首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Appropriate conditions have been achieved for the accurate, rapid, and highly precise shipboard simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation. A nitrogen-specific Antek 705D chemiluminescence detector and a CO2-specific LiCor Li6252 IRGA have been coupled in-series with a Shimadzu TOC-5000 organic carbon analyser. Precision of both simultaneous measurements is ≤1.5%, i.e. ±1 μmol C l−1 and ±0.3 μmol N l−1, respectively. Quality of analysis is not compromised by vibrations associated with ocean going research vessels.  相似文献   

2.
Dissolved oxygen in seawater has been determined by using the Winkler's reaction scheme for decades. An interference in this reaction scheme that has been heretofore overlooked is the presence of naturally occurring iodate in seawater. Each mole of iodate can result in an apparent presence of 1.5 mol of dissolved oxygen. At the concentrations of iodate in the surface and deep open ocean, it can lead to an overestimation of 0.52 ± 0.15 and 0.63 ± 0.05 μmol kg− 1 of oxygen in these waters respectively. In coastal and inshore waters, the effect is less predictable as the concentration of iodate is more variable. The solubility of oxygen in seawater was likely overestimated in data sources that were based on the Winkler's reaction scheme for the determination of oxygen. The solubility equation of García and Gordon [Garcia H.E., Gordon, L.I., 1992. Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr. 37, 1307–1312] derived from the results of Benson and Krause [Benson, F.B., Krause, D. Jr., 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol. Oceanogr. 29, 620–632] is free from this source of error and is recommended for general use. By neglecting the presence of iodate, the average global super-saturation of oxygen in the surface oceans and the corresponding efflux of oxygen to the atmosphere both have been overestimated by about 8%. Regionally, in areas where the degree of super-saturation or under-saturation of oxygen in the surface water is small, such as in the tropical oceans, the net air–sea exchange flux can be grossly under- or overestimated. Even the estimated direction of the exchange can be reversed. Furthermore, the presence of iodate can lead to an overestimation of the saturation anomaly of oxygen in the upper ocean attributed to biological production by 0.23 ± 0.07%. AOU may have been underestimated by 0.52 ± 0.15 and 0.63 ± 0.05 μmol kg− 1 in the surface mixed layer and deep water, while preformed phosphate and preformed nitrate may have been overestimated by 0.004 ± 0.001 and 0.06 ± 0.02 μmol kg− 1 in the surface mixed layer, and 0.005 ± 0.0004 and 0.073 ± 0.006 μmol kg− 1 in the deep water. These are small but not negligible corrections, especially in areas where the values of these parameters are small. At the increasing level of sophistication in the interpretation of oxygen data, this source of error should now be taken into account. Nevertheless, in order to avoid confusion, an internationally accepted standard needs to be adopted before these corrections can be applied.  相似文献   

3.
Seasonal and diurnal reduced sulfur gas emissions were measured along a salinity gradient in Louisiana Gulf Coast salt, brackish and freshwater marshes. Reduced sulfur gas emission was strongly associated with habitat and salinity gradient. The dominant emission component was dimethyl sulfide (average: 57·3 μg S m−2 h−1) in saltmarsh with considerable seasonal (max: 144·03 μg S m−2 h−1; min: 1·47 μg S m−2 h−1) and diurnal (max: 83·58 μg S m−2 h−1; min: 69·59 μg S m−2 h−1) changes in flux rates. Hydrogen sulfide was dominant (average: 21·2 μg S m−2 h−1, max: 79·2 μg S m−2 h−1; min: 5·29 μg S m−2 h−1) form in brackishmarsh and carbonyl sulfide (average: 1·09 μg S m−2 h−1; max: 3·42 μg S m−2 h−1; min: 0·32 μg S m−2 h−1) was dominant form in freshwater marsh. A greater amount of H2S was evolved from brackishmarsh (21·22 μg S m−2 h−1) as compared to the saltmarsh (2·46 μg S m−2 h−1) and freshwater marsh (0·30 μg S m−2 h−1). Emission of total reduced sulfur gases decreased with decrease in salinity and distance inland from the coast. Emission of total reduced sulfur gases over the study averaged 73·3 μg S m−2 h−1 for the saltmarsh, 32·1 μg S m−2 h−1 for brackishmarsh and 2·76 μg S m−2 h−1 for the freshwater marsh.  相似文献   

4.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

5.
Dissolved cadmium and copper concentrations have been determined in 76 surface water samples in coastal and ocean waters around Scotland by anodic stripping voltammetry (ASV). A trace metal/salinity ‘front’ is observed to the west, north and north-east of Scotland separating high salinity ocean water (>35 × 10−3) with low concentrations of dissolved Cd and Cu from lower salinity (<35 × 10−3) coastal water containing higher concentrations of Cd and Cu. Mean Cd concentrations in ocean and coastal waters are 7 ng dm−3 (0·06 n ) and 11 ng dm−3 (0·10 n ) respectively; for Cu the respective levels are 60 ng dm−3 (0·95 n ) and 170 ng dm−3 (2·68 n ). The observed distribution is attributed principally to freshwater runoff and the advection of contaminated Irish Sea water into the study area.  相似文献   

6.
A worldwide literature survey of data on cadmium concentration in the soft tissue of the mussel, Mytilus spp., from 591 stations is presented. These stations are from 13 regions. Geometric means for the regions vary from 0·6 to 3·3 μg g−1 (dry weight) for the Barents Sea and the Northeastern Pacific coast, respectively.The averages of seven of these regions, for which reliable cadmium concentrations in seawater were available, were used to calculate a relationship between cadmium concentrations in seawater and mussel soft tissue. The relationship was highly significant: (Cd) mussel (μg g−1, dry weight) = 0·074 (Cd) water (ng litre−1) + 0·39 (P ≤ 0·0005).This model has been successfully applied in the context of the contamination of the Gironde estuary (France). It can also be used to define a water quality criterion for mussel maturing parks consistent with the quality criterion defined for shellfish for human consumption.  相似文献   

7.
During nine field transplant tests in San Diego Bay (1987–1990), juvenile mussels were exposed to mean concentrations of tributyltin (TBT) in ambient seawater ranging from 2 to 530 ng liter−1 for 12 weeks under natural conditions. A total of 79 cages with 18 mussels each were monitored at 18 different sites. Growth and seawater TBT concentrations were measured weekly or on alternate weeks (biweekly). Mean growth rates ranged from 17 to 505 mg week−1 (0·2 to 2·5 mm week−1). Accumulation of TBT in mussel tissues was measured at the end of each 12-week test exposure and ranged from 0·1 to 3·2 μg g−1 TBT wet weight. The frequency of the measurements and the integration of chemical and biological measurements improved the accuracy of the assessment over more traditional approaches. Growth was significantly related to seawater and tissue TBT. The statistical relationships with growth effects were used to estimate chemical effect zones for TBT in San Diego Bay. Site-specific differences were distinguished by additional statistical analyses and consideration of environmental significance.  相似文献   

8.
The effect of dissolved petroleum hydrocarbons in the environment on phytoplankton biomass measured as chlorophyll a was studied near the oil tanker route in the southern Bay of Bengal. In the transect from 5° N, 77° E to 5° N, 87° E the concentrations of dissolved petroleum hydrocarbons were negatively correlated with phytoplankton biomass, whereas in the 0° N, 87° E to 1° N, 79° E transect they were positively correlated with phytoplankton biomass. The mean petroleum hydrocarbon concentrations in the two transects were 12·12 ± 4·67 μg litre−1 and 11·23 ± 4·5 μg litre−1, respectively.It is surmised that the effect of dissolved petroleum hydrocarbons on phytoplankton biomass varies depending on the nature rather than the quantity of petroleum hydrocarbons present. Culture studies with unialgal Nitzschia sp. in seawater collected from selected stations in the study area as well as in artificial seawater spiked with the water-soluble petroleum hydrocarbon fraction of light Arabian Crude support this.  相似文献   

9.
10.
Combination of estimated water transport and accurate measurements of total carbon dioxide (TCO2) on a hydrographic section at 58 °N allows the assessment of meridional inorganic carbon transport in the northern North Atlantic Ocean. The transport has been decomposed into contributions from the large-scale baroclinic overturning, the Ekman transport, baroclinic and a barotropic eddy terms, and an estimated contribution of the East Greenland Current. These terms are −0.27 · 106, +0.03 · 106, +0.03 · 106, +0.10 · 106, and +0.05 · 106 mol s−1, respectively, which result in a total southward inorganic carbon transport of only −0.06 · 106 mol s−1. An order of magnitude estimate of the meridional transport of dissolved organic carbon (DOC) has shown that in general this term cannot be ignored in the total carbon flux, this being +0.04 · 106 to +0.16 · 106 mol s−1 at 58 °N. A simple carbon budget has been formulated for the temperate North Atlantic, using our flux estimates as well as those of Brewer et al. (1989). This budget shows that the divergence of the meridional carbon flux, connected with the freshwater balance of the ocean may be of the same order of magnitude as the divergence of the total inorganic carbon flux. For an accurate estimate of the total carbon budget of the ocean it will be necessary to take both the DOC transport and the effects of the freshwater balance into account.  相似文献   

11.
Fatty acids and hydrocarbons of sedimenting particles were investigated in the northeastern Adriatic Sea from November 1988 to December 1989. Particles were collected at approximately monthly intervals, using sediment traps deployed at 30 m depth (2 m above bottom). Seasonal changes in sedimentation of particulate matter were very pronounced. Hydrocarbon fluxes and concentrations were found to vary significantly depending on the season. They averaged 2.69 ± 1.44 mg m−2 day−1 and 232.4 ± 90.93 μg g−1 in winter, respectively. In late spring-early summer the corresponding values amounted to 0.045 ± 0.015 mg m−2 day−1 and 13.72 ± 5.56 μg g−1, and they increased towards autumn, when mean values of 0.517 ± 0.228 mg m−2 day−1 and 98.86 ± 48.72 μg g−1 were obtained. In contrast, fatty acid fluxes and concentrations were low during winter (0.26 ± 0.08 mg m−2 day−1 and 21.95 ± 3.35 μg g−1), increased slightly towards the summer (0.48 ± 0.12 mg m−2 day−1 and 139.9 ± 44.6 μ g−1) and reached maximum rate and concentration in autumn, when average values were 1.98 ± 1.30 mg m2 day−1 and 489.1 ± 186.7 μg g−1, respectively. The differences in composition, concentrations and fluxes of the fatty acids and hydrocarbons were related to the sources of sedimenting material, reflecting the influence of resuspension of bottom sediments during winter and the appearance of mucus aggregates during summer and their subsequent deposition in autumn.  相似文献   

12.
Inorganic phosphorus dynamics were investigated with the use of 32P in the hypertrophic Comacchio lagoons (NE Adriatic) during an extremely dense, quasi-permanent bloom of picocyanobacteria. Concentrations of dissolved inorganic phosphate (DIP) in waters of the blooming lagoons were usually near the detection limit (0.01 μmoles·dm−3). DIP uptake rates by microplankton at near-ambient concentrations (0.01 to 0.1 μmoles·dm−3) were in the range of 9.6 to 16.1 nmoles P·dm−3·min−1, and turnover times were 1.5 to 3 min. The turnover time was >40 h in the eutrophic coastal waters of the adjacent Adriatic Sea. The uptake rate of DIP depended on its initial concentration. In water samples artificially enriched with DIP, the uptake rate rose to its maximum of 0.10 to 0.13 μmoles P·dm−3·min−1 (or 6 to 7 μmoles·dm−3·h−1) when the initial concentration of DIP was elevated to 10 to 20 μmoles·dm−3. The potential capacity of microplankton in the water samples to consume and retain DIP was estimated at 25 μmoles·dm−3. Specific features are discussed of phosphorus metabolism in the anthropogenically transformed lagoon ecosystem with an anomalous food web with few animals.  相似文献   

13.
Water samples from the Tamar Estuary oxidized manganese when supplemented with Mn2+ (2 mgl−1). The rates of oxidation were depressed in the presence of various metabolic inhibitors. The effect of Mn2+ and temperature on the rate of manganese oxidation suggested that a biological process was largely responsible for converting Mn2+ to Mn4+. Rates of manganese oxidation were much higher in freshwater (3·32 μgl−1 h−1 in water containing 30 mgl−1 of suspended matter) than in saline water (0·7 μgl−1 h−1 in water of salinity 32‰) containing the same amount of particulate matter. The rate of manganese oxidation was proportional to the particulate load (up to 100 mgl−1 particulates).  相似文献   

14.
Laboratory exposures of the urchin Lytechinus pictus to sediment dosed with varying concentrations of hydrogen sulfide (H2S), but without elevated organic material, were conducted. Changes in mortality, behavior, growth and gonad production were measured during 49 days' flow through exposures. Hydrogen sulfide concentrations of 165·8 μ liter−1 in pore water caused significant changes in all parameters measured. Concentrations as low as 32·9 μ liter−1 caused significant decreases in wet weight and male gonad production. A concentration of 91·8 μ liter−1 caused the mortality rate to increase 100-fold over control exposures (0·63 μ liter−1). Sublethal effects on growth and gonad production could have been caused by either direct biochemical inhibition by H2S or secondarily through behavioral modifications. Hydrogen sulfide concentrations above 165·8 μ liter−1 are common near sewage outfalls and could contribute to changes in species composition and sediment toxicity that occur there.  相似文献   

15.
Rates of net nitrification were calculated for four large (13 m3) estuarine-based microcosms that had been subjected to inorganic nutrient enrichment. Calculated rates were based on two years of weekly nitrate and nitrite measurements and ranged from a maximum of 0·55 μmol NO2+3 produced l−1 day−1 in the control tank (no enrichment) to over 13 μmol NO2+3 produced l−1 day−1 in the most enriched tank (receiving 18·6 μmol NH4 l−1 day−1). Almost all NO2+3 production was pelagic, little was benthic. Net NO3 production or net NO2 production dominated the net nitrification rates during different seasons. Good correlations were found between various oxidation rates and substrate concentrations. The calculated net nitrite production rates were 10 to 1000 times higher than previously reported rates for open ocean systems, demonstrating the potential importance of nitrification to estuarine systems.  相似文献   

16.
Self-diffusion coefficients of five major ions have been determined by a radioactive tracer method (capillary tube method) in seawater of salinity 34.86 at 25°C. Data are presented for Na+, Ca2+, Cl, SO42, and HCO3, which constitute about 95% by weight of sea salt. The influence of temperature and salinity on these coefficients has been studied for Na+ and Cl which are the major components of sea salt: self-diffusion coefficients of these two ions have been measured in seawater, at different temperatures for a salinity of 34.86 and at different salinities for a temperature of 25°C. Diffusion coefficients of the same ions have been determined at 25°C by using another radioactive tracer method (quasi-steady cell method). In this experiment, seawater ions were allowed to diffuse from natural seawater into dilute seawater. Data have been obtained at 25°C for Na+, Ca 2+, Cl, SO42− and HCO3, corresponding to different salinity gradients.  相似文献   

17.
In September 1994 and 1995, scientists from the Australian Institute of Marine Science (AIMS) and the Australian Geological Survey Organization (AGSO) conducted surveys aboard the RV Lady Basten to determine the dispersion, fates and effects of produced formation water (PFW) discharged from the ‘ Harriet A ’ oil production platform near the Montebello Islands. This report is one of four related papers and describes the non-volatile hydrocarbon chemistry studies. The dispersion of the PFW into dissolved and particulate fractions of seawater were measured using moored high volume water samplers, surface screen samplers and moored and drifting sediment traps. Bio-accumulation was studied using transplanted oysters, and dispersion measured into sediment with benthic grabs.Results showed enrichment in non-volatile hydrocarbons in surface microlayer samples to a distance of 1·8 km in the direction of tidal flow. Concentrations in surface microlayers near the platform varied by an order of magnitude and corresponded to when a surface slick was visible or not visible. Concentrations of oil in seawater ranged from 2·0 to 8·5 μg l−1at near stations to 1·3 μg l−1at 1·8 km. Water column samples showed the processes of desorption from particles for soluble components occur within the range of 1·8 km. Most particulate hydrocarbons drop out of suspension within c. 1 to 2 km from the platform. Fluxes of particulate hydrocarbons through the water column at c. 1 km, as estimated by moored sediment traps in 1995, were 138 to 148 ng cm−2day−1. A decrease in sediment concentrations within c. 1 km of the platform was measured as 2·45±1·29 μg g−1dry wt (n=15) in 1994 to 0·86±0·54 μg g−1dry wt (n=21) in 1995, after the platform installed a centrifugal separator in the discharge treatment process. Thus the residence time of this relatively low molecular weight oil was estimated in the coarse aerobic sands surrounding the platform to be less than one year. Oysters suspended near the platform bio-accumulated hydrocarbons and other lipophilic organics in their tissues. Uptake rates and bio-concentration factors of hydrocarbons indicated potential toxicity at the near-field stations within c. 1 km radius.A mass balance was constructed to show the partitioning of the input of hydrocarbons from the PFW into the surrounding marine ecosystem. The rates of dissipation processes were estimated as follows: dilution from tidal currents>degradation in the water column>sedimentation>evaporation. The calculations based on maximum concentrations measured in the environmental samples accounted for 85% of the daily input suspended within a 1 km radius.It is estimated that the potential zone of toxic influence in the water column extends to a distance of approximately 1 km. Concentrations of oil in sediments were too low to indicate potential toxicity. By the collaborative application of oceanographic and geochemical techniques to marine environmental problems, we endeavour to provide effective feedback to the oil industry to gauge the effectiveness of their operational strategies in minimizing impact in these pristine regions.  相似文献   

18.
The apparent (stoichiometric) solubility product of calcite in artificial seawater of salinity 35‰ was measured by a saturometer technique. The value of the apparent solubility product was found to be (4·59 ± 0·05) × 10−7 moles/(kilogram of seawater)2 at 25°C with a temperature coefficient of −0·0108 × 10−7/°C between 2 and 25°C. These values are significantly smaller than those found by MacIntyre (1965) and other workers. The effect of these results on the saturation of the oceans with respect to calcite is examined.  相似文献   

19.
Concentrations of bacteria, chlorophyll a, and several dissolved organic compounds were determined during 11 tidal cycles throughout the year in a high and a low elevation marsh of a brackish tidal estuary. Mean bacterial concentrations were slightly higher in flooding (7·1 × 106 cells ml−1) than in ebbing waters (6·5 × 106 cells ml−1), and there were no differences between marshes. Mean chlorophyll a concentrations were 36·7 μg l−1 in the low marsh and 20·4 μg l−1 in the high marsh. Flux calculations, based on tidal records and measured concentrations, suggested a small net import of bacterial and algal biomass into both marshes. Over the course of individual tidal cycles, concentrations of all parameters were variable and not related to tidal stage. Heterotrophic activity measured by the uptake of 3H-thymidine, was found predominantly in the smallest particle size fractions (< 1·0 μm). Thymidine uptake was correlated with temperature (r = 0·48, P < 0·01), and bacterial productivity was estimated to be 7 to 42 μg Cl−1 day−1.  相似文献   

20.
The multiple-parameter linear regression method (Monitoring global ocean carbon inventories. Ocean Observing System Development Panel, Texas A&M University, College Station, TX, 1995, 54pp; Global Biogeochem. Cycles 13 (1999) 179) is used to compare inorganic carbon data from the GEOSECS CO2 survey in the Pacific Ocean in 1973 to the WOCE/JGOFS global CO2 survey in the 1990s. A model of total dissolved inorganic carbon (DIC) as a function of five variables (AOU, θ, S, Si, and PO4) has been developed from the recent CO2 survey data (namely CGC91 and CGC96) in the Pacific Ocean. After correcting for a systematic DIC offset of −30.3±7 μmol kg−1 from the GEOSECS data, the residual DIC based on this model as computed from GEOSECS data has been used to estimate the anthropogenic CO2 penetration in the Pacific Ocean. In the Northeast Pacific, we obtained an increase of CO2 of 21.3±7.9 mol m−2 over the period from GEOSECS in 1973 to CGC91 in 1991. This gives a mean anthropogenic CO2 uptake rate of 1.3±0.5 mol m−2 yr−1 over this 17 year time period. In the South Pacific, north of 50°S between 180° and 120°W region, the integrated anthropogenic CO2 inventory is estimated to be 19.7±5.7 mol m−2 over the period from GEOSECS in 1974 to CGC96 in 1996. The equivalent mean CO2 uptake rate is estimated to be 0.9±0.3 mol m−2 yr−1 over the 22 years. These results are compared with the isopycnal method (Nature 396 (1998) 560) to estimate the anthropogenic CO2 signal in the Northeast Pacific (30°N, 152°W) at the crossover region between CGC91 and GEOSECS. The results of the isopycnal method are consistent with those derived from the MLR method. Both methods show an increase in anthropogenic CO2 inventory in the ocean over two decades that is consistent with the increase expected if the ocean uptake has kept pace with the atmospheric CO2 increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号