首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Yangtze plate, extending from east to west in southern China, was formed about 800 Ma ago. Since the Sinian, two aulacogens trending east-northeast and connected at the east ends, have been initiated in the Jiangsu-Zhejiang-Anhui region on the east margin of the plate with a sedimentary sequence up to 10,000 m in thickness. At a later stage of sedimentologic evolution, flysch and molasse were produced. The flyseh was accumulated in the Late Ordovician, when the two aulacogens became bays that opened to the east; the elastic materials were derived from the Yangtze oldland on the northern and southern sides of the basins. The molasse was accumulated from the terminal Late Ordovician to the Middle Ordovician; the clastie materials came from an uplifted orogenic belt in the east. This indicates that a major change in the tectonic pattern of the basins has taken place.  相似文献   

2.
Devonian in the North Qilian orogenic belt and Hexi Corridor developed terrestrial molasse of later stage of foreland basin caused by collision between the North China plate and Qaidam microplate. The foreland basin triggered a intense earthquake, and formed seismites and earthquake-related soft-sediment deformation. The soft-sediment deformation structures of Devonian in the eastern North Qilian Mts. consist of seismo-cracks, sandstone dykes, syn-depositional faults, microfolds (micro-corrugated lamination), fluidized veins, load casts, flame structures, pillow structures and brecciation. The seismo-cracks, syn-depositional faults and microfolds are cracks, faults and folds formed directly by oscillation of earthquake. The seismic dykes formed by sediment instilling into seismic cracks. Fluidized veins were made by instilling into the seismo-fissures of the fluidized sands. The load casts, flame structures and pillow structures were formed by sinking and instilling caused from oscillation of earthquake along the face between sandy and muddy beds. The brecciation resulted from the oscillation of earthquake and cracking of sedimentary layers. The seismites and soft-sediment deformations in Devonian triggered the earthquake related to tectonic activities during the orogeny and uplift of North Qilian Mts.  相似文献   

3.
Silurian sandstone in Tarim Basin has good reservoir properties and active oil and gas shows, especially thick widely-distributed bituminous sandstone. Currently, the Silurian was found containing both bitumen and conventional reservoirs, with petroleum originating from terrestrial and marine source rocks. The diversity of their distribution was the result of "three sources, three stages" accumulation and adjustment processes. "Three sources" refers to two sets of marine rocks in Cambrian and Middle-Upper Ordovician, and a set of terrestrial rock formed in Triassic in the Kuqa depression. "Three stages" represents three stages of accumulation, adjustment and reformation occurring in Late Caledonian, Late Hercynian and Late Himalayan, respectively. The study suggests that the Silurian bitumen is remnants of oil generated from Cambrian and Ordovician source rocks and accumulated in the sandstone reservoir during Late Caledonian-Early Hercynian and Late Hercynian stages, and then damaged by the subsequent two stages of tectonic uplift movements in Early Hercynian and Pre-Triassic. The authors presumed that the primary paleo-reservoirs formed during these two stages might be preserved in the Silurian in the southern deep part of the Tabei area. Except for the Yingmaili area where the Triassic terrestrial oil was from the Kuqa Depression during Late Himalayan Stage, all movable oil reservoirs originated from marine sources. They were secondary accumulations from underlying Ordovician after structure reverse during the Yanshan-Himalayan stage. Oil/gas shows mixed-source characteristics, and was mainly from Middle-Upper Ordovician. The complexity and diversity of the Silurian marine primary properties were just defined by these three stages of oil-gas charging and tectonic movements in the Tabei area.  相似文献   

4.
Devonian in the North Qilian orogenic belt and Hexi Corridor developed terrestrial molasse of later stage of foreland basin caused by collision between the North China plate and Qaidam microplate. The foreland basin triggered a intense earthquake, and formed seismites and earthquake-related soft-sediment deformation. The soft-sediment deformation structures of Devonian in the eastern North Qilian Mts. consist of seismo-cracks, sandstone dykes, syn-depositional faults, microfolds (micro-corrugated lamination), fluidized veins, load casts, flame structures, pillow structures and brecciation. The seismo-cracks, syn-depositional faults and microfolds are cracks, faults and folds formed directly by oscillation of earthquake. The seismic dykes formed by sediment instilling into seismic cracks. Fluidized veins were made by instilling into the seismo-fissures of the fluidized sands. The load casts, flame structures and pillow structures were formed by sinking and instilling caused from oscillation of earthquake along the face between sandy and muddy beds. The brecciation resulted from the oscillation of earthquake and cracking of sedimentary layers. The seismites and soft-sediment deformations in Devonian triggered the earthquake related to tectonic activities during the orogeny and uplift of North Qilian Mts.  相似文献   

5.
Affinity between Palaeozoic Blocks of Xinjiang and Their Suturing Ages   总被引:1,自引:0,他引:1  
The Kazakhstanian plate was near the Tarim, Sino-Korean and South China-Southeast Asian plates in the Middle-Late Cambrian and Late Ordovician, and approached the Siberian plate in the other periods of the Early Palaeozoic. The Hi and Toksun-Yamansu terranes had been split from the Tarim plate before the Middle Devonian and then went close to Angaraland in the late Early Permian. The Beishan area on the northeastern margin of the Tarim plate came close to Angaraland first in the early Early Permian. The suturing age between the Tarim and Ka-zakhstanian-Siberian plates is generally the same as that between the Turkey-Central Iran-Gangdise and South China-Southeast Asian plates. The suturing event took place in the early Early Permian, while the corresponding tectogeny occurred between the Early and Late Permian.  相似文献   

6.
Well-preserved and diversified spores, cryptospores, and acritarchs have been recorded from a relatively continuous sequence that encompasses the Silurian–Devonian boundary in Qujing, Yunnan, southwest China. Four spore assemblage zones from Late Silurian to Early Devonian in age are proposed based on the first appearance datum (FAD) of characteristic spore species. In ascending stratigraphic order, they are Ambitisporites dilutus–Apiculiretusispora synorea (DS; Late Ludfordian to Early Pridoli), Synorisporites verrucatus–Apiculiretusispora plicata (VP; Pridoli), Apiculiretusispora minuta–Leiotriletes ornatus (MO; Lochkovian), and Verrucosisporites polygonalis–Dibolisporites wetteldorfensis (PW; Pragian). The acritarch assemblage from the upper part of the Yulongsi Formation, the Xiaxishancun Formation, and the lower–middle parts of the Xitun Formation indicates an age of Late Silurian. Based on palynological evidence, the upper part of the Yulongsi Formation is considered Late Ludfordian to Early Pridoli in age; the Xiaxishancun Formation is believed to be Pridoli in age; the Xitun Formation is considered Late Pridoli to Early Lochkovian in age; the Guijiatun Formation is considered Lochkovian in age; and the Xujiachong Formation is Late Lochkovian to Pragian in age. The Silurian-Devonian boundary is recognized between the VP and the MO spore biozones, and occurs within the middle part of the Xitun Formation.  相似文献   

7.
A synthesis is given in this paper on late Mesozoic deformation pattern in the zones around the Ordos Basin based on lithostratigraphic and structural analyses. A relative chronology of the late Mesozoic tectonic stress evolution was established from the field analyses of fault kinematics and constrained by stratigraphic contact relationships. The results show alternation of tectonic compressional and extensional regimes. The Ordos Basin and its surroundings were in weak N-S to NNE-SSW extension during the Early to Middle Jurassic, which reactivated E-W-trending basement fractures. The tectonic regime changed to a multi-directional compressional one during the Late Jurassic, which resulted in crustal shortening deformation along the marginal zones of the Ordos Basin. Then it changed to an extensional one during the Early Cretaceous, which rifted the western, northwestern and southeastern margins of the Ordos Basin. A NW-SE compression occurred during the Late Cretaceous and caused the termination of sedimentation and uplift of the Ordos Basin. This phased evolution of the late Mesozoic tectonic stress regimes and associated deformation pattern around the Ordos Basin best records the changes in regional geodynamic settings in East Asia, from the Early to Middle Jurassic post-orogenic extension following the Triassic collision between the North and South China Blocks, to the Late Jurassic multi-directional compressions produced by synchronous convergence of the three plates (the Siberian Plate to the north, Paleo-Pacific Plate to the east and Lhasa Block to the west) towards the East Asian continent. Early Cretaceous extension might be the response to collapse and lithospheric thinning of the North China Craton.  相似文献   

8.
INTRODUCTION The Ordos basin belongs to the marginal terraceof North China ancient land,extendingtothe QinlingSea before the Mesozoic . The basin was formed dur-ing the Middle Triassic because of the extrusionfromwest to east onthe western margin of the North Chi-na plate .It was gradually depressedinto a lake basinphase in the Middle and Late Triassic ,to form thedeeper southwestern part and shallower northeasternpart lacustrine-delta clastic sedi ments of over 1 000m,known as the Y…  相似文献   

9.
http://www.sciencedirect.com/science/article/pii/S1674987111001113   总被引:1,自引:0,他引:1  
The Rheic Ocean was one of the most important oceans of the Paleozoic Era.It lay between Laurentia and Gondwana from the Early Ordovician and closed to produce the vast Ouachita-Alleghanian -Variscan orogen during the assembly of Pangea.Rifting began in the Cambrian as a continuation of Neoproterozoic orogenic activity and the ocean opened in the Early Ordovician with the separation of several Neoproterozoic arc terranes from the continental margin of northern Gondwana along the line of a former suture.The rapid rate of ocean opening suggests it was driven by slab pull in the outboard lapetus Ocean.The ocean reached its greatest width with the closure of lapetus and the accretion of the periGondwanan arc terranes to Laurentia in the Silurian.Ocean closure began in the Devonian and continued through the Mississippian as Gondwana sutured to Laurussia to form Pangea.The ocean consequently plays a dominant role in the Appalachian-Ouachita orogeny of North America,in the basement geology of southern Europe,and in the Paleozoic sedimentary,structural and tectonothermal record from Middle America to the Middle East.Its closure brought the Paleozoic Era to an end.  相似文献   

10.
<正>Objective The Xiemisitai area located in the northern part of the West Junggar,Xinjiang is an important component of the central Asian metallogenic domain.Recent studies show that the formation age of acid volcanic and intrusive rocks in the Xiemisitai area mainly ranges from the Late Silurian to the Early Devonian,and the age of the mineralized dacite porphyry is Early Silurian.These rocks are the  相似文献   

11.
北祁连-河西走廊志留系包括下志留统鹿角沟砾岩和肮脏沟组、中志留统泉脑沟山组和上志留统旱峡组,泥盆系包括中、下泥盆统老君山组和上泥盆统沙流水组。鹿角沟砾岩为水下冲积扇沉积,断续分布于北祁连西段。肮脏沟组在北祁连-河西走廊分布广泛,主要为半深海碎屑复理石沉积。泉脑沟山组和旱峡组分布于北祁连和河西走廊西段,前者以浅海相砂泥岩和泥灰岩为主,后者以滨海潮坪-浅海碎屑岩沉积为主。老君山组分布于古祁连山山前和山间盆地,为粗碎屑磨拉石沉积。沙流水组分布于河西走廊东段,为湖相沉积。区域古地理分析表明,北祁连-河西走廊志留纪-泥盆纪的古地理主要受北祁连加里东-早海西期不规则造山作用控制。鹿角沟砾岩标志着弧-陆碰撞最早发生于早志留世早期。早志留世北祁连-河西走廊由弧后残余盆地向前陆盆地转化。中、晚志留世北祁连东段剧烈造山并与阿拉善古陆的连接,前陆盆地限于北祁连-河西走廊西段。志留纪末期为北祁连的主造山期,泥盆纪形成高峻的古祁连山。早、中泥盆世形成山前和山间盆地的粗碎屑磨拉石沉积。晚泥盆世造山带西段造山作用剧烈,形成剥蚀区。东段造山作用微弱,山地被剥蚀,山前形成湖泊相的晚泥盆世沉积。  相似文献   

12.
北祁连加里东期造山带是在新元古代Rodinia联合大陆(Pangea-850)基础上裂解,经由寒武纪裂谷盆地、奥陶纪初期成熟洋盆、奥陶纪中晚期北祁连活动大陆边缘、志留纪—早、中泥盆世碰撞造山而形成的。奥陶纪中、晚期,北祁连、走廊地区中、上奥陶统发育洋壳-岛弧-弧后火山岩,形成典型的沟-弧-盆体系的沉积。志留纪—早、中泥盆世是北祁连-走廊沉积盆地的转换时期。除天祝、古浪、景泰及肃南等局部地区发育下志留统钙碱性系列火山岩以外,全区志留系均以碎屑岩沉积为主。志留系底部多见一套砾岩层。下—中志留统为典型复理石相的浊流沉积。上志留统变为滨浅海相磨拉石沉积。早、中泥盆世雪山群为典型的陆相粗碎屑磨拉石沉积。从空间分布上看,志留系—泥盆系在走廊—北祁连地区也有自北向南厚度加大、粒度变粗的特征,古流以由南向北、来自造山带的古流为特征。北祁连-河西走廊奥陶纪弧后盆地火山岩—志留系复理石-海相磨拉石—中、下泥盆统陆相磨拉石的充填序列以及空间分布特点,反映为典型的弧后盆地向前陆盆地转化的沉积序列。  相似文献   

13.
北祁连造山带晚奥陶世-泥盆纪处于同造山的构造背景.上奥陶统-泥盆系沿造山带不对称分布.上奥陶统-泥盆系碎屑锆石年代学特征显示, 造山带东段武威一带上奥陶统底部沉积物主要来自北祁连岛弧, 南部中祁连地块和北部华北板块的沉积物在上奥陶统上部才出现, 根据同沉积锆石年龄将中祁连地块和华北板块在东段初始碰撞的时间限定在470~450 Ma之间; 中祁连地块和华北板块的物质在造山带西段肃南一带被保存在下志留统, 地层中也有大量来自早古生代北祁连岛弧和同碰撞花岗岩的物质, 暗示造山带西段的碰撞时间在早志留世.而造山带东段下志留统中却仅有来自中祁连地块和华北板块的物质, 缺乏代表北祁连岛弧的早古生代碎屑锆石年龄, 对比上奥陶统-下志留统岩相分布和碎屑锆石年代学特征, 北祁连造山带的碰撞具有"东早西晚"的"斜向碰撞、不规则边缘碰撞"的特征, 而这种碰撞方式导致中祁连地块在造山带东段仰冲到北祁连岛弧之上, 阻止北祁连岛弧为盆地提供沉积物; 泥盆纪早期, 北祁连岛弧年龄在东段下、中泥盆统中重新出现, 结合志留系和泥盆系在造山带东、西两段的分布和变形特征推断, 泥盆纪早期北祁连造山带具有"东强西弱"的不均一隆升特征, 这种差异隆升特征是由"东早西晚"的"斜向碰撞、不规则边缘碰撞"引起的, 它导致了北祁连岛弧在造山带东段被重新剥露出地表, 同时来自早期中、上志留统以及同碰撞花岗岩的物质也被汇入盆地.河西走廊盆地性质经历了弧后盆地-弧后残留洋盆-前陆盆地的转换过程.   相似文献   

14.
秦岭加里东晚期-华力西早期复式前陆盆地   总被引:10,自引:0,他引:10  
南秦岭西段的志留纪-早泥盆世及中秦岭北缘的志留纪-早石炭世的沉积特征表明,两区均存在有早期理里石相和晚期磨拉石相,构成完整的前陆盆地充填序列,并由冲断造山 -前渊-前隆3部分构成完整的前陆盆地体系,南秦岭前陆盆地是扬子北缘裂陷盆地闭合的产物,形成于430Ma,结束于390Ma,历时40Ma,属板内前陆盆地,中秦岭前陆盆地位于扬子北缘的边缘,是秦岭洋闭合后的产物,形成于440Ma,结束于323Ma,历时107Ma,属周缘前陆盆地,北秦岭二郎坪弧后陆盆地的上限是320Ma,是在另里东晚期-华力西早期于陆-弧-陆碰撞的背景下形成3种类型的前陆盆地,它们组成了秦岭复式前陆盆地,总历程达120Ma。  相似文献   

15.
华北地台北缘内蒙古中部地区晚古生代前发生过造山后伸展作用,在晚泥盆世-早石炭世,本区经厅了短暂的造山作用,形成前陆盆地并推积了滨浅 海相磨拉石建造,同时伴有同碰撞期花岗岩产生。中石炭世一早二叠世,本区进入造山后的陆内伸展作用阶段,并发育大量火山岩。火山岩碱质含量高,碱质成分中Na2O>K2O,且显示双峰分布特征;碎屑岩成分熟度和结构熟度降低,表明中石炭世一早=叠世本区进人陆内伸展构造发育阶段。  相似文献   

16.
巴颜喀拉残留洋盆的沉积特征   总被引:6,自引:4,他引:6  
巴颜喀拉盆地垂向沉积序列表明:盆地于早古生代被动陆缘的浅海基础上裂陷、拉开,泥盆纪贯通,早石炭世洋盆扩展为成熟大洋,晚石炭世洋盆北部开始消减、南部继续扩张,晚二叠世-中三叠世进入残留洋阶段,晚三叠世转化为周缘前陆盆地.三叠纪末完全闭合,盆地自形成到消亡为一个连续的沉积和地质构造演化过程。其主体由早中三叠世深海沉积、典型浊积岩复理石和晚三叠世浅海复理石、风暴岩沉积、海相磨拉石构成,北部零星出露了中二叠世海山型沉积,昆南结合带以北有早中三叠世岛弧沉积。以盆地为中心具有向南北两侧陆块双向相背俯冲的极性特点,东西两端的碰撞造山不迟于晚二叠世。总体反映了古特提斯晚二叠世-中三叠世的残留洋盆性质和主洋域之所在。  相似文献   

17.
序言前陆盆地是由板块碰撞引起侧向挤压,进而形成冲断推覆体(thrust mass)加载于大陆边缘,使大陆地壳周缘前陆隆起(peripheral forebulge)形成的一种不对称盆地,它的一侧与发育周缘前陆隆起的克拉通大陆为邻,另一侧靠近冲断推覆体。靠近冲断推覆体侧的一端主要发育陆源碎屑沉积,而靠近克拉通大陆的一边则发育成为碳酸盐台地。由于碰撞后大陆岩石圈的持续俯冲,造成冲断推覆体跨过先前被动大陆边缘,进而向克拉通陆内迁移发展,致使碳酸盐台地最终全被陆源碎屑掩埋。最初,冲断推覆体位于海平面之下,随着冲断推覆体叠加而成山链,加载于大陆边缘薄的外部地壳之上,沿缝合线形成一个深而狭长的边缘海槽地,接受陆源泥和深海沉积物沉  相似文献   

18.
曹守连  陈发景 《地球科学》1994,19(4):482-492
循天山地区板块构造作用这主线,系统地讨论塔里木板块北缘前陆盆地和类前陆盆的构造演化,将前陆盆地和类前陆盆和类前陆盆地划分为两个阶段,指出前陆盆地演化具从不稳定向稳定发展的特征。早期前陆盆地以深水复理石建造为主,夹火山岩建造,晚期前陆盆地以磨拉石建造为主。前陆盆地和前陆隆起具横向和纵向上的迁移性,这种特性影响了类前陆盆地的演化和油气分布。  相似文献   

19.
苏、浙、皖地区沉积-大地构造演化   总被引:1,自引:0,他引:1       下载免费PDF全文
中国南部近东西延伸的扬子板块形成于距今800Ma 前。自震旦纪开始,在其东缘苏、浙、皖地区形成了两个呈北东东向展布的并在其东端相联的裂陷槽。其沉积厚度达万米。沉积演化晚期形成了复理石与磨拉石。复理石堆积于晚奥陶世,此时裂陷槽为两个向东开口的海湾,碎屑物来自盆地南北两侧的扬子古陆。磨拉石堆积的时代从晚奥陶世末到中泥盆世,碎屑物  相似文献   

20.
四川地区早志留世岩相古地理   总被引:21,自引:0,他引:21       下载免费PDF全文
四川地区早志留世沉积岩系形成于晚奥陶世-早志留世的前陆盆地演化阶段。早志留世龙马溪期主要为局限的深水陆棚环境。小河坝期表现为浅水陆棚的扩展和深水陆棚的萎缩,沉积分异作用加剧,呈现出碳酸盐台地、浅水陆棚、深水陆棚共存的古地理格局。韩家店期主要为潮坪-浅水陆棚沉积。早志留世四川地区表现为沉积盆地充填变浅和海退式的演化趋势,具多物源的混合型陆棚沉积性质,沉积体系展布和沉积演化主要受包括黔中古隆起在内的前陆隆起带的NW方向扩展作用控制。有利储集体的发育主要取决于沉积环境,浅海砂坝和碳酸盐台地边缘相是有利的储集相带,如川东地区的“小河坝砂岩”和川南及川北地区发育的生物礁灰岩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号