首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We show evidence that the primary uranium minerals, uraninite and coffinite, from high-grade ore samples (U3O8>0.3%) in the Wuyiyi, Wuyier, and Wuyisan sandstone-hosted roll-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically replace fungi and bacteria. Uranium (VI), which was the sole electron acceptor, was likely to have been enzymically reduced. Post-mortem accumulation of uranium may have also occurred through physio-chemical interaction between uranium and negatively-charged cellular sites, and inorganic adsorption or precipitation reactions. These results suggest that microorganisms may have played a key role in formation of the sandstone- or roll-type uranium deposits, which are among the most economically significant uranium deposits in the world.  相似文献   

2.
The Baxingtu deposit is a typical redox front tabular-shaped uranium deposit hosted in sandstones of the Late Cretaceous Yaojia Formation deposited within a braided river environment during the post-rift stage of the Songliao Basin, in northeast China. This study proposes the first metallogenic model for the Baxingtu deposit and provides new data on genetic processes involved in the uranium mineralisation of sandstone-type deposits that were characterised through petrographic observations, whole-rock geochemistry, and geochemical and/or mineralogical study of iron disulphide, uranium minerals, Fe-Ti oxides (EPMA, LA-ICP-MS), and organic matter (REP). The δ34S value has been measured in situ by SIMS on the different generations of iron disulphide.Within regional primary reduced sandstones, pre-ore uranium enrichment (Umean = 7.6 ppm in whole rock) was identified on altered Fe-Ti oxides along with minor concentrations on organic matter (respectively 26.3% and 1.3% of the whole-rock U content), which together represent a significant source of uranium for the mineralisation. Additional pre-ore uranium concentrations may also be associated with clay minerals. Petrographic observations and REP data indicate that organic matter occurring in the host-sandstone is mainly inherited from land plants and corresponds to type III or type IV kerogens. Ore-stage iron disulphides largely occur as framboids and in replacement of organic matter or also as sub-idiomorphic to idiomorphic cement and crystal. Trace element signatures detected within framboids are likely indicative of formation mainly from a single event. Framboids and iron disulphide in replacement of organic matter have a light sulphur isotope signature characterised by δ34S values from −72.0 to −6.2‰, suggesting that sulphur originated from bacterial sulphate reduction, which was mainly responsible for (1) the liberation of U from Fe-Ti oxides and organic matter, (2) the generation of ore-stage iron disulphides, (3) the bioreduction of uranium and (4) the production of a secondary H2S-rich reducing barrier also involved in uranium reduction. Uranyl and sulphate ions were transported through the host sandstone by low-temperature oxygenated groundwater and U(IV) was precipitated at the redox interface as nano to microcrystals of pitchblende and coffinite, dominantly associated with bacterial substrate and as intergrowth with biogenic iron disulphide or directly associated with organic matter and residual Ti-Fe oxides. The uranium mineralisation does not replace ore-stage iron disulphides. Therefore, the combined mineralogical, geochemical, and isotopic characteristics of the Baxingtu tabular uranium deposit characterise dominantly biogenic processes for the genesis of the uranium mineralisation.  相似文献   

3.
冷湖地区砂岩型铀矿是近年柴北缘新发现的具有工业价值的铀矿床,为了进一步研究该地区砂岩型铀成矿岩石学及矿物学特征、铀成矿条件等问题,本文在野外地质调查的基础上,利用偏光显微镜结合电子探针分析手段,对该区内大煤沟组中含矿岩石进行了系统研究。结果表明:研究区中侏罗统大煤沟组含矿岩石类型主要为(粉)砂质泥岩、薄层煤及细粒石英杂砂岩,整体发育一系列后生蚀变。研究区北东侧安南坝山古元古界达肯达坂群及赛什腾山海西期花岗岩为区内砂岩型铀成矿提供了丰富的铀源。砂岩型铀矿中铀主要以独立铀矿物沥青铀矿的形式赋存,其次含有少量分散吸附态铀,沥青铀矿总体呈不规则粒状、星点状、"串珠状、线状"及粉末状赋存于黄铁矿边缘、裂隙部位或黄铁矿与方解石的接触部位,吸附态铀主要赋存于炭屑及煤线内;区内沥青铀矿为柴北缘地区首次揭露并发现的独立铀矿物,总体上填补了柴北缘地区无独立铀矿物出露的空白。铀成矿条件方面,含矿目的层中方解石的发育,显示了铀成矿流体富含CO_2、H_2O等挥发分和矿化剂,其次出露的众多还原性介质(油气、炭屑及黄铁矿等)为区内砂岩型铀成矿提供了氧化还原反应必需的还原剂,最终将U~(6+)还原成U~(4+)以沥青铀矿等形式沉淀成矿。  相似文献   

4.
该文基于中国地质调查局天津地质调查中心研究团队近年来的研究工作及对相关文献的综合研究,对砂岩型铀矿中一些重要铀矿物如沥青铀矿(晶质铀矿)、铀石、钛铀矿等的微区原位成因矿物学和U-Pb年代学研究现状进行了深入分析,提出新的研究方向,即通过采用二次离子质谱法、激光剥蚀多接收器电感耦合等离子体质谱法与电子探针化学分析法和同位素稀释热电离质谱法相结合的方式,综合研究砂岩型铀矿中沥青铀矿(晶质铀矿)、铀石、钛铀矿等铀矿物和金红石、磷灰石等含铀矿物的微区原位成因矿物学和U-Pb年代学,探索砂岩型铀矿中矿石矿物的U-Pb同位素测年新方法,获取更精确的砂岩型铀矿成岩成矿的年代学信息。这对于全面准确地认识砂岩型铀矿床的生成和演化历史,建立砂岩型铀矿床的成矿新理论具有十分重要的科学意义。铀矿物测年新方法在砂岩型铀矿床的地质勘探中也有广阔的应用前景。  相似文献   

5.
The mineral composition of hydrogenic uranium ore of the Dalmatovo deposit was studied with analytical scanning electron microscopy. The results correspond to earlier known data only in general terms. Phosphosilicate uranium mineralization, which is predominant in the samples, is similar to P-bearing coffinite in elemental composition but differs in morphology. The quantitative analysis of microcrystals corresponds to the formula (U,Ca)[(Si,P)O4]2, where U/Si ratio is twice as low as in coffinite. The occurrence of oxide pitchblende mineralization has been confirmed. The initial stage of the formation of uranyl minerals has been revealed. The mineral species of Ti-U substance that determines geochemical attributes of the Dalmatovo deposit is considered.  相似文献   

6.
冷湖铀矿床是近年来在柴达木盆地北部新发现的具有工业价值的砂岩型铀矿床,为了研究该地区铀矿物的类型、成分特征、赋存形式及铀成矿作用,本文在野外地质调查的基础上,对下侏罗统小煤沟组相关蚀变矿物进行了矿相学、电子探针、背散射电子成像分析.研究发现,冷湖小煤沟组矿石主要包括杂砂岩型及碳质砂岩型两种,整体发育后生蚀变.铀矿物主要...  相似文献   

7.
纳米比亚欢乐谷地区白岗岩型铀矿矿物特征研究   总被引:3,自引:0,他引:3  
本文通过系统的岩矿鉴定和电子探针分析,对纳米比亚欢乐谷地区白岗岩型铀矿的矿物特征进行了详细的研究.该地区铀的赋存形式以独立铀矿物为主,少量以类质同像形式存在于钍矿物中.铀矿物的主要种类有:晶质铀矿、钍铀矿、铀石、铀钍石、钛铀矿、沥青铀矿、硅钙铀矿和钒钾铀矿等,其中,晶质铀矿、钍铀矿和钛铀矿等原生铀矿物约占69%,而反应边状铀石、铀钍石、沥青铀矿、钒钾铀矿和硅钙铀矿等次生铀矿物约占31%.由此可见,该区铀矿化主要表现为原始岩浆的分异作用与后期热液改造作用的相互叠加,其热液改造程度不大,仅使铀发生内部再分配.  相似文献   

8.
《Resource Geology》2018,68(3):303-325
The Lujing uranium deposit, located in the southeastern part of the Nanling metallogenic province, is one of the representative granite‐related hydrothermal uranium deposits in South China. Basic geology, geochemistry, and geochronology of the deposit have been extensively studied. However, there is still a chronic lack of systematic research on the genesis and metallogenic process of the deposit. Thus, we recently carried out an electron microprobe and stable isotopic analysis. The main research results and progresses are as follows: Uranium minerals in this deposit include coffinite, pitchblende, and uranothorite, and small amounts of uranium exist in accessory minerals in the form of isomorphism. Coffinite, which occurs predominantly as the pseudomorphs after pitchblende, also occurs as a primary mineral and is locally formed from the remobilization of uranium from adjacent uranium‐bearing minerals. The mineralizing fluid was originally composed of a magmatic fluid generated by late Yanshanian magmatism. The high As content of pyrite in ores may reflect the addition of meteoric water, or the formation water (or both), to the magmatic hydrothermal system. The δ34S values vary from −14.4‰ to 13.9‰ (mean δ34S = −3.9‰), showing a range that is similar to nearby Cambrian metamorphic strata and Indosinian granites, indicating that these host rocks represent the source of sulfur; however, the possibility of a mantle source cannot be completely ruled out. According to our new isotopic data and recent Pb isotopic data, we conclude that the uranium in ores was derived by leaching dominantly from the uranium‐rich host rocks, especially the Cambrian metamorphic strata. The δ13CPDB values (−8.75‰ to 1.40‰; mean δ13CPDB = −5.41‰) and δ18OSMOW values (5.45–18.62‰; mean δ18O = 13.02‰) of reddish calcite from the ore‐forming stage suggest that the CO2 in the mineralizing fluids was derived predominantly from the mantle, with a small component contributed by marine carbonates. Based on these new data and previous research results, this paper proposes that uranium metallogenesis in the Lujing deposit is closely associated with mafic magmatism resulting from crustal extension during the Cretaceous to Paleogene in South China.  相似文献   

9.
陈路路 《地质与勘探》2017,53(4):632-642
纳岭沟铀矿床位于鄂尔多斯盆地东北部的伊陕单斜构造区,该区含矿主岩为中侏罗统直罗组下段下亚段。本文通过电子探针、能谱及背散射分析等方法,详细研究了该区目的层砂岩的铀矿物类型及其赋存形式,并对其矿物组合特征及期次等进行了探讨。结果表明纳岭沟地区铀矿物主要为铀石,还有少量的含钛含铀矿物、沥青铀矿、铀钍石等。铀矿物与黄铁矿、蚀变钛铁矿、锐钛矿/白钛石、粘土矿物等密切共生,呈毛刺状或微细柱状产于矿物边缘,或呈粒状产于黑云母解理缝中,另外也见产于碎屑颗粒中。结合电子探针及背散射分析,对蚀变黑云母解理缝中黄铁矿及铀石成因、以及蚀变钛铁矿与铀特殊关系进行了初步探讨。另外该区存在高Y和低Y元素两种铀石类型,沥青铀矿可能为原铀矿物蚀变残留,结合矿物蚀变期次,初步认为该区含铀砂岩至少遭受两期不同成矿流体作用,多源流体耦合成矿可能是砂岩型铀成矿的重要机制之一。  相似文献   

10.
东胜砂岩型铀矿床中烃类流体与成矿关系研究   总被引:6,自引:0,他引:6  
东胜砂岩型铀矿床定位于灰绿色岩石与灰色岩石的接触部位,主要受古层间氧化带控制.矿体以板状为主.铀主要以铀矿物和吸附铀形式存在.铀矿物主要为铀石, UO2含量为 46.72%~ 74.60%.吸附铀及 U6 、U4 在铀矿床的不同地段所占比例存在明显差别.该铀矿床与世界上其他砂岩型铀矿床在成因上具有明显的不同,表现在矿床特征、岩石地球化学环境及控矿因素等方面具有很强的特殊性.晚侏罗世-早白垩世的构造热事件形成的含烃热流体参与了成矿作用,不仅为铀的活化、迁移、富集提供了有利条件,而且使铀矿床完全隐伏在还原环境中,对矿床的保存起到了重要作用.由烃类流体产生的后生还原作用所形成的灰绿色砂岩可作为铀矿床的岩石地球化学勘查标志.  相似文献   

11.
The Neo-Archean Dominion Reefs (~3.06 Ga) are thin meta-conglomerate layers with concentrations of U- and Th-bearing heavy minerals higher than in the overlying Witwatersrand Reefs. Ore samples from Uranium One Africa’s Rietkuil and Dominion exploration areas near Klerksdorp, South Africa, were investigated for their mineral paragenesis, texture and mineral chemical composition. The ore and heavy mineral assemblages consist of uraninite, other uraniferous minerals, Fe sulphides, Ni–Co sulfarsenides, garnet, pyrite, pyrrhotite, monazite, zircon, chromite, magnetite and minor gold. Sub-rounded uraninite grains occur associated with the primary detrital heavy mineral paragenesis. U–Ti, U–Th minerals, pitchblende (colloform uraninite) and coffinite are of secondary, re-mobilised origin as evidenced by crystal shape and texture. Most of the uranium mineralisation is represented by detrital uraninite with up to 70.2 wt.% UO2 and up to 9.3 wt.% ThO2. Re-crystallised phases such as secondary pitchblende (without Th), coffinite, U–Ti and U–Th phases are related to hydrothermal overprint during low-grade metamorphism and are of minor abundance.  相似文献   

12.
湖山铀矿床位于纳米比亚达马拉造山带的南部中央带,属于伟晶岩型铀矿,是世界上最大的铀矿床之一。目前关于不同矿石中铀元素的富集与沉淀机制还存在一定争议。为了厘清岩浆演化过程与铀成矿作用的关系,本文对湖山铀矿床内E型伟晶岩型矿石开展了岩石学、矿物学和地球化学研究。野外调查及镜下鉴定结果表明,产铀的E型伟晶岩可以分为"简单类型"矿体和"复杂类型"矿体:前者具有花岗伟晶结构,工业铀矿物为晶质铀矿(含少量铀钍石),呈浸染状分布于石英、长石和黑云母之间,矿化程度低到中等;而后者表现出非均匀的结构特征,晶质铀矿在成因上与大量黑云母团块有空间联系,矿化程度极高。地球化学研究表明,在"简单类型"伟晶岩中,铀元素的富集受控于分离结晶作用,而在"复杂类型"伟晶岩中,铀矿化与同化混染作用密切相关。矿石的矿物-熔体相平衡模拟结果显示,外来基性组分(FeO、MgO、TiO_2)的混入导致"复杂类型"伟晶岩熔体中矿物的结晶顺序发生了改变,相比于"简单类型"伟晶岩熔体,黑云母初始结晶温度的升高和钾长石初始结晶温度的降低为黑云母提供了更充足的结晶时间和生长空间,促使黑云母以团块状聚集的形式产出。该过程会大量消耗岩浆中的F离子,引发UFm4-m络合物的水解,促使晶质铀矿在团块黑云母的附近沉淀,形成高品位的铀矿化。因此,本文有关"简单类型"和"复杂类型"伟晶岩矿石的研究,有效地揭示了矿化过程,丰富了伟晶岩型铀矿床理论,为推动铀矿勘查与开发提供了科学依据。  相似文献   

13.
纳米比亚湖山铀矿地质特征、控矿因素及其成因探讨   总被引:1,自引:0,他引:1  
张怀峰  陆建军 《世界地质》2018,37(1):105-123
湖山铀矿位于泛非期达马拉造山带的南部中央区带内,构造以NNE-SSW向穹窿和断裂为主。矿区内地层自老至新为艾杜西斯组、可汗组、罗辛组、楚斯组、阿兰蒂斯组、卡里比布组和卡塞布组,侵入岩为寒武纪至晚新元古代花岗岩类。晶质铀矿为主要原生矿石矿物。后期热液叠加导致了铀石、硅钙铀矿和黄硅钾铀矿等热液矿物的形成以及高岭土化、蛇纹石化、绢云母化和绿泥石化等蚀变作用。矿床的形成受矿区地层、岩浆岩和构造联合控制,矿化仅发生于D和E型花岗岩内。矿化岩体呈席状侵入于NNE-SSW向湖山背斜转折端和翼部高应力区域,赋存于罗辛组与可汗组不整合接触带及其上部的罗辛组,少量赋存于楚斯组内。矿区内构造-岩浆事件可划分为四个阶段,铀成矿作用与第四阶段构造-岩浆事件密切相关,含矿D和E型花岗岩为后造山伸展环境下富铀阿巴比斯基底重熔形成。  相似文献   

14.
《Chemical Geology》2007,236(1-2):167-179
Unusual mineral structures have recently been found in a sandstone-hosted roll-type uranium deposit in the Middle Jurassic Zhiluo Formation in the Shashagetai deposit, the northern Ordos basin, NW China. The structures possess a chemical composition and crystal structure characteristic of mineral coffinite [(USiO4)1−x(OH)4x], which occurs as nanoparticles with size ranging from 5 to 25 nm. These structures are interpreted to be fossilized microorganisms, based on mineralogical biosignatures including morphology, size, occurrence of biogenic coffinite as nano-crystals, and biological elements such as P. The intimate intergrowth of coffinite with secondary pyrite of bacterial origin, as defined by low δ34S values, and calcite cements with petroleum-derived carbon supports its biogenic origin. Oil inclusions in the host sandstone are characterized by abundant n-alkanes, slightly increased Pr/nC17 and Ph/nC18 ratios, significant amounts of demethylated hopanes and tricyclic terpanes, and the existence of unresolved complex mixtures. These characteristics are interpreted to be a result of mixing of an earlier, heavily degraded oil with a later charged fresh oil; subsequently the oils were slightly degraded. These lines of evidence lead to the proposal that the reduction of sulfate and oxidization of petroleum are likely synchronous with reduction of hexavalent [U(VI)] to tetravalent [U(IV)] uranium by sulfate-reducing bacteria (SRB). The discovery of a natural association of microorganism-like structures, a uranium mineral, and biodegraded petroleum has implications for uranium biomineralization and fossil fuel exploration.  相似文献   

15.
Dolostone of Vempalle Formation near Tummalapalle hosts large uranium deposit (>100,000 tonnes with an average grade of 0.045%U3O8). It is a unique type of uranium deposit because carbonate formations have been considered to be among the least uraniferous of all the rocks of the Earth’s crust due to mobility of uranium in aqueous fluid in the presence of carbonate and bicarbonate ions. Vempalle dolostone hosts syn-sedimentary uranium mineralization in the form of discrete uranium phases (pitchblende and coffinite) associated with collophane, and adsorbed uranium in organic matter. The organic matter has played dual role of concentrating uranium from solution and also chemically reducing it to pitchhblende and coffinite.  相似文献   

16.
Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2), together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 × 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, “pull-apart” fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200 °C, 18OH2O∼−1.5, DH2O∼−130, log f O2 about −47 to −50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in precipitation of uranium minerals. At the deepest exposed levels, wallrocks were altered to sericite; and uraninite, coffinite, jordisite, fluorite, molybdenite, quartz, and pyrite were deposited in the veins. The fluids were progressively oxidized and cooled at higher levels in the system by boiling and degassing; iron-bearing minerals in wall rocks were oxidized to hematite, and quartz, fluorite, minor siderite, and uraninite were deposited in the veins. Near the ground surface, the fluids were acidified by condensation of volatiles and oxidation of hydrogen sulfide in near-surface, steam-heated, ground waters; wall rocks were altered to kaolinite, and quartz, fluorite, and uraninite were deposited in veins. Secondary uranium minerals, hematite, and gypsum formed during supergene alteration later in the Cenozoic when the upper part of the mineralized system was exposed by erosion. Received: 23 June 1997 / Accepted: 15 October 1997  相似文献   

17.
鄂尔多斯盆地东胜砂岩型铀矿中铀矿物的电子显微镜研究   总被引:4,自引:0,他引:4  
鄂尔多斯盆地东胜铀矿是我国一个重要的大型砂岩型铀矿床。通过电子显微技术,对该铀矿床中铀矿物的种类、产出特征进行详细的研究。研究确定东胜砂岩型铀矿床中铀矿物主要为铀石和水硅铀矿,两者紧密共生,它们均为表生铀矿物。铀矿物的颗粒十分细小,一般粒度均为微米级。铀石和水硅铀矿往往呈板状、不规则微粒状产出,铀矿物的表面溶蚀现象明显,有的还具纳米级的溶蚀孔。铀矿物的产出与蚀变黑云母、蚀变黄铁矿密切相关,也见到微脉状铀矿物集合体穿切碎屑石英等现象。研究表明在表生作用下,该铀矿床中的铀元素存在溶解(迁移)-沉淀(富集)的反复过程。  相似文献   

18.
The Qianjiadian sandstone-type uranium deposit in Songliao Basin has become an ultra-large uranium deposit since its exploration and continuous development. The geological and metallogenic characteristics of this area have been studied widely since its discovery,but the detailed petrological features of its ore-bearing construction and favorable metallogenic conditions still require much detailed research. The mineralization of urnium deposit includes various geological processes resulting in the accumulation of uranium element. The source rock with high uranium concentration and much easier for the leaching of uranium is the basis of uranium mineralization. The later oxidation-reduction,mineral alteration are the key for the uranium deposits. In this paper,the petrological characteristic of lithology sandstone-type uranium deposit is studied by using the micro experimental analysis. It is found that the host rocks are primarily composed of medium-fine grained feldspar lithic sandstone,fine grained feldspar lithic sandstone,boulder-clay-bearing sandstone and glutenin. The amount of quartz and feldspar are close to the rock debris. The debris are mainly composed of rhyolite,rhyolitic tuff,and some trochyte,ayenite-aplite,granite,granite porphyry,andesite,silicalite and mudstone etc. the epigenetic alteration includes the carbonatization and kaolinization is general and intense at the local region,followed by the secondary epigenetic alteration includes pyritization,ferrugination and little baratization. Deep oil and gas infiltrate into the oil-bearing strata causing the oil stains,spots and spillage. The symbiosis of pyrite berry globule and micritic pyrite are common. The uranium element exists in the uranium-bearing minerals(e.g.,asphalt and coffinite)as well as the adsorbed state. The multi-genesis and multi-stages of the metallogenic model is established,i.e.,sedimentary preconcentration stage-interlayer infiltration stage-the oil and gas transformation stage-the oil and gas reduction stage.  相似文献   

19.
松辽盆地钱家店砂岩型铀矿床自勘查以来不断获得重大发现,已成为超大型铀矿床。该区矿床地质特征、成矿特点有过不少报道,但就其含矿建造的详细岩石学特征(蚀源区母岩)及有利的成矿条件等还需要随着研究程度的加深不断完善。铀矿的成矿作用包括导致铀元素集中形成铀矿的各种地质作用,其中,铀含量高且容易析出铀的源岩是铀成矿的物质基础,后期的氧化—还原、矿化蚀变是铀矿形成的关键。作者主要利用微观实验分析的方法,通过对钱家店砂岩型铀矿床赋矿岩石岩石学特征的详细分析,提出了矿层岩性主要为中—细粒长石岩屑砂岩、细粒长石岩屑砂岩和含泥砾砂岩和砂砾岩等,并且石英和长石总量与岩屑含量相近,岩屑主要以流纹岩、流纹质凝灰岩为主,次为粗面岩、正长细晶岩、花岗岩、花岗斑岩、安山岩、硅质岩和泥岩等。后生蚀变碳酸盐化、高岭石化较为普遍,局部强烈,其次黄铁矿化、氧化铁化,偶见重晶石化。常见深部油气渗入在赋矿层中出现油渍、油斑、溢散晕圈,共生黄铁矿莓球群及微细粒黄铁矿聚晶。铀的存在形式为铀矿物(沥青油矿、铀石)和吸附状态。分析了多成因—多阶段成矿模式,即沉积预富集阶段—层间渗入成矿阶段—油气改造富集成矿阶段—油气还原护矿阶段。  相似文献   

20.
特征矿物是地质作用的直接记录,研究铀矿物伴生组合类型和特征为探讨铀矿床成因提供直接信息。本文以鄂尔多斯盆地东北部杭锦旗?纳岭沟地区含铀岩系中侏罗统直罗组为研究对象,通过岩心观察、显微观察、扫描电镜和电子探针分析等,系统研究了含铀砂岩中铀矿物种类、赋存特征及典型矿物伴生组合类型,在此基础上,结合铀成矿过程中流体作用探讨了铀成矿机理。取得的主要成果和认识如下:(1)研究区含矿目的层最主要的矿物类型为铀石,与铀矿物相关的矿物组合包括:莓球状黄铁矿?铀石、黑云母?它形黄铁矿?铀石、胶状黄铁矿?铀石、钛铁矿?锐钛矿?铀石、高岭石?铀石、蒙脱石/伊蒙混层?铀石、方解石?铀石、有机质?铀石和石英?铀石9种;(2)研究区成矿环境经历了成岩期的中性?弱碱性氧化环境→弱酸性氧化环境→成矿早期的弱酸性还原环境→成矿中?晚期的弱碱性还原环境→成矿期后的碱性还原环境的转变;(3)铀矿物的富集可以分为5个阶段:①早期预富集的碎屑铀;②石英颗粒边缘富集的沥青铀矿;③莓球状、它形、胶状黄铁矿、高岭石、钛铁矿边缘沉淀富集,与酸性还原流体有关的铀石;④与石英、方解石、蒙脱石/伊蒙混层等伴生,与碱性还原流体有关的铀石;⑤与莓球状黄铁矿、胶状黄铁矿、方解石伴生的受中低温热液改造的铀石。综上所述,研究区主成矿作用受酸性和碱性还原流体共同控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号