首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Laboratory measurements of all four CO2 parameters [fCO2 ( = fugacity of CO2), pH, TCO2 ( = total dissolved inorganic carbon), and TA ( = total alkalinity)] were made on the same sample of Gulf Stream seawater (S = 35) as a function of temperature (5–35 °C) and the ratio of TA/TCO2 (X) (1.0–1.2). Overall the measurements were consistent to ±8 μ atm in fCO2, ± 0.004 in pH, ± 3 μ mol kg−1 in TCO2, and ± 3 μ mol kg−1 in TA with the thermodynamic constants of Goyet and Poisson (1989), Roy et al. (1993), and Millero (1995). Deviations between the measured pH, TCO2, TA and those calculated from various input combinations increase with increasing X when the same constants are used. This trend in the deviations indicates that the uncertainties in pK2 become important with increasing X (surface waters), but are negligible for samples with the lower X (deep waters). This trend is < 5 μ mol kg−1 when the pK2 values of Lee and Millero (1995) are used.The overall probable error of the calculated fCO2 due to uncertainties in the accuracy of the parameters (pH, TCO2, TA, pK0, pk1, and pK2) is ± 1.2%, which is similar to the differences between the measured values and those calculated using the thermodynamic constants of Millero (1995).The calculated values of pK1, (from fCO2-TCO2-TA) agree to within ± 0.004 compared to the results of Dickson and Millero (1987), Goyet and Poisson (1989), Roy et al. (1993), and Millero (1995) over the same experimental conditions. The calculated values of pK2 (from pH-TCO2-TA) are in good agreement (± 0.004) with the results of Lee and Millero (1995) and also in reasonable agreement (± 0.008) with the results of Goyet and Poisson (1989), Roy et al. (1993), and Millero (1995). The salinity dependence of our derived values of pK1 and pK2, (S = 35) can be estimated using the equations determined by Millero (1995).  相似文献   

2.
Uptake of inorganic carbon and ammonium by the plankton community of three North Carolina estuaries was measured using 14C and 15N isotope methods. At 0% light, C appeared to be lost via respiration, and at increasing light levels uptake of inorganic carbon increased linearly, saturated (mean Ik = 358±30 μEin m−2 s−1), and frequently showed inhibition at the highest light intensities. At 0% light NH4+ uptake was significantly greater than zero and was frequently equivalent to uptake in the light (light independent); at increasing light levels NH4+ uptake saturated (mean Ik = 172±44 μEin m−2 s−1) and frequently indicated strong inhibition. Light-saturated uptake rates of inorganic carbon and NH4+ were a function of chlorophyll a (r2 = 0·7−0·9); average assimilation numbers were 625 nmol CO2 (μg chl. a)−1 h−1 and 12·9 nmol NH4+ (μg chl. a)−1 h−1 and were positively correlated with temperature (r2 = 0·3−0·7). The ratio of dark to light-saturated NH4+ uptake tended to be near 1·0 for large algal populations at low NH4+ concentrations, indicating near light independence of uptake; whereas the ratio was lower for the opposite conditions. These data are interpreted as indicative of nitrogen stress, and it is suggested that uptake of NH4+ deep in the euphotic zone and at night are mechanisms for balancing the C:N of cellular pools. A 24-h study using summed short-term incubations confirmed this; the cumulative C:N of CO2 and NH4+ uptake during the daylight period was 10–20, whereas over the 24-h period the ratio was 6 due to dark NH4+ uptake. Annual carbon and nitrogen primary productivity were respectively estimated as 24 and 4·0 mol m−2 year−1 for the South River estuary, 42 and 7·3 mol m−2 year−1 for the Neuse River estuary, and 9·6 and 1·6 mol m−2 year−1 for the Newport River estuary.  相似文献   

3.
The multiple-parameter linear regression method (Monitoring global ocean carbon inventories. Ocean Observing System Development Panel, Texas A&M University, College Station, TX, 1995, 54pp; Global Biogeochem. Cycles 13 (1999) 179) is used to compare inorganic carbon data from the GEOSECS CO2 survey in the Pacific Ocean in 1973 to the WOCE/JGOFS global CO2 survey in the 1990s. A model of total dissolved inorganic carbon (DIC) as a function of five variables (AOU, θ, S, Si, and PO4) has been developed from the recent CO2 survey data (namely CGC91 and CGC96) in the Pacific Ocean. After correcting for a systematic DIC offset of −30.3±7 μmol kg−1 from the GEOSECS data, the residual DIC based on this model as computed from GEOSECS data has been used to estimate the anthropogenic CO2 penetration in the Pacific Ocean. In the Northeast Pacific, we obtained an increase of CO2 of 21.3±7.9 mol m−2 over the period from GEOSECS in 1973 to CGC91 in 1991. This gives a mean anthropogenic CO2 uptake rate of 1.3±0.5 mol m−2 yr−1 over this 17 year time period. In the South Pacific, north of 50°S between 180° and 120°W region, the integrated anthropogenic CO2 inventory is estimated to be 19.7±5.7 mol m−2 over the period from GEOSECS in 1974 to CGC96 in 1996. The equivalent mean CO2 uptake rate is estimated to be 0.9±0.3 mol m−2 yr−1 over the 22 years. These results are compared with the isopycnal method (Nature 396 (1998) 560) to estimate the anthropogenic CO2 signal in the Northeast Pacific (30°N, 152°W) at the crossover region between CGC91 and GEOSECS. The results of the isopycnal method are consistent with those derived from the MLR method. Both methods show an increase in anthropogenic CO2 inventory in the ocean over two decades that is consistent with the increase expected if the ocean uptake has kept pace with the atmospheric CO2 increase.  相似文献   

4.
Coastal upwelling systems are regions with highly variable physical processes and very high rates of primary production and very little is known about the effect of these factors on the short-term variations of CO2 fugacity in seawater (fCO2w). This paper presents the effect of short-term variability (<1 week) of upwelling–downwelling events on CO2 fugacity in seawater (fCO2w), oxygen, temperature and salinity fields in the Ría de Vigo (a coastal upwelling ecosystem). The magnitude of fCO2w values is physically and biologically modulated and ranges from 285 μatm in July to 615 μatm in October. There is a sharp gradient in fCO2w between the inner and the outer zone of the Ría during almost all the sampling dates, with a landward increase in fCO2w.CO2 fluxes calculated from local wind speed and air–sea fCO2 differences indicate that the inner zone is a sink for atmospheric CO2 in December only (−0.30 mmol m−2 day−1). The middle zone absorbs CO2 in December and July (−0.05 and −0.27 mmol·m−2 day−1, respectively). The oceanic zone only emits CO2 in October (0.36 mmol·m−2 day−1) and absorbs at the highest rate in December (−1.53 mmol·m−2 day−1).  相似文献   

5.
Ideally, the correction of the measured CO2 fugacity (fCO2) at temperature Tm to fCO2 at the in-situ temperature Tin should be made by using at least 2 known parameters (pH-AT, CT-AT,…) and the reliable constants for carbonic acid. In practice however, a measured CO2 property pair is not always available. When fCO2 is measured alone, one must make an estimate of the effect of temperature on seawater fCO2 from the accurate knowledge of seawater salinity and temperature and the approximate knowledge of the carbonate parameters. In this paper we present an empirical relationship that can be used to estimate the effect of temperature on fCO2. The equation is of the form:
ƒCO2[t] − ƒCO2[20]=A + Bt + Ct2 + Dt3 + Et4
where fCO2[t] and fCO2[20] represent fCO2 at temperatures t°C and 20°C, respectively; the parameters A, B, etc. are functions of the ratio X = CT/AT:
E = e0 + e1X + e2X2ln(X) + e3exp(X) + e4/ln(X)
where the parameters ai, bi, etc. are functions of salinity.The 25-parameter equation is fitted by the values of fCO2 calculated using the constants of Goyet and Poisson (1989), when X varies from 0.8 to 1.0, t varies from −1dgC to 40°C, and S varies from 30 to 40. For Tm - Tin within ± 10°C, direct measurements of fCO2 as a function of the temperature (from −I to 30°C verify this equation within less than ±5 μatm.  相似文献   

6.
Strong seasonal patterns in upper ocean total carbon dioxide (TCO2), alkalinity (TA) and calculated pCO2 were observed in a time series of water column measurements collected at the US Joint Global Ocean Flux Study (JGOFS) BATS site (31 °50′N, 64 °10′W) in the Sargasso Sea. TA distribution was a conservative function of salinity. However, in February 1992, a non-conservative decrease in TA was observed, with maximum depletion of 25–30 μmoles kg−1 occuring in the surface layer and at the depth of the chlorophyll maximum (˜ 80–100 m). Mixed-layer TCO2 also decreased, while surface pCO2 increased by 25–30 μatm. We suggest these changes in carbon dioxide species resulted from open-ocean calcification by carbonate-secreting organisms rather than physical processes. Coccolithophore calcification is the most likely cause of this event although calcification by foraminifera or pteropods cannot be ruled out. Due to the transient increase in surface pCO2, the net annual transfer of CO2 into the ocean at BATS was reduced. These observations demonstrate the potential importance of open-ocean calcification and biological community structure in the biogeochemical cycling of carbon.  相似文献   

7.
The potential of the North Atlantic as a sink for atmospheric CO2 was investigated by studying the carbonic system using data obtained during the spring of 1991. The air-sea flux of CO2 was related to chlorophyll and other environmental variables, and the regeneration of carbon in the mid-ocean studied by examining vertical sections representative of the study area.Poor correlations were found between pCO2 and chlorophyll throughout much of the study area, although a good correlation was found along 16°W. The highest air-sea fluxes of CO2 were calculated for areas where chlorophyll was highest (45°13′N, 16°04′W), and where the greatest wind speeds occurred (47°51′N, 28°18′W). The mean CO2 flux from the atmosphere to the ocean during the study period (May) was calculated as 0.65mmol m−2d−1, which compares well with other studies. Regression equations were developed to predict total inorganic carbon from nutrients; errors were typically less than 1 μmol kg−1. Regeneration of carbon in the mid-ocean occurred in two principal stages: 0–1000m and>2300m. Regeneration in the upper zone was dominated by soft tissue carbon (86%), with skeletal carbon (calcite) contributing only 14%. The fraction of regenerated carbon of skeletal origin increased to 51% in the>2300m zone.  相似文献   

8.
The pK1* and pK2* for the dissociation of carbonic acid in seawater have been determined from 0 to 45°C and S = 5 to 45. The values of pK1* have been determined from emf measurements for the cell:
Pt](1 − X)H2 + XCO2|NaHCO3, CO2 in synthetic seawater|AgC1; Ag
where X is the mole fraction of CO2 in the gas. The values of pK2* have been determined from emf measurements on the cell:
Pt, H2(g, 1 atm)|Na2CO3, NaHCO3 in synthethic seawater|AgC1; Ag
The results have been fitted to the equations:
lnK*1 = 2.83655 − 2307.1266/T − 1.5529413 lnT + (−0.20760841 − 4.0484/T)S0.5 + 0.08468345S − 0.00654208S1
InK*2 = −9.226508 − 3351.6106/T− 0.2005743 lnT + (−0.106901773 − 23.9722/T)S0.5 + 0.1130822S − 0.00846934S1.5
where T is the temperature in K, S is the salinity, and the standard deviations of the fits are σ = 0.0048 in lnK1* and σ = 0.0070 in lnK2*.Our new results are in good agreement at S = 35 (±0.002 in pK1*and ±0.005 in pK2*) from 0 to 45°C with the earlier results of Goyet and Poisson (1989). Since our measurements are more precise than the earlier measurements due to the use of the Pt, H2|AgCl, Ag electrode system, we feel that our equations should be used to calculate the components of the carbonate system in seawater.  相似文献   

9.
Laboratory exposures of the urchin Lytechinus pictus to sediment dosed with varying concentrations of hydrogen sulfide (H2S), but without elevated organic material, were conducted. Changes in mortality, behavior, growth and gonad production were measured during 49 days' flow through exposures. Hydrogen sulfide concentrations of 165·8 μ liter−1 in pore water caused significant changes in all parameters measured. Concentrations as low as 32·9 μ liter−1 caused significant decreases in wet weight and male gonad production. A concentration of 91·8 μ liter−1 caused the mortality rate to increase 100-fold over control exposures (0·63 μ liter−1). Sublethal effects on growth and gonad production could have been caused by either direct biochemical inhibition by H2S or secondarily through behavioral modifications. Hydrogen sulfide concentrations above 165·8 μ liter−1 are common near sewage outfalls and could contribute to changes in species composition and sediment toxicity that occur there.  相似文献   

10.
Monthly seawater pH and alkalinity measurements were collected between January 1996 and December 2000 at 10°30′N, 64°40′W as part of the CARIACO (CArbon Retention In A Colored Ocean) oceanographic time series. One key objective of CARIACO is to study temporal variability in Total CO2 (TCO2) concentrations and CO2 fugacity (fCO2) at this tropical coastal wind-driven upwelling site. Between 1996 and 2000, the difference between atmospheric and surface ocean CO2 concentrations ranged from about − 64.3 to + 62.3 μatm. Physical and biochemical factors, specifically upwelling, temperature, primary production, and TCO2 concentrations interacted to control temporal variations in fCO2. Air–sea CO2 fluxes were typically depressed (0 to + 10 mmol C m 2 day 1) in the first few months of the year during upwelling. Fluxes were higher during June–November (+ 10 to 20 mmol C m 2 day 1). Fluxes were generally independent of the slight changes in salinity normally seen at the station, but low positive flux values were seen in the second half of 1999 during a period of anomalously heavy rains and land-derived runoff. During the 5 years of monthly data examined, only two episodes of negative air–sea CO2 flux were observed. These occurred during short but intense upwelling events in March 1997 (−10 mmol C m 2 day 1) and March 1998 (− 50 mmol C m 2 day 1). Therefore, the Cariaco Basin generally acted as a source of CO2 to the atmosphere in spite of primary productivity in excess of between 300 and 600 g C m 2 year 1.  相似文献   

11.
Displaying “calculated minus observed” data for precise titrations of seawater with strong acid permits direct evaluation of important parameters and detection of systematic errors.At least two data sets from the GEOSECS (Geochemical Ocean Sections) program fit an equilibrium model (which includes carbonate, borate, sulfate, silicate, fluoride, and phosphate) within the most stringent experimental error, less than 2 μmol kg−1. The effect of various parameters on the fit of calculated to observed values depends strongly on pH. Although standard potential E0, total alkalinity At, total carbonate Ct, and first acidity constant of carbon dioxide pK1 are nearly independent, and can be determined for each data set, other parameters are strongly correlated. Within such groups, all but one parameter must be determined from data other than the titration curve.Adding an acid-base pair to the theoretical model (e.g. Cx=20 μmol kg−1, pKx=6.2) produces a deviation approaching 20 μmol kg−1 at constant Ct; however, adjustment of Ct by about −18 μmol kg−1 to produce a good fit leaves only ± 1.5 μmol kg−1 residual deviation from the reference values. Thus, at current standards of precision, an unidentified weak acid cannot be distinguished from carbonate purely on the basis of the titration curve shape.There are few full sets of numerical data published, and most show larger systematic errors (3–12 μmol l−1) than the above; one well-defined source is experiments performed in unsealed vessels. Total carbonate can be explicitly obtained as a function of pH by a rearrangement of the titration curve equation; this can reveal a systematic decrease in Ct in the pH range 5–6, as a result of CO2 gas loss from the titration vessel. Attempts to compensate for this by adjustment of At, Ct, or pK1 produce deviations which mimic those produced by an additional acid-base pair.Changing from the free H+ scale (for which [HSO4] and [HF] are explicit terms in the alkalinity) to the seawater scale (SWS) (where those terms are part of a constant factor multiplying [H+]) requires modification of the titration curve equation as well as adjustment of acidity constants. Even with this change, however, omission of pH-dependent terms in [HSO4] and [HF] produces small systematic errors at low pH.Shifts in liquid junction potential also introduce small systematic errors, but are significant only at pH <3. High-pH errors due to response of the glass electrode to Na+ as well as H+ can be adequately compensated to pH 9.5 by a linear selectivity expression.  相似文献   

12.
Environmental influences (temperature and oxygenation) on cod metabolism and their impact on the ecology of this species were investigated. Limiting oxygen concentration curves (O2 level ranging between 15 and 100% air saturation) were established at 2, 5 and 10°C. The standard metabolic rate (SMR), the maximum metabolic rate and the metabolic scope were then modelled as functions of temperature and/or oxygen saturation. The mean SMR at 2, 5 and 10°C were 19.8±4.9, 30.8±6.1 and 54.3±4.1 mg O2 h−1 kg−1, respectively. Between 2 and 5°C, the active metabolic rate of cod almost doubled from 65 to 120 mg O2 h−1 kg−1, to reach 177 mg O2 h−1 kg−1 at 10°C. In terms of metabolic scope (MS), the temperature rise from 2 to 5°C resulted in a two-fold increase from 45 to 89 mg O2 h−1 kg−1, with MS reaching 123 mg O2 h−1 kg−1 at 10°C. Our proposed model describing the impact of temperature and oxygen level provides new insight into the energetic interactions which govern the relationship between Atlantic cod and its environment. We re-examined published experimental and field studies from the angle of the regulation of metabolic power. We suggest that, when faced with heterogeneous or unstable hydrological conditions, cod tend to behaviourally maximise their metabolic scope. Through this adaptive response, fish reduce energy budgeting conflicts and presumably increase the probability of routinely operating away from lethal boundaries.  相似文献   

13.
14.
The seasonal and interannual variability of the air–sea CO2 flux (F) in the Atlantic sector of the Barents Sea have been investigated. Data for seawater fugacity of CO2 (fCO2sw) acquired during five cruises in the region were used to identify and validate an empirical procedure to compute fCO2sw from phosphate (PO4), seawater temperature (T), and salinity (S). This procedure was then applied to time series data of T, S, and PO4 collected in the Barents Sea Opening during the period 1990–1999, and the resulting fCO2sw estimates were combined with data for the atmospheric mole fraction of CO2, sea level pressure, and wind speed to evaluate F.The results show that the Atlantic sector of the Barents Sea is an annual sink of atmospheric CO2. The monthly mean uptake increases nearly monotonically from 0.101 mol C m− 2 in midwinter to 0.656 mol C m− 2 in midfall before it gradually decreases to the winter value. Interannual variability in the monthly mean flux was evaluated for the winter, summer, and fall seasons and was found to be ± 0.071 mol C m− 2 month− 1. The variability is controlled mainly through combined variation of fCO2sw and wind speed. The annual mean uptake of atmospheric CO2 in the region was estimated to 4.27 ± 0.68 mol C m− 2.  相似文献   

15.
Appropriate conditions have been achieved for the accurate, rapid, and highly precise shipboard simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation. A nitrogen-specific Antek 705D chemiluminescence detector and a CO2-specific LiCor Li6252 IRGA have been coupled in-series with a Shimadzu TOC-5000 organic carbon analyser. Precision of both simultaneous measurements is ≤1.5%, i.e. ±1 μmol C l−1 and ±0.3 μmol N l−1, respectively. Quality of analysis is not compromised by vibrations associated with ocean going research vessels.  相似文献   

16.
Seasonal and diurnal reduced sulfur gas emissions were measured along a salinity gradient in Louisiana Gulf Coast salt, brackish and freshwater marshes. Reduced sulfur gas emission was strongly associated with habitat and salinity gradient. The dominant emission component was dimethyl sulfide (average: 57·3 μg S m−2 h−1) in saltmarsh with considerable seasonal (max: 144·03 μg S m−2 h−1; min: 1·47 μg S m−2 h−1) and diurnal (max: 83·58 μg S m−2 h−1; min: 69·59 μg S m−2 h−1) changes in flux rates. Hydrogen sulfide was dominant (average: 21·2 μg S m−2 h−1, max: 79·2 μg S m−2 h−1; min: 5·29 μg S m−2 h−1) form in brackishmarsh and carbonyl sulfide (average: 1·09 μg S m−2 h−1; max: 3·42 μg S m−2 h−1; min: 0·32 μg S m−2 h−1) was dominant form in freshwater marsh. A greater amount of H2S was evolved from brackishmarsh (21·22 μg S m−2 h−1) as compared to the saltmarsh (2·46 μg S m−2 h−1) and freshwater marsh (0·30 μg S m−2 h−1). Emission of total reduced sulfur gases decreased with decrease in salinity and distance inland from the coast. Emission of total reduced sulfur gases over the study averaged 73·3 μg S m−2 h−1 for the saltmarsh, 32·1 μg S m−2 h−1 for brackishmarsh and 2·76 μg S m−2 h−1 for the freshwater marsh.  相似文献   

17.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

18.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

19.
Potentiometric titrations of deep Black Sea water give reasonably precise values of sulphide in the concentration range 30–300 μmol l−1 and a strong indication of thiols in the concentration range 10–30 μmol l−1. Organic analysis of Black Sea water should therefore include the search for compounds containing SH groups. A simple stoichiometric model indicates that sulphur-containing proteins might be the main source of thiols after hydrolysis and deamination. The alkalinity and total sulphide are simply related by At = 3287 ± 30 + (3.84 ± 0.10) [H2 S]t μmol kg−1. The slope of 3.84 instead of the stoichiometric slope of 2.31 indicates a lack of reduced sulphate in the form of hydrogen sulphide.  相似文献   

20.
The main factors influencing phytoplankton primary production in the surf zone of the Sundays River Beach, Algoa Bay have been characterized. These factors include cell concentration, chlorophyll concentration, irradiance, temperature and salinity. Good relationships have been obtained between cell concentration, chlorophyll concentration and primary production. The P-I curves showed dependence on temperature with a linear regression between temperature and Ik values. Light saturation was shown to occur between 300 and 510 μmol m−2 s−1 at normal field temperatures. Tmax and Tmin were found to be 34°C and 0°C, respectively; Pmax was 25°C. Salinity had a marked effect on primary production with Smax occurring at 60 ppt and an extrapolated Smin at 0 ppt. Pmax was found to occur at 30 ppt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号