首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lake Simcoe is a large lake 45 km across and in places over 30 m deep, located between Lake Huron and Lake Ontario, in the glaciated terrain of southern Ontario, Canada. Seismostratigraphic analysis of high-resolution seismic reflection profiles, together with lakebed sediment sampling and pollen study, revealed distinctive sequences in the sediments beneath Lake Simcoe, Ontario. A surface unit (Blue Sequence) of soft Holocene mud (low-amplitude surface reflection, discontinuous parallel internal reflections) lies in the deeper basins of the lake. The underlying unit (Green Sequence) is characterized by high-amplitude parallel internal reflections; basal sediments of this sequence consist of clay rhythmites with dropstones. The Green Sequence was deposited by lacustrine sedimentation in proglacial Lake Algonquin; sedimentation persisted until the basin was isolated from other glacial lakes at about 10 14C ka at the Penetang post-Algonquin phase. Subsequent erosion of the uppermost portion of the Green Sequence is attributed to wave action in a low-level early Holocene lake, possibly closed hydrologically and coeval with closed lowstands in the Huron and Georgian Bay basins. Two sequences with high-amplitude surface reflections and chaotic internal reflections (Purple and Red Sequences) lie below the Green Sequence. Northeast-southwest trending ridges, tens of metres in height, on the Red Sequence (the lowermost of these two units) are interpreted to be drumlins. An erosion surface descends into narrow valleys 50–80 m deep beneath the lake in bays to the west and south of the main lake basin. These depressions are interpreted as subglacial tunnel channels cut by rapid flows of meltwater. The sediments of Purple Sequence are interpreted as channel-fill sediments rapidly deposited during waning stages of the meltwater drainage. The Red Sequence is correlated with the Newmarket Till of the last glacial maximum identified beneath the Oak Ridges Moraine to the south.  相似文献   

2.
Microfossils have been critical in unravelling the complex postglacial history of Georgian Bay. Thecamoebians (testate amoebae/rhizopods) record paleolimnological conditions, and pollen stratigraphy allows correlation across the basin, where sedimentation has been spatially and temporally discontinuous. Because parts of Georgian Bay have been non-depositional or erosional since the end of the Nipissing transgression (~5,000 (5,800 cal) BP), early Holocene features are exposed on the lakebed. Among these are shoreline features, such as submerged beaches and relict channels, associated with low-level Lake Hough that was driven far below the level of basin overflow. Cores taken throughout Georgian Bay record the existence of closed basin conditions that persisted several centuries around 7,500 (8,300 cal) BP, corresponding to the late Lake Hough lowstand. Evidence for hydrologic closure includes a low-diversity centropyxid-dominated thecamoebian fauna around the boundary between pollen subzones 2a and 2b in the Flowerpot Beach core, Flowerpot and Killarney basins, and in Severn Sound. This low-diversity centropyxid-dominated fauna is interpreted as recording the development of slightly brackish conditions as a result of a hydrologic deficit associated with relatively arid conditions in the Great Lakes basin during the early Holocene pine zone (~8,800–7,200 (9,900–8,050 cal) BP). The rest of the Holocene record in Georgian Bay (where it is preserved) is more diverse and dominated by difflugiid thecamoebians: predominantly Difflugia oblonga prior to human settlement, and Cucurbitella tricuspis since high-density human occupation and agriculture (and resulting eutrophication) began with the Wendat First Nations people around Severn Sound about 750 years ago. The implication that water budget fluctuations leading to discernible variations in lake level and water chemistry occurred in the relatively recent geologic past is significant to studies of global climate change and resource management in the Great Lakes, one of the world’s largest freshwater resources.  相似文献   

3.
Multiple proxies record aridity in the northern Great Lakes basin ~8,800–8,000 cal (8,000–7,200) BP when water levels fell below outlets in the Michigan, Huron and Georgian Bay basins. Pollen-climate transfer function calculations on radiocarbon-dated pollen profiles from small lakes from Minnesota to eastern Ontario show that a drier climate was sufficient to lower the Great Lakes, in particular Georgian Bay, to closed basins. The best modern climate analog for the early Holocene late Lake Hough stage in the Georgian Bay basin is Black Bass Lake near Brainerd MN. Modern annual precipitation at Brainerd is ~35% lower than at Huntsville ON, in the Georgian Bay catchment; warmer summers and colder, less snowy winters make Brainerd drier than the Georgian Bay snow belt. These values parallel transfer function reconstructions for the early Holocene from pollen records at five small lakes in the Georgian Bay drainage basin. Higher evaporation and evapotranspiration due to greater seasonality during the early Holocene produced a deficit in effective moisture in Georgian Bay that is recorded by the jack/red pine pollen zone that spanned ~8,800–8,200 cal (8,000–7,500) BP. This deficit drove late Lake Hough ~5 m below Lake Stanley in the Huron basin, following diversion of Laurentide Ice sheet meltwater from the Great Lakes basin. The level of Georgian Bay largely depends not on fluvial input from its own drainage basin, but rather from Lake Superior, where the early Holocene moisture deficit was greater. Reconstruction of paleoclimates in Minnesota, northwestern Ontario and Wisconsin produced a closed lake in the Superior basin, which removed the main water input to Georgian Bay. Once the inflow through the St. Marys River was reduced and inflow from other tributary streams was adjusted for isostatic and climatic differences, input was <5% of modern values. Consequent high evaporation rates produced a significant fall in lake level in the Georgian Bay basin and a negative water budget. This reduction in basin supply, together with the high conductivity of stagnant water in late Lake Hough inferred from microfossils in lowstand sediments, peaked at the end of the jack/red pine zone, ~8,300–8,200 (7,450 ± 90) BP. These major hydrologic changes resulting from climate change in the recent geologic past draw attention to possible declines of the Great Lakes under future climates.  相似文献   

4.
Understanding basin-wide sediment dynamics, both spatially and temporally, is an important antecedent to eventual quantitative interpretation of sediment transfer within mountain fluvial systems. This paper describes an attempt to trace sediment transfer modes and pathways using clast lithological analysis in a small mountain basin strongly influenced by glaciation: the Pineta Basin in the central Pyrenees of Spain. The paper interprets slope–channel interaction by encompassing the whole basin, enabling staged sedimentary pathways to be revealed. Additionally, bed-material textures of the modern rivers and youngest La Sarra Terrace were investigated to provide further information on the geomorphic coupling of the system. Relatively few studies have taken this approach. Glacial and later, fluvial systems transferred the sediments creating laterally extensive, polylithological sediment stores. Local depositional systems overprint this inherited signature. To what extent depends on the size and energy of the local system. Significant impacts are made by conduits, such as large-scale fluvially dominated fans and waterfalls, which deliver local lithologies to the main river. Conduits may be part of the main river system or part of the tributary system. Conduits are the most important elements when considering provenance studies and theoretical modelling.  相似文献   

5.
The post-glacial history of the Great Lakes has involved changes in lake levels that are equivalent in vertical extent to the Pleistocene changes in global sea level and changes in sediment accumulation by at least two orders of magnitude. In the sediments of the northern Lake Michigan basin, these radical changes in base level and sediment supply are preserved in detailed records of changing depositional environment and the impact of these changes on depositional architecture. The seismic sequences of the sediment fill previously described in Lake Huron have been carried into northern Lake Michigan and used to map the history and architecture of basinal deposition. As the Laurentide Ice Sheet retreated northward in the early Holocene, it opened progressively deeper channels to the east that allowed the larger lakes to drain through the North Channel, Huron, and Georgian Bay basins. At the end of the Main Algonquin highstand, about 10,200 (radiocarbon) yrs ago, the eastern drainage passage deepened in a series of steps that defined four seismic sequences and lowered lake levels by over 100 m. Near the same time a new source of sediment and meltwaters poured across the Upper Peninsula of Michigan and into the northern Lake Michigan basin from the Superior basin ice lobe. A marked increase in deposition is seen first in the northern part of the study area, and slightly later in the Whitefish Fan area at the southern end of the study area. Accumulation rates in the area gradually decreased even as lake levels continued to fall. Drainage directly from the Superior basin ended before the beginning of the main Mattawa phase about 9,200 (radiocarbon) yrs ago.Although individual lowstand systems tracts are at the most a few hundred yrs in duration, their geometries and seismic character are comparable to marine systems tracts associated with sea level falls of similar magnitudes. In some of the thicker lowstand deposits a second order cyclicity in sedimentation can be detected in the high resolution seismic records.  相似文献   

6.
The Song Gianh is a small‐sized (~3500 km2), monsoon‐dominated river in northern central Vietnam that can be used to understand how topography and climate control continental erosion. We present major element concentrations, together with Sr and Nd isotopic compositions, of siliciclastic bulk sediments to define sediment provenance and chemical weathering intensity. These data indicate preferential sediment generation in the steep, wetter upper reaches of the Song Gianh. In contrast, detrital zircon U‐Pb ages argue for significant flux from the drier, northern Rao Tro tributary. We propose that this mismatch represents disequilibrium in basin erosion patterns driven by changing monsoon strength and the onset of agriculture across the region. Detrital apatite fission track and 10Be data from modern sediment support slowing of regional bedrock exhumation rates through the Cenozoic. If the Song Gianh is representative of coastal Vietnam then the coastal mountains may have produced around 132 000–158 000 km3 of the sediment now preserved in the Song Hong‐Yinggehai Basin (17–21% of the total), the primary depocenter of the Red River. This flux does not negate the need for drainage capture in the Red River to explain the large Cenozoic sediment volumes in that basin but does partly account for the discrepancy between preserved and eroded sediment volumes. OSL ages from terraces cluster in the Early Holocene (7.4–8.5 ka), Pre‐Industrial (550–320 year BP) and in the recent past (ca. 150 year BP). The older terraces reflect high sediment production driven by a strong monsoon, whereas the younger are the product of anthropogenic impact on the landscape caused by farming. Modern river sediment is consistently more weathered than terrace sediment consistent with reworking of old weathered soils by agricultural disruption.  相似文献   

7.
The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow‐water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef‐ and slope‐derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay‐rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand‐rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (<0.1 mm year?1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea‐level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin‐wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long‐term record of past oceanographic conditions in ocean passages.  相似文献   

8.
J.L. Hough in 1962 recognized an erosional unconformity in the upper section of early postglacial lake sediments in northwestern Lake Huron. Low-level Lake Stanley was defined at 70 m below present water surface on the basis of this observation, and was inferred to follow the Main Algonquin highstand and Post-Algonquin lake phases about 10 14C ka, a seminal contribution to the understanding of Great Lakes history. Lake Stanley was thought to have overflowed from the Huron basin through the Georgian Bay basin and the glacio-isostatically depressed North Bay outlet to Ottawa and St. Lawrence rivers. For this overflow to have occurred, Hough assumed that post-Algonquin glacial rebound was delayed until after the Lake Stanley phase. A re-examination of sediment stratigraphy in northwestern Lake Huron using seismic reflection and new core data corroborates the sedimentological evidence of Hough’s Stanley unconformity, but not its inferred chronology or the level of the associated lowstand. Erosion of previously deposited sediment, causing the gap in the sediment sequence down to 70 m present depth, is attributed to wave erosion in the shoreface of the Lake Stanley lowstand. Allowing for non-deposition of muddy sediment in the upper 20 m approximately of water depth as occurs in the present Great Lakes, the inferred water level of the Stanley lowstand is repositioned at 50 m below present in northwestern Lake Huron. The age of this lowstand is about 7.9 ± 0.314C ka, determined from the inferred 14C age of the unconformity by radiocarbon-dated geomagnetic secular variation in six new cores. This relatively young age shows that the lowstand defined by Hough’s Stanley unconformity is the late Lake Stanley phase of the northern Huron basin, youngest of three lowstands following the Algonquin lake phases. Reconstruction of uplift histories for lake level and outlets shows that late Lake Stanley was about 25–30 m below the North Bay outlet, and about 10 m below the sill of the Huron basin. The late Stanley lowstand was hydrologically closed, consistent with independent evidence for dry regional climate at this time. A similar analysis of the Chippewa unconformity shows that the Lake Michigan basin also hosted a hydrologically closed lowstand, late Lake Chippewa. This phase of closed lowstands is new to the geological history of the Great Lakes. This is the ninth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M Lewis were guest editors of this special issue.  相似文献   

9.
The deepest part of the Canary Basin, the Madeira Abyssal Plain, receives allochthonous sediments derived from a large drainage basin which, if its subaerial continuation is included, covers an area of 3.36 times 106 km2. An international research effort over the last 10 years has recovered over 160 sediment cores from the plain, and the development of a high-resolution stratigraphy has enabled individual turbidites to be correlated layer by layer. Sedimentation on the Madeira Abyssal Plain during the late Quaternary is dominated by thick turbidite muds separated by thin pelagic intervals. The core density has allowed the mapping of each sedimentary unit throughout the abyssal plain, thus building up a layer by layer picture of sediment accumulation. Over the last 300 kyr, 600 km3 of turbidites compared to 60 km3 of pelagic sediments have been deposited on the plain. Sedimentary structures developed in the coarse basal facies of the larger turbidites are more complex than simple models predict due to surging flows, fluctuating flow velocities and reflection from adjacent high ground. Over the last 300 kyr, there has been a switching of entry points for turbidity currents entering the abyssal plain. From 300 ka to 200 ka, organic-rich turbidites were emplaced predominantly from the south but around 200 ka this source switched off and subsequent organic- and volcanic-rich turbidites, which included units deposited by giant, possibly hyperconcentrated flows, were emplaced from northern or eastern sources. Although restricted to the late Quaternary, the data presented provides a detailed case study of the evolution of an oceanic basin fill.  相似文献   

10.
Glaciomarine sedimentation in a modern fjord environment, Spitsbergen   总被引:6,自引:0,他引:6  
By means of high resolution acoustic profiling and correlation of echo character and sediment lithology, fjords in western and northern Spitsbergen are shown to be blanketed by a 5-20 m layer of acoustically transparent sediments consisting mainly of soft homogeneous mud with ice rafted clasts. Acoustically semi-transparent material is found on slopes and sills reflecting their coarser composition. The areal average depositional rate in the outer fjord is in the range of from 0.1 to 1.0 mm/year, increasing towards the glaciers. In Kongsfjorden, 50-100 mm/year of muddy sediments is deposited at a distance of 10 km from the calving Kongsvegen glacier. Close to the ice front (<0.5 km) coarser grained, interbedded (sand/mud) sediments are deposited. The main sediment sources are from settlement out of the turbid surface sediment plume, combined with various types of gravity flow (sediment creep, minor slides, and slumping). Material deposited from turbidity current is probably of minor importance. On shallow sills the sediments are remobilized by icebergs. The sediment adjacent to the ice front is reworked and compacted during surges, a common form of glacial advance for Spitsbergen glaciers. During the surge considerable amounts of coarse-grained sediment are deposited by meltwater in front of the ice margin.  相似文献   

11.
We examine sediment dynamics in an upland, temperate lake system, Lake Bassenthwaite (NW England), in the context of changing climate and land use, using magnetic and physical core properties. Dating and analysis of the sedimentary records of nine recovered cores identify spatially variable sedimentation rates across the deep lake basin. Mineral magnetic techniques, supported by independent geochemical analyses, identify significant variations both in sediment source and flux over the last ∼2100 years. Between ∼100 years BC and ∼1700 AD, sediment fluxes to the lake were low and dominated by material sourced from within the River Derwent sub-catchment (providing 80% of the hydraulic load at the present day). Post-1700 AD, the lake sediments became dominantly sourced from Newlands Beck (presently providing ∼10% of the lake’s hydraulic load). Three successive, major pulses of erosion and increased sediment flux appear linked to specific activities within the catchment, specifically: mining activities and associated deforestation in the mid-late nineteenth century; agricultural intensification in the mid-twentieth century and, within the last decade, the additional possible impact of climate change. These results are important for all upland areas as modifications in climate become progressively superimposed upon the effects of previous and/or ongoing anthropogenic catchment disturbance.  相似文献   

12.
本文从河口塑造与输沙关系、流域泄沙与输移模式,以及口外来沙与潮流输移特征等三方面,探讨河口区的泥沙运移规律和补给来源。并在此基础上,提出粗细不同粒级的造床泥沙按不同方式治理的设想。  相似文献   

13.
湖床渗透系数是地下水与湖水关系研究中的重要参数之一,是评价湖水与地下水定量转化关系的基础。以鄂尔多斯盆地大克泊湖为例,首先分析了湖床沉积物的颗粒组成,然后利用现场渗透试验技术进行了野外试验,计算了湖床的垂向渗透系数。计算结果表明,各测点的平均垂向渗透系数介于2.02×10-1~1.103 cm/d,最大值是最小值的4倍,表明大克泊湖床的垂向渗透性能在空间具有非均质性。湖床沉积物垂向渗透系数的数量级表明,湖水很难和地下水直接发生交换,地下水主要以溢流的形式补给湖水。因此,在枯水季节,地下水无法补给湖水,导致大克泊湖的面积在蒸发作用下萎缩迅速。颗粒分析结果表明,湖床沉积物以粘土为主,根据湖区的地层岩性分析,其主要来自环河组中泥岩的风化。  相似文献   

14.
A 5.52 m long sediment sequence was recovered from Lake Terrasovoje, Amery Oasis, East Antarctica, in order to reconstruct the regional environmental history. The basal sediments, which are dominated by glacial and glaciofluvial clastic sediments, attest to a Late Pleistocene deglaciation of the lake basin. These sediments are overlain by 2.70 m of laminated algal and microbial mats and a few interspersed moss layers. Radiocarbon dating, conducted on bulk organic carbon of 12 samples throughout the organic sequence, provides a reliable chronology since the onset of biogenic accumulation at c. 12,400 cal. year BP. Successful diatom colonization, however, was probably hampered by extensive ice and snow cover on the lake and restricted input of nutrients until 10,200 cal. year BP. A subsequent increase of nutrient supply culminated between 8600 and 8200 cal. year BP and is related to warm summer temperatures and reduced albedo in the catchment. Warm conditions lasted until 6700 cal. year BP, supporting the establishment of a diatom community. Colder temperatures from 6700 cal. year BP culminated in several periods between 6200 and 3700 cal. year BP, when high amounts of sulphur and low abundances of diatoms were deposited due to a perennial ice and snow cover on the lake. During the late Holocene, relatively warm conditions between 3200 and 2300 cal. year BP and between 1500 to 1000 cal. year BP, respectively, indicated by high accumulation of organic matter and reducing bottom water conditions, were interrupted and followed by colder periods.  相似文献   

15.
High resolution sediment physical properties, measured on gravity and piston cores collected during cruises to Lake Winnipeg, include bulk density, acoustic velocity, magnetic susceptibility, shear strength and colour reflectance. The high resolution data are used here to construct complete stratigraphic (composite) sections of Lake Winnipeg sediments from a series of individual, discontinuous cores for the North and South Basins. These composite sections are used to evaluate basin-wide glacial and post-glacial depositional histories and to compare the northern and southern basin histories. In addition, these sections provide a baseline depth reference for interpretation of the biostratigraphy, paleomagnetic record and rock magnetic stratigraphy. Some of the data (density and shear strength) are also be used to estimate sediment stress history for the two major lithostratigraphic units and their variations across the basin.  相似文献   

16.
This study determines the spatial and temporal variability of in-channel storage within a small semiarid drainage basin in equatorial East Africa, and establishes a tentative sediment budget for coarse (>200 μm) in-channel sediments. Detailed measurements of in-channel sediment storage (mass) within third and fourth-order ephemeral channels were obtained using channel-pit excavations and probing with metal rods. Eighty-seven monumented cross-sections were established in February 1986 and resurveyed in December 1986, following the last runoff event of the year. These provided data on change in sediment storage on a 30-m channel reach basis. In addition, measurements of bankfull channel width, mean depth, cross-sectional area, wetted perimeter, hydraulic radius, channel slope and distance from the basin outlet were measured at each cross section. Total in-channel sediment storage was approximately 8640 t with 83% of this total stored within the Main (fourth-order) Channel. Stepwise multiple regression of In-transformed data indicated that bankfull channel width and distance from the outlet (which is strongly related with slope) were significantly related to in-channel storage. The variation in the ratio of stream power:critical power along the Main Channel may explain the distribution of in-channel sediments. Net aggradation of 50 to 60 t during 1986 was minor in relation to the total in-channel storage reservoir, but indicates that a static equilibrium condition cannot be assumed. Bedload output during 1986 was approximately 125 t, and the computed input of coarse sediments to the major channels within the basin was approximately 185 t. The sediment delivery ratio for the coarse material was approximately 68%, which indicates a relatively efficient transport system. [Key words: geomorphology, sediment budget, in-channel sediment storage, semiarid, drainage basin.]  相似文献   

17.
《Basin Research》2018,30(4):613-635
Transient sediment storage and mixing of deposits of various ages during transport across alluvial piedmonts alter the clastic sedimentary record. We quantify buffering and mixing during cycles of aggradation–incision in the north piedmont of the Eastern Tian Shan. We complement existing chronologic data with 20 new luminescence ages and one cosmogenic radionuclide age of terrace abandonment and alluvial aggradation. Over the last 0.5 Myr, the piedmont deeply incised and aggraded many times per 100 kyr. Aggradation is driven by an increased flux of glacial sediment accumulated in the high range and flushed onto the piedmont by greater water discharge at stadial–interstadial transitions. After this sediment is evacuated from the high range, the reduced input sediment flux results in fluvial incision of the piedmont as fast as 9 cm year−1 and to depths up to 330 m. The timing of incision onset is different in each river and does not directly reflect climate forcing but the necessary time for the evacuation of glacial sediment from the high range. A significant fraction of sediments evacuated from the high range is temporarily stored on the piedmont before a later incision phase delivers it to the basin. Coarse sediments arrive in the basin with a lag of at least 7–14 kyrs between the first evacuation from the mountain and later basinward transport. The modern output flux of coarse sediments from the piedmont contains a significant amount of recycled material that was deposited on the piedmont as early as the Middle Pleistocene. Variations in temperature and moisture delivered by the Westerlies are the likely cause of repeated aggradation–incision cycles in the north piedmont instead of monsoonal precipitation. The arrival of the gravel front into the proximal basin is delayed relative to the fine‐grained load and both are separated by a hiatus. This work shows, based on field observations and data, how sedimentary systems respond to climatic perturbations, and how sediment recycling and mixing can ensue.  相似文献   

18.
An extensive seismic reflection profile survey conducted concurrently with a sediment coring program in northern Lake Huron, Georgian Bay, and the North Channel revealed a detailed Holocene lake level history. Seven acoustic sequences were identified in the seismic stratigraphy, and these sequences show great variation in both the character and the spatial distribution of sediment deposition through time. The depths to the acoustically-defined sequence boundaries were digitized from the analog seismic records and merged with Loran-C navigation records from the cruise, yielding a three-dimensional record of the location of each sequence boundary. Thicknesses of the sequences were calculated from these depths, and a minimum-curvature spline surface was fit to the thickness data. These surfaces were used to construct isopach maps which show the trends in thickness of sediment accumulation throughout the lake basins for each of the sequences. 14C-AMS dates of materials from the cores fixed the dates of the sediment sequence boundaries, allowing sediment accumulation rates to be calculated. The distribution of sedimentation in the basins as shown on the isopach maps allowed assessment of sediment transport and water flow through the basins over time, which when combined with the work of Lewis & Anderson (1989), provides a detailed record of the transport and drainage of water through these basins as the Wisconsinan ice sheet retreated and isostatic rebound opened and closed outlets. Reversals of flow direction through the Straits of Mackinac and through the channels connecting Lake Huron and Georgian Bay and the North Channel are indicated by changes in sediment thickness distributions.  相似文献   

19.
The sustainable management of erodible pastoral hill country is a major focus of land use research in New Zealand. A multi-disciplinary study, using a high resolution lake sedimentation record, is being conducted to determine the role that cyclonic storms and natural and human-induced vegetation changes play in the erosion history of a landslide-prone hill country watershed.Sediment cores from Lakes Tutira and Waikopiro in northern Hawke's Bay were analysed to construct the magnitude-frequency history of storm-induced erosion since European settlement. Pulses of sediment representing individual storms can be clearly identified and are correlated to a storm history derived from analysis of a 93 year daily rainfall record. Correlation and dating are confirmed by pollen and diatom analysis,137Cs distribution, tephrochronology and reference to a well documented land use history. Annually laminated, organic rich deposits, which occur in the uppermost sediments and represent the annual decomposition of biogenic material associated with eutrophication, are also used to confirm the chronology.A high correlation was found between storm sediment thickness and total storm rainfall (R2=0.8). Although sediment producing storms (>150 mm) occur on a near annual basis, the two largest storms (>600 mm) contributed 54% of the total sediment thickness.The presence of well defined storm sediment pulses has enabled the lake storage component of a sediment budget to be calculated for Cyclone Bola (1988), the most recent and largest rainstorm on record. The integration of this budget with the storm-magnitude-frequency history will be used to develop watershed-based models to predict the impacts of land use changes and the erosion response to climate scenarios.This is the third paper in a series of papers published in this issue on high-resolution paleolimnology. These papers were presented at the Sixth International Palaeolimnological Symposium held 19–21 April, 1993 at the Australian National University, Canberra, Australia. Dr A. F. Lotter and Dr. M. Sturm served as guest editors for these papers.  相似文献   

20.
In 1994, a detailed marine environmental survey was carried out in surface sediments of the northern flank (Antikyra Bay) and the basin floor of the Gulf of Corinth. Metalliferous tailings (red-mud slurry) of a bauxite processing plant are discharged through a pipeline at a water depth of 100 m, in the Antikyra Bay, covering an area of 16 km2. The bauxitic tailings are detached from the main deposit at the outfalls, flow as turbidity currents downslope, and are redeposited on the basin floor of the Gulf of Corinth, where they cover an area of about 277 km2. One hundred sediment samples, that were collected from red-mud deposits and the surrounding natural sediments, were analyzed for Ag, Al, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Si, Ti, V, and Zn concentrations. Statistical analysis of the heavy metals concentrations using factor analysis allowed (i) an examination of the interrelations among metals and (ii) distinguishing possible sample groups on the basis of metal concentrations in order to study the mechanisms of transport of the red mud and the degree of mixing with natural sediments. Factor 1 (Al, Cr, Ti, Fe, Co, Ni, Pb, Ag, Hg, V, Cd, and Cu) and the positive pole of Factor 2 (Cu, Ag, Cd, and Hg) are red-mud factors, reflecting different metal behaviors, which are related to processes that take place during the transport and redeposition of the red mud. The negative poles of Factors 2 and 3 and the positive pole of Factor 4 are related to natural sediment supply processes. Q-mode factor analysis identifies three distinct sediment groups located in different areas, on the base of the degree of mixing of red mud with natural sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号