首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Kuroshio Extension region is characterized by energetic oceanic mesoscale and frontal variability that alters the air–sea fluxes that can influence large-scale climate variability in the North Pacific. We investigate this mesoscale air-sea coupling using a regional eddy-resolving coupled ocean–atmosphere (OA) model that downscales the observed large-scale climate variability from 2001 to 2007. The model simulates many aspects of the observed seasonal cycle of OA coupling strength for both momentum and turbulent heat fluxes. We introduce a new modeling approach to study the scale-dependence of two well-known mechanisms for the surface wind response to mesoscale sea surface temperatures (SSTs), namely, the ‘vertical mixing mechanism’ (VMM) and the ‘pressure adjustment mechanism’ (PAM). We compare the fully coupled model to the same model with an online, 2-D spatial smoother applied to remove the mesoscale SST field felt by the atmosphere. Both VMM and PAM are found to be active during the strong wintertime peak seen in the coupling strength in both the model and observations. For VMM, large-scale SST gradients surprisingly generate coupling between downwind SST gradient and wind stress divergence that is often stronger than the coupling on the mesoscale, indicating their joint importance in OA interaction in this region. In contrast, VMM coupling between crosswind SST gradient and wind stress curl occurs only on the mesoscale, and not over large-scale SST gradients, indicating the essential role of the ocean mesocale. For PAM, the model results indicate that coupling between the Laplacian of sea level pressure and surface wind convergence occurs for both mesoscale and large-scale processes, but inclusion of the mesoscale roughly doubles the coupling strength. Coupling between latent heat flux and SST is found to be significant throughout the entire seasonal cycle in both fully coupled mode and large-scale coupled mode, with peak coupling during winter months. The atmospheric response to the oceanic mesoscale SST is also studied by comparing the fully coupled run to an uncoupled atmospheric model forced with smoothed SST prescribed from the coupled run. Precipitation anomalies are found to be forced by surface wind convergence patterns that are driven by mesoscale SST gradients, indicating the importance of the ocean forcing the atmosphere at this scale.  相似文献   

2.
At least two main oceanic fronts (the subarctic and subtropical fronts) exist in the North Pacific. Especially in the subtropical frontal zone (STFZ), the sea subsurface temperature gradient is significantly larger than that of the surface layer in winter. Subseasonal interaction between the subsurface subtropical front and overlaying atmosphere is revealed by using empirical orthogonal function (EOF) analysis of oceanic temperature gradient. The first EOF mode mainly corresponds to the atmosphere-to-ocean influences. With the enhanced westerly wind, a cold sea surface temperature anomaly (SSTA) appears and then passes down to affect the subsurface ocean. However, the second EOF mode indicates the ocean-to-atmosphere forcing. For the second mode, cold oceanic temperature anomaly generates in the subsurface layer and passes up, which makes the SST gradient increasing. Due to the increasing atmospheric baroclinicity, the enhanced westerly wind leads to more heat fluxes from the ocean to the atmosphere, which results in a colder SSTA and a larger SST gradient in the STFZ. Therefore, a positive ocean-atmosphere feedback begins to maintain in the mid-latitude in winter.  相似文献   

3.
利用2000—2008年AVHRR、QuickSCAT等高分辨率卫星观测资料和CFSR再分析资料,分析了墨西哥湾流区、东海黑潮锋区、巴西-马尔维纳斯合流区和厄加勒斯回流区等全球主要海洋锋区的大气响应特征,发现在上述海洋锋区普遍存在海表矢量风速的最小值分布,并对这一现象的产生原因进行探讨。研究指出:夏季(6—8月)墨西哥湾流区、6月东海黑潮锋区附近有明显的矢量风速最小值分布,而巴西-马尔维纳斯合流区及厄加勒斯回流区海洋锋附近则终年存在矢量风速最小值。产生这一现象的条件是大尺度气压背景场梯度方向与海洋锋附近海表温度梯度方向接近一致,其物理过程为:海洋锋暖(冷)水区一侧上空对应有低(高)气压,由此产生的局地气压梯度与大尺度背景气压梯度方向接近相反,导致锋区附近叠加后的气压梯度最小,海表风速因此也最小。同时,摩擦作用使海表风偏向低压一侧,于是沿锋区走向(跨锋区走向)的风速分量差在暖水区一侧产生气旋性切变涡度(风速辐合),进而造成上升运动和强降水,而该分量差在冷水区一侧则产生相反的大气响应特征。   相似文献   

4.
海表面盛行风背景下大气对黑潮海洋锋的响应特征   总被引:1,自引:0,他引:1  
谢傲  徐海明  徐蜜蜜  马静 《气象科学》2014,34(4):355-364
采用一系列高分辨率的卫星资料,应用高通滤波等方法,研究了春季不同海表面盛行风背景下,东海黑潮海洋锋区附近的海气关系。观测分析表明:在东海,春季3种不同海表面盛行风条件下海表面温度与海表面风速之间都存在明显的正相关关系,表现为海洋对大气的强迫作用。大气对海洋锋的响应在3种不同盛行风条件下也存在明显的差异。在西北盛行风和东南盛行风背景下,即当风向垂直于海洋锋由冷侧(暖侧)吹向暖侧(冷侧)时,海表面风的辐散(辐合)出现在海洋锋上空。同时,海洋锋对海平面气压(SLP)、降水和对流活动的影响较弱,表明大气对海洋锋的响应主要局限在大气边界层内。在东北盛行风背景下,即当风平行于海洋锋时,在海洋锋的暖(冷)水侧上空为海表面风的辐合(辐散),并与SLP的异常低(高)值相对应,主要雨带出现在黑潮暖舌上空。无论从总降水还是层云、对流降水频次的空间分布来看,盛行东北风时,海表面温度对其上雨带的影响最为明显。分析结果还表明,在不同盛行风背景下,海洋锋附近的海气关系由不同的物理机制在起主导作用。当盛行平行于海洋锋的东北风时,主要由SLP调整机制起作用;而盛行垂直于海洋锋的西北风时则主要由垂直混合机制起作用。  相似文献   

5.
Synoptic atmospheric eddies are affected by lower tropospheric air-temperature gradients and by turbulent heat fluxes from the surface. In this study we examine how ocean fronts affect these quantities and hence the storm tracks. We focus on two midlatitude regions where ocean fronts lie close to the storm tracks: the north-west Atlantic and the Southern Ocean. An atmospheric climate model of reasonably high resolution (~50 km) is applied in a climate-length (60 year) simulation in order to obtain stable statistics. Simulations with frontal structure in the sea surface temperature (SST) in one of the regions are compared against simulations with globally smoothed SST. We show that in both regions the ocean fronts have a strong influence on the transient eddy heat and moisture fluxes, not just in the boundary layer, but also in the free troposphere. Local differences in these quantities between the simulations reach 20–40 % of the maximum values in the simulation with smoothed SST. Averaged over the entire region of the storm track over the ocean the corresponding differences are 10–20 %. The effect on the transient eddy meridional wind variance is strong in the boundary layer but relatively weak above that. The potential mechanisms by which the ocean fronts influence the storm tracks are discussed, and our results are compared against previous studies with regional models, Aquaplanet models, and coarse resolution coupled models.  相似文献   

6.
Daily and weekly sea surface temperature data of Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Advanced Microwave Scanning Radiometer-Earth Observing System sensors are used as forcing of the underlying sea surface in the mesoscale numerical model to simulate Typhoon Dujuan that moved across the South China Sea in 2003. The numerical results show that different SSTs near the typhoon center result in differences in the atmospheric wind field, indicating that the model has a fast and obvious response to SSTs. Different SST influences the intensity and track of Dujuan to some degree and has significant impacts on its precipitation and latent heat flux near the eye. The SST influence on Dujuan is mainly fulfilled by changing the latent heat flux between the ocean surface and the atmosphere above.  相似文献   

7.
南海海域海-气耦合模式及其数值模拟试验   总被引:11,自引:1,他引:10  
在NCAR区域气候模式RegGM2和普林斯顿海洋模式POM基础上发展适用于区域海-气相互作用研究的区域海-气耦合模式,模式采用同步耦合、海洋模式将海表温度提供给大气模式,大气模式为海洋模式提供太阳短波辐射、感热能量、潜热通量。海洋与大气模式每15min交换一次通量。耦合过程没有使用通量校正。使用该模式对中国南海区域1995年5-7月大气和海洋进行了模拟试验,将模拟结果与COADS通量强迫的模拟结果  相似文献   

8.
Consideration of the dependence of various components of the sea-surface heat and momentum fluxes on sea surface temperature (SST) leads to an explanation for the observed reduction in the horizontal temperature gradients in the uppermost layer of the ocean (a few to 10 m in depth). Horizontal temperature gradients within the mixed layer can be masked by a near-surface layer of warm water. This camouflage of horizontal temperature gradients has importance for the remote sensing of SST used by the fishing industry, for the estimation of acoustic transmission, and for the forecasting of hurricane development, among many uses of SST data. Diurnal warming conditions in the Straits of Florida are examined by a simulation calculation and by analysis of observations obtained on moorings deployed on the south-east Florida shelf. When there is net heating (i.e., the solar input is stronger than the combined latent, sensible and longwave radiative heat losses) the originally warmer water experiences less heating than the colder water, leading to a weakening of the horizontal SST gradients as seen by surface buoys or satellites. The warmer water also experiences more mixing and therefore less increase in temperature. The strongest effect of the diurnal heating on wind stress occurs when the SST starts out cooler than the air temperature and the atmosphere is stably stratified. Diurnal warming can then rapidly increase the SST above the air temperature because of reduced wind stress and reduced upper-ocean mixing. After that the wind stress increases as convectively driven turbulence contributes to the atmospheric exchange.  相似文献   

9.
We present an atmosphere–ocean regional climate model for the Mediterranean basin, called the PROTHEUS system, composed by the regional climate model RegCM3 as the atmospheric component and by a regional configuration of the MITgcm model as the oceanic component. The model is applied to an area encompassing the Mediterranean Sea and compared to a stand-alone version of its atmospheric component. An assessment of the model performances is done by using available observational datasets. Despite a persistent bias, the PROTHEUS system is able to capture the inter-annual variability of seasonal sea surface temperature (SST) and also the fine scale spatio-temporal evolution of observed SST anomalies, with spatial correlation as high as 0.7 during summer. The close inspection of a 10-day strong wind event during the summer of 2000 proves the capability of the PROTHEUS system to correctly describe the daily evolution of SST under strong air–sea interaction conditions. As a consequence of the model’s skill in reproducing observed SST and wind fields, we expect a reliable estimation of air–sea fluxes. The model skill in reproducing climatological land surface fields is in line with that of state of the art regional climate models.  相似文献   

10.
Subseasonal variability during the South China Sea summer monsoon onset   总被引:7,自引:5,他引:2  
Analysis of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data for the period 1998–2007 reveals large subseasonal fluctuations in sea surface temperature (SST) of the South China Sea during the summer monsoon onset. These subseasonal SST changes are closely related to surface heat flux anomalies induced by surface wind and cloud changes in association with the summer monsoon onset. The SST changes feed back on the atmosphere by modifying the atmospheric instability. The results suggest that the South China Sea summer monsoon onset involves ocean–atmosphere coupling on subseasonal timescales. While the SST response to surface heat flux changes is quick and dramatic, the time lag between the SST anomalies and the atmospheric convection response varies largely from year to year. The spatial–temporal evolution of subseasonal anomalies indicates that the subseasonal variability affecting the South China Sea summer monsoon onset starts over the equatorial western Pacific, propagates northward to the Philippine Sea, and then moves westward to the South China Sea. The propagation of these subseasonal anomalies is related to the ocean–atmosphere interaction, involving the wind-evaporation and cloud-radiation effects on SST as well as SST impacts on lower-level convergence over the equatorial western Pacific and atmospheric instability over the Philippine Sea and the South China Sea.  相似文献   

11.
一种新的El Niño海气耦合指数   总被引:6,自引:1,他引:5  
利用1980~2010 年月平均Hadley中心海表温度、美国全球海洋资料同化系统(GODAS)海洋温度和NCEP/NCAR 大气环流再分析资料,通过对2 个海洋要素(海表温度SST、上层热含量HC)和5 个大气要素(海平面气压SLP、850 hPa 风场、200 hPa 速度势和对外长波辐射OLR)的多变量经验正交函数展开(multivariate EOF,简称MV-EOF)探讨了热带太平洋的主要海气耦合特征。结果表明,MV-EOF 分析的前两个耦合模态分别很好地对应了传统型El Ni?o 和El Ni?o Modoki 的海气耦合特征:传统型El Ni?o 期间,伴随着赤道中东太平洋SST 的异常增温,HC、SLP、200 hPa 速度势等要素总体呈东西反相的“跷跷板”变化,低层850 hPa 赤道中太平洋出现较强西风距平,西北太平洋上空为反气旋性异常环流;El Ni?o Modoki 期间,SST 持续增温和HC 正异常中心均显著西移至中太平洋,低层SLP 和高空200 hPa 速度势均呈现纬向三极型异常分布,低层异常强西风向西移至暖池东部,西北太平洋上空呈现气旋性异常环流。两类El Ni?o 的海气耦合特征存在显著差异,较优的El Ni?o 指数应不仅可以客观描述和区分El Ni?o 现象本身,更要紧密联系两类事件所产生的大气响应。以往定量表征El Ni?o 年际变化的指标大多立足于SST 或SLP,本文选取HC 作为研究指标,定义了一组新的El Ni?o 指数HCEI 和HCEMI。较以往基于SST 的El Ni?o 指数,HCEI 和HCEMI 不仅能更清楚地表征和区分两类El Ni?o(如1993 年的传统型El Ni?o 和2006 年的El Ni?o Modoki),而且能更好地反映和区分两类El Ni?o 与大气间的海气耦合特征,为El Ni?o的监测和短期气候预测工作提供了一个新工具。  相似文献   

12.
Seven key areas of air-sea interaction in the global oceans are determined by comprehensive analysis of the global data of monthly mean sea surface temperature (SST), surface wind, temperature, humidity, sea surface sensible heat and latent heat fluxes. The time-lag correlation between SST and each atmospheric element in each key area are focally analyzed to expose the same and the different features of air-sea interaction in different key areas. The results show that the air-sea thermal interaction is strong in each area, SST, temperature and humidity can be fairly replaced with one another, particularly in the central eastern Pacific and the south India Ocean. The dynamic effect on SST is different in different areas and in the central western Pacific such effect is more important. The correlation between sensible heat, latent heat and SST is more significant in the eastern Pacific, the western Pacific and the two major monsoon areas — the northwestern Pacific and the south India Ocean. By analyzing the sustainable correlation probability of SST and every atmospheric element in each key area, we further know that the anomalies of which element, in which area and in which period are well sustained or easily destroyed. This is beneficial not only to prediction, but also to discussion of the physical mechanism of air-sea interaction.  相似文献   

13.
The evolution of El Ni?o-Southern Oscillation (ENSO) variability can be characterized by various ocean–atmosphere feedbacks, for example, the influence of ENSO related sea surface temperature (SST) variability on the low-level wind and surface heat fluxes in the equatorial tropical Pacific, which in turn affects the evolution of the SST. An analysis of these feedbacks requires physically consistent observational data sets. Availability of various reanalysis data sets produced during the last 15?years provides such an opportunity. A consolidated estimate of ocean surface fluxes based on multiple reanalyses also helps understand biases in ENSO predictions and simulations from climate models. In this paper, the intensity and the spatial structure of ocean–atmosphere feedback terms (precipitation, surface wind stress, and ocean surface heat flux) associated with ENSO are evaluated for six different reanalysis products. The analysis provides an estimate for the feedback terms that could be used for model validation studies. The analysis includes the robustness of the estimate across different reanalyses. Results show that one of the “coupled” reanalysis among the six investigated is closer to the ensemble mean of the results, suggesting that the coupled data assimilation may have the potential to better capture the overall atmosphere–ocean feedback processes associated with ENSO than the uncoupled ones.  相似文献   

14.
全球海气相互作用关键区及区内气候特征分析   总被引:8,自引:5,他引:8  
采用合成分析方法研究了南海夏季风的爆发过程及其前期征兆。研究结果表明,在南海夏季风爆发之前,对流首先在中南半岛出现,随后在临近南海夏季风爆发时,菲律宾附近也出现对流活动,这表明菲律宾附近对流活动的出现也是引起南海夏季风爆发的原因之一。在南海夏季风爆发之前,赤道印度洋上(75~95°E)的赤道西风有一次明显的增强过程,它对南海夏季风的爆发也起了十分重要的作用,因为一方面它通过赤道西风的东扩促使南海南部的赤道西风建立和增强;另一方面,它又通过西风的北抬以及激发孟加拉湾的对流扰动发展和北移东传,诱使我国华南沿海西风的增强和南压,从而对南海夏季风爆发产生影响。进一步的研究还表明,印度洋赤道西风和南海南部赤道西风的增强又分别与南半球马斯克林高压、澳大利亚高压的增强以及索马里、85°E附近和105 °E附近向北越赤道气流的增强有关。  相似文献   

15.
Sea surface temperature (SST) is a result of multiple interactions in air-sea processes. During days with strong insolation and low wind speed, there may be uneven net heating of the water layer near the surface of the ocean, when there are horizontal temperature gradients at the sea surface. Cooling of the water caused by evaporation, sensible, or longwave radiative, heat loss would be greater from warm water compared to that from relatively cold water. As a result, under low wind speed conditions and clear skies, the horizontal SST discontinuities, occurring at fronts, eddies, or in storm wakes, may diminish or even vanish. This phenomenon is illustrated here with some field and modelling results. The dependence on latitude and mean environmental conditions of the difference in warming on the cold and warm side of SST discontinuities is explored. The time dependence is important for the impact on remote sensing of SST, and it is found to be short enough that substantial masking of SST gradients can occur during the first six hours of the diurnal heating cycle, but the effect would continue to grow if calm and solar heating persist for several subsequent days. An integrated effect of this uneven net heating is seen in the seasonal masking of subsurface temperature gradients in the Gulf of Mexico and Florida Straits.  相似文献   

16.
Spatial patterns of mid-latitude large-scale ocean-atmosphere interaction on monthly to seasonal time scales have been observed to exhibit a similar structure in both the North Pacific and North Atlantic basins. These patterns have been interpreted as a generic oceanic response to surface wind anomalies, whereby the anomalous winds give rise to corresponding anomalous regions of surface heat flux and consequent oceanic cooling. This mechanistic concept is investigated in this study using numerical models of a global atmosphere and a mid-latitude ocean basin (nominally the Atlantic). The models were run in both coupled and uncoupled mode. Model output was used to generate multi-year time series of monthly mean fields. Empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses were then used to obtain the principal patterns of variability in heat flux, air temperature, wind speed, and sea surface temperature (SST), and to determine the relationships among these variables. SVD analysis indicates that the turbulent heat flux from the ocean to the atmosphere is primarily controlled by the surface scalar wind speed, and to a lesser extent by air temperature and SST. The principal patterns of air-sea interaction are closely analogous to those found in observational data. In the atmosphere, the pattern consists of a simultaneous strengthening (or weakening) of the mid-latitude westerlies and the easterly trades. In the ocean there is cooling (warming) under the anomalously strong (weak) westerlies and trade winds, with a weaker warming (cooling) in the region separating the westerly and easterly wind regimes. These patterns occur in both coupled and uncoupled models and the primary influence of the coupling is in localizing the interaction patterns. The oceanic patterns can be explained by the principal patterns of surface heat flux and the attendant warming or cooling of the ocean mixed layer.  相似文献   

17.
Chen  Lilan  Fang  Jiabei  Yang  Xiu-Qun 《Climate Dynamics》2020,55(9-10):2557-2577

While recent observational studies have shown the critical role of atmospheric transient eddy (TE) activities in midlatitude unstable air-sea interaction, there is still a lack of a theoretical framework characterizing such an interaction. In this study, an analytical coupled air-sea model with inclusion of the TE dynamical forcing is developed to investigate the role of such a forcing in midlatitude unstable air-sea interaction. In this model, the atmosphere is governed by a barotropic quasi-geostrophic potential vorticity equation forced by surface diabatic heating and TE vorticity forcing. The ocean is governed by a baroclinic Rossby wave equation driven by wind stress. Sea surface temperature (SST) is determined by mixing layer physics. Based on detailed observational analyses, a parameterized linear relationship between TE vorticity forcing and meridional second-order derivative of SST is proposed to close the equations. Analytical solutions of the coupled model show that the midlatitude air-sea interaction with atmospheric TE dynamical forcing can destabilize the oceanic Rossby wave within a wide range of wavelengths. For the most unstable growing mode, characteristic atmospheric streamfunction anomalies are nearly in phase with their oceanic counterparts and both have a northeastward phase shift relative to SST anomalies, as the observed. Although both surface diabatic heating and TE vorticity forcing can lead to unstable air-sea interaction, the latter has a dominant contribution to the unstable growth. Sensitivity analyses further show that the growth rate of the unstable coupled mode is also influenced by the background zonal wind and the air–sea coupling strength. Such an unstable air-sea interaction provides a key positive feedback mechanism for midlatitude coupled climate variabilities.

  相似文献   

18.
采用1948—2014年NCEP/NCAR大气再分析资料以及延伸重建海温资料,基于大气海洋间不同的主导关系对冬季北太平洋大范围海温异常进行分类,探究其相应的海气结构特征。结果表明:1)大气影响海洋的个例多于海洋影响大气的个例,即在冬季北太平洋大气强迫海洋占主要地位,但也存在海洋对大气的反馈作用。2)对于大气影响海洋而言,SST(Sea Surface Temperature)暖异常区上空主要伴随着东北—西南走向的相当正压高低压异常(东北高西南低),对应东南风异常以及显著的深厚暖异常,表现出相当正压暖/脊结构,冷异常情况与此相反。SST异常为净热通量异常与风速异常共同作用引起。3)对于海洋影响大气而言,在SST暖异常区上空西部为南北向高低压异常(北高南低),东部为低压异常,对应偏东风异常。在SST冷异常区上空为偶极型的南北向高低压异常(南高北低),对应偏西风异常;位势高度异常表现出相当正压结构且较大气影响海洋时相对偏弱,大气暖(冷)温度异常比较浅薄且主要局限于对流层低层。4)海洋温度结构异常主要表现为,在大气影响海洋时海温异常由表层下传,海洋影响大气时为上下一致的温度异常。  相似文献   

19.
徐蜜蜜  徐海明  朱素行 《大气科学》2010,34(6):1071-1087
首先, 采用高分辨率的卫星资料研究了春季我国东部海区海洋锋区附近的海温与风场之间的关系, 资料分析表明海温与海表面风速之间存在明显的正相关关系, 特别是在海洋锋强的年份, 这种正相关关系更明显。资料分析还表明春季是黄海、 东海海洋锋最强的季节, 海温与海表面风速的对应关系在春季尤为明显。然后, 采用一个高分辨率和先进物理方案的中尺度模式探讨了海洋影响大气的机制。控制试验再现了海洋锋区附近海温与海表面风速之间的正相关关系。模拟的边界层垂直结构说明海温能够明显改变锋区两侧边界层大气的稳定度和垂直混合的强弱, 证明了垂直混合机制的存在。而另一方面, 对控制试验和平滑海温试验的水平动量方程中各收支项的比较分析发现, 由于海洋锋的存在而产生的气压梯度力对穿越锋区的空气的加速也有相当重要的贡献。综合观测和模拟结果说明春季我国东部海区海洋温度锋区的海洋—大气相互作用过程中海洋对大气的影响非常明显, 在海洋影响大气的机理方面, 海平面气压调整机制和垂直混合机制都在起作用。  相似文献   

20.
本文采用1985~2015年美国气象环境预报中心及能源部(NCEP/DOE)再分析以及美国国家海洋大气管理局(NOAA)海温(SST)等资料,基于大范围SST异常的确定规则,在北太平洋区域选取了8个暖事件,采用跟随SST异常中心的动态合成方法,研究分析了冬季北太平洋生命史为50天左右的大范围SST暖异常在其盛期前后的月...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号