2000年全国基本气象观测站资料和T106模式内插到全国基本站的各种物理量资料,统计了华北平原12月雾发生前或发生时大气低层部分气象要素的特征,计算分析了气象要素的分布区间与雾发生频率之间的相互关系。结果表明,当近地面水平风很弱,相对湿度为80%~90%、温度露点差在2~4℃,饱和湿空气气层处于稳定或者弱不稳定状态以及近地面气温在3~9℃时雾的发生频率较高。  相似文献   

11.
LONG-TERM VARIATIONS OF FOG AND MIST IN MAINLAND CHINA DURING 1951-2005   总被引:1,自引:1,他引:0  
Fog is an important indicator of weather. Long-term variations of fog and mist were studied by analyzing the meteorological data from 743 surface weather stations in mainland China during 1951-2005. In climatology, there are more foggy days in the southeast than in the northwest China and more in the winter half of the year than in the summer half. The decadal change of foggy days shows regional variation. Southwest China is the region with the most foggy days, and more than 20 foggy days occur in Sichuan Basin in one year. Persistent heavy fog usually appears in winter and spring over the North China Plain and Northeast China Plain. Misty days are much more frequent in the provinces south of the Yangtze River than in the regions north of it, and there is an obvious increase of misty days after the 1980s. Southwest China is the area with the most number of misty days, and more than 100 misty days occur in Sichuan Basin in a year.  相似文献   

12.
黔东南大雾气候特征   总被引:7,自引:2,他引:5  
利用1961~2007年黔东南州16个地面气象观测站逐日大雾日数资料,对黔东南州大雾日数的日、年、季分布特点、长期变化趋势、年代际的变化特征等进行分析。结果表明:20世纪60年代平均雾日最多,80年代最少,进入21世纪后具有逐渐增多的趋势;以秋季雾日最多,冬季次之,春季最少;以11月为最多,2月为最少。并且大雾日数有准40年的周期,在大雾多发期存在着准5年的周期性。大雾主要分布在黔东南州的中部,东南部和西北部相对较少。  相似文献   

13.
增暖背景下武汉地区雾的变化特征   总被引:11,自引:5,他引:6  
利用1951~2002年的地面气象资料,计算分析了武汉地区年、月平均气温、最高气温、最低气温的气候倾向率,揭示了武汉地区气候变暖的主要特征;对武汉地区雾日和雾的生成、消散以及相关气象要素进行了统计分析,阐述了武汉市雾日的年际和月际变化规律,雾的生、消变化规律。强度变化规律;通过武汉年平均气温与雾日的小波变换分析,认为雾日变化与气温变化具有相反的年代际气候特征,增暖背景下武汉地区雾是减少的。  相似文献   

14.
Based on the number of foggy days in Nanjing in December from 1980 to 2011, we analyzed the surface temperature and atmospheric circulation characteristics of foggy years and less-foggy years. Positive anomalies of the Arctic Oscillation (AO) were found to weaken the East Asian trough, which is not conducive to the southward migration of cold air. Simultaneously, this atmospheric condition favors stability as a result of a high-pressure anomaly from the middle Yangtze River Delta region. A portion of La Ni?a events increases the amount of water vapor in the South China Sea region, so this phenomenon could provide the water vapor condition required for foggy days in Nanjing. Based on the data in December 2007, which contained the greatest number of foggy days for the years studied, the source of fog vapor in Nanjing was primarily from southern China and southwest Taiwan Island based on a synoptic scale study. The water vapor in southern China and in the southwestern flow increased, and after a period of 2-3 days, the humidity in Nanjing increased. Simultaneously, the water vapor from the southwestern of Taiwan Island was directly transported to Nanjing by the southerly wind. Therefore, these two areas are the most important sources of water vapor that results in heavy fog in Nanjing. Using the bivariate Empirical Orthogonal Function (EOF) mode on the surface temperature and precipitable water vapor, the first mode was found to reflect the seasonal variation from early winter to late winter, which reduced the surface temperature on a large scale. The second mode was found to reflect a large-scale, northward, warm and humid airflow that was accompanied by the enhancement of the subtropical high, particularly between December 15-21, which is primarily responsible for the consecutive foggy days in Nanjing.  相似文献   

15.
近46a山东菏泽日照变化特征及影响因子   总被引:2,自引:0,他引:2  
利用1965~2010年菏泽日照、云量、雾(轻雾)、相对湿度、降水等资料,采用气候倾向率、9点2次平滑、突变检验、回归分析等统计方法,分析了近46a菏泽日照时数变化特征及影响因子。结果表明:近46a菏泽日照时数极显著减少,平均每10a减少121.66h;夏季和秋季极显著减少,冬季显著减少,春季减少趋势不显著;减少趋势最大的是8月。1981年是菏泽日照时数减少突变的时间点,也是日照时数由正距平优势向负距平优势的转折点。年日照时数与总云量、相对湿度和轻雾日数呈极显著负相关,与雾日数呈弱显著负相关;四季日照时数除夏季与雾日数负相关不显著外,均与平均总云量、相对湿度、雾和轻雾日数、降水量和降水日数呈显著负相关。影响菏泽年和春、夏季日照时数变化的主要因子为总云量、相对湿度和雾,秋季主要因子为总云量、雾和降水日数,冬季主要因子为总云量、相对湿度和降水日数。  相似文献   

16.
Simultaneous measurements on physical, chemical and optical properties of aerosols over a tropical semi-arid location, Agra in north India, were undertaken during December 2004. The average concentration of total suspended particulates (TSP) increased by about 1.4 times during intense foggy/hazy days. Concentrations of SO4 2−, NO3 , NH4 + and Black Carbon (BC) aerosols increased by 4, 2, 3.5 and 1.7 times, respectively during that period. Aerosols were acidic during intense foggy/hazy days but the fog water showed alkaline nature, mainly due to the neutralizing capacity of NH4 aerosols. Trajectory analyses showed that air masses were predominantly from NW direction, which might be responsible for transport of BC from distant and surrounding local sources. Diurnal variation of BC on all days showed a morning and an evening peak that were related to domestic cooking and vehicular emissions, apart from boundary layer changes. OPAC (Optical properties of aerosols and clouds) model was used to compute the optical properties of aerosols. Both OPAC-derived and observed aerosol optical depth (AOD) values showed spectral variation with high loadings in the short wavelengths (<1 μm). AOD value at 0.5 μm wavelength was significantly high during intense foggy/hazy days (1.22) than during clear sky or less foggy/hazy days (0.63). OPAC-derived Single scattering albedo (SSA) was 0.84 during the observational period, indicating significant contribution of absorbing aerosols. However, the BC mass fraction to TSP increased by only 1% during intense foggy/hazy days and thereby did not show any impact on SSA during that period. A large increase was observed in the shortwave (SW) atmospheric (ATM) forcing during intense foggy/hazy days (+75.8 W/m2) than that during clear sky or less foggy/hazy days (+38 W/m2), mainly due to increase in absorbing aerosols. Whereas SW forcing at surface (SUF) increased from −40 W/m2 during clear sky or less foggy/hazy days to −76 W/m2 during intense foggy/hazy days, mainly due to the scattering aerosols like SO4 2-.  相似文献   

17.
近53年辽宁雾的时空分布及成因分析   总被引:20,自引:9,他引:11       下载免费PDF全文
利用1951~2003年辽宁12个代表站的雾资料,分析了雾的时空分布特征及形成条件。结果表明:辽宁年平均雾日地域分布呈现两高三低的形势。雾日的年际变化曲线较平稳,雾日最多的年份和最少的年份相差17d。沈阳与大连雾日变化相反,大连呈下降趋势,沈阳则在平稳中略有上升。辽宁大雾每个月都可形成,但沿海地区和内陆又有所差异,沿海地区主要出现在5~8月,而内陆地区主要出现在8~11月。雾日的天气形势可分为5~7种类型,其中以倒槽型、锋面气旋型、地形槽型、冷高压前部型最为典型。  相似文献   

18.
江苏沿海地区雾的气候特征及相关影响因子   总被引:2,自引:0,他引:2  
利用江苏沿海6个基本气象站49a(1960--2008年)的气象观测资料,对江苏沿海地区雾的时空分布特征和雾过程持续时间等进行了统计分析,并探讨了影响沿海雾生成的相关因子。结果表明:江苏沿海地区雾日数呈江淮地区〉沿江苏南地区〉淮北地区的特点;其年代变化总体是一个先上升后下降的趋势,且21世纪后明显下降;雾日数呈春季和初冬季节多、夏秋季节少的分布特点;一天中雾大部分时段出现在01-09时,春秋季节雾频次最高的时次在早上的06-07时,强浓雾次数在07时(春季)或08时(冬季)前后达到最大;各地雾过程出现的频次随着雾持续时间的增加而减少,持续时间大于6h雾的频次近年来在增加,且雾持续时间极端最长有上升趋势。沿海地区雾绝大多数发生在风速小于等于7m/s的情况下,以1~3m/s最为适宜,多出现在NNE—SSE风情况下。雾季平均海水温度为7.45~22.24℃  相似文献   

19.
The snow enhancement experiments, carried out by injecting AgI and water vapor into orographically enhanced clouds (fog), have been conducted to confirm Li and Pitter’s forced condensation process in a natural situation. Nine ground-based experiments have been conducted at Daegwallyeong in the Taebaek Mountains for the easterly foggy days from January–February 2006. We then obtained the optimized condi- tions for the Daegwallyeong region as follows: the small seeding rate (1.04 g min-1) of AgI for the easte...  相似文献   

20.
利用1995~2004年辽西地区4个代表站的大雾观测资料,分析了区域性大雾天气的气候统计特征,统计出易产生大雾天气的地面和高空形势场及出现频率,并从大雾产生的条件和形成机制入手,提出判别大雾出现的预报指标,并结合近10 a的历史资料对预报指标进行了验证,平均历史概括率为81.0%。选取2004年7月1日—12月31日单站历史资料进行抽样预报效果检验,总空报率为22.2%,漏报率为5.1%,检验效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号