首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
To perform geophysical and multidisciplinary real-time measurements on the ocean floor, it has been attempted to reuse decommissioned submarine cables. The VENUS project reuses the TPC-2, which is one of these systems and runs across the entire Philippine Sea Plate between Guam Island and Okinawa Island. The VENUS system comprises an ocean floor observatory, a submarine cable, and a land system. The major components of the ocean floor observatory are geophysical instruments and a telemetry system. There are seven scientific instrument units including broadband seismometers and a hydrophone array. Digital telemetry using the old analog telephone cable obtains high data accuracy and real-time accessibility to data from a laboratory on land. The bottom-telemetry system and a part of sensor units were installed at a depth of 2157 m on the landward slope of the Ryukyu (Nansei-Syoto) Trench on August 29, 1999. The data from the hydrophone array and tsunami gauge have been correctly transmitted to the data center. The rest of the scientific instruments will be deployed by deep-tow equipment and a remotely operated vehicle. Using a decommissioned submarine cable will greatly reduce construction costs compared to using a new cable system  相似文献   

2.
3.
In order to improve the locating capability for offshore earthquakes and tsunamis monitored off northeastern Taiwan, a cable-based ocean bottom seismographic observatory named “Marine Cable Hosted Observatory” (MACHO) was constructed and began operation at the end of 2011. The installed instruments of the observatory include a broadband seismometer, a strong-motion seismometer and a pressure gauge. In addition, various scientific instruments could be deployed for other purposes as well. At present, the seismic data are transmitted in real-time via a fiber cable, and integrated into the current inland seismographic network in Taiwan. The ocean bottom station has contributed to provide high quality seismic data already. According to observations from January 2012 to June 2013, there were a total of 15,168 earthquakes recorded by the system. By using the data from the ocean bottom station, the number of relocated earthquakes with an azimuth gap less than 180 degrees substantially increase about 34 %. Meanwhile, the root–mean–square of the time residual, the error in epicenter, and the error in depth of the earthquake locations decrease. Therefore, the implementation of MACHO has the advantage of extending the coverage of existing the Taiwan seismic network to the offshore, providing more accurate and real-time seismic data for offshore earthquakes monitoring. The results show that MACHO is crucial and necessary for monitoring seismic activities in northeastern Taiwan.  相似文献   

4.
Although submarine cable in-line seafloor observation systems are very effective tools for real-time/long-term geo-scientific measurements,, there are technological difficulties for deploying as many sensors as on land. To solve this problem, JAM-STEC developed an expandable and replaceable satellite measurement station called the adaptable observation system (AOS). The AOS is a battery operated mobile observatory connected to the backbone cable system by a 10 km long thin fiber cable to ensure real-time data recovery. The system consists of a branching system, a junction box, a fiber cable, and a battery system for a six-month operation. Installation and construction of the AOS will be conducted by a towed vehicle and an ROV. A thin fiber cable-laying system was developed and tested for practical operation. This observation system provides a chance to extend existing seafloor networks from an in-line area to a wider area  相似文献   

5.
The often poor quality of ocean bottom seismic data, particularly that observed on horizontal seismometers, is shown to be the result of instruments responding to motions in ways not intended. Instruments designed to obtain the particle motion of the ocean bottom are found to also respond to motions of the water. The shear discontinuity across the ocean floor boundary results in torques that cause package rotation, rather than rectilinear motion, in response to horizontal ground or water motion. The problems are exacerbated by bottom currents and soft sediments. The theory and data presented in this paper suggest that the only reliable way of obtaining high fidelity particle motion data from the ocean floor is to bury the sensors below the bottom in a package with density close to that of the sediment. Long period signals couple well to ocean bottom seismometers, but torques generated by bottom currents can cause noise at both long and short periods. The predicted effects are illustrated using parameters appropriate for the operational OBS developed for the U. S. Office of Naval Research. Examples of data from ocean bottom and buried sensors are also presented.  相似文献   

6.
为解决温盐传感器在海洋站应用中存在的电缆缠绕和壳体磨损等问题,保障传感器的长期业务化运行,文章提出改进温盐传感器安装方式的缓冲止旋方法。研究结果表明:在实验室环境下,通过以螺旋电缆代替直线电缆和设计缓冲浮子装置二者结合的温盐传感器安装方式,可有效减少电缆缠绕、避免传感器磕碰磨损和减小海流影响,同时安装简单、便于维护和具有广泛应用性。该方法仍须在海洋站实际应用中进一步验证和完善。  相似文献   

7.
Abstract

The small tsunami of February 23, 1980, which originated near the southern part of the Kuril Islands was recorded by the bottom vibrotron sensor installed on the shelf near Shikotan Island and connected to the island observatory by underwater cable. The marigram of the tsunami is given and compared with marigrams obtained at shore tide gauges. Some spectral features of the records are discussed.  相似文献   

8.
A cabled ocean observatory system that can provide abundant power and broad bandwidth communication for undersea instruments is developed. A 10 kV direct current (kVDC) with up to 10 kW power, along with 1 Gigabit/sec Ethernet communication, can be transmitted from the shore to the seafloor through an umbilical armored cable. A subsea junction box is fixed at a cable terminal, enabling the extension of up to nine connections. The box consists of three main pressure vessels that perform power conversion, power distribution, and real-time communication functions. A method of stacking modules is used to design the power conversion system in order to reduce the 10 kV voltage to levels that can power the attached instruments. A power distribution system and an Ethernet communication system are introduced to control the power supply and transmit data or commands between the terminals and the shore station, respectively. Specific validations of all sections were qualified in a laboratory environment prior to the sea trial. The ocean observatory system was then deployed at the coast of the East China Sea along with three in situ instruments for a 14-day test. The results show that this high voltage-powered observatory system is effective for subsea long-term and real-time observations.  相似文献   

9.
Deep-sea benthic ecosystems are mainly sustained by sinking organic materials that are produced in the euphotic zone. “Benthic-pelagic coupling” is the key to understanding both material cycles and benthic ecology in deep-sea environments, in particular in topographically flat open oceanic settings. However, it remains unclear whether “benthic-pelagic coupling” exists in eutrophic deep-sea environments at the ocean margins where areas of undulating and steep bottom topography are partly closely surrounded by land. Land-locked deep-sea settings may be characterized by different particle behaviors both in the water column and in relation to submarine topography. Mechanisms of particle accumulation may be different from those found in open ocean sedimentary systems. An interdisciplinary programme, “Project Sagami”, was carried out to understand seasonal carbon cycling in a eutrophic deep-sea environment (Sagami Bay) with steep bottom topography along the western margin of the Pacific, off central Japan. We collected data from ocean color photographs obtained using a sea observation satellite, surface water samples, hydrographic casts with turbidity sensor, sediment trap moorings and multiple core samplings at a permanent station in the central part of Sagami Bay between 1997 and 1998. Bottom nepheloid layers were also observed in video images recorded at a real-time, sea-floor observatory off Hatsushima in Sagami Bay. Distinct spring blooms were observed during mid-February through May in 1997. Mass flux deposited in sediment traps did not show a distinct spring bloom signal because of the influence of resuspended materials. However, dense clouds of suspended particles were observed only in the spring in the benthic nepheloid layer. This phenomenon corresponds well to the increased deposition of phytodetritus after the spring bloom. A phytodetrital layer started to form on the sediment surface about two weeks after the start of the spring bloom. Chlorophyll-a was detected in the top 2 cm of the sediment only when a phytodetritus layer was present. Protozoan and metazoan meiobenthos increased in density after phytodetritus deposition. Thus, “benthic-pelagic coupling” was certainly observed even in a marginal ocean environment with undulated bottom topography. Seasonal changes in features of the sediment-water interface were also documented.  相似文献   

10.
The purpose of the experiment was to determine the effects of coupling and bottom currents on ocean bottom seismometers. Twelve operational OBSs, three specially designed three-component systems, and a hydrophone were compared with each other. Unlike seismometers placed on hard rock at land stations, ocean bottom seismometers can be affected by soft sediments (which act as lossy mechanical springs) and by buoyancy. Coupling through soft sediments can modify the response to ground motion much as a low pass filter does, and high buoyancy tends to counteract this effect. These effects are observed in the Lopez data, which consist of signals from mechanical transient tests, cap shots, airgun pulses, and general background noise. The modification of response is pronounced for some instruments and barely noticeable in others. Instruments that stand high in the water relative to their base width tend to be susceptible to rocking motion that shows up as a mechanical cross coupling between horizontal and vertical motion. Correlation of Lopez results with coupling theory suggests that it is possible to design ocean bottom seismometers that will couple well to any sediment. Current levels at the Lopez site (<5 cm s-1) were too small to produce noticeable effect on any of the instruments; however, the same design criteria that will minimize coupling problems will also lessen problems caused by ocean currents.Hawaii Institute of Geophysics Contribution No. 1171.  相似文献   

11.
We describe the design and construction of an ocean bottom seismometer configured as a computer, based on an Intersil IM6100 microprocessor plus appropriate peripheral devices. The sensors consist of triaxial 1 Hz seismometers and a hydrophone, each sensor channel being filtered prior to digitizing so that typical noise spectra are whitened. Digital data are recorded serially on magnetic tape. The instrument is placed on the ocean bottom by allowing it to fall freely from just below the surface. An acoustic system allows precise determination of instrument position, acoustic recall, and transmission of operational information to the surface. Release from an expendable anchor is accomplished by redundant pyrotechnic bolts which can be fired by acoustic command or by precision timers.The operational flexibility provided by the micro-computer, which executes the DEC PDP8/E instruction set, enables optimum use of the 6-hr recording capacity (at 128 samples/second/channel) in the context of the particular experiment being performed.
  相似文献   

12.
We installed a real-time operating regional observation network of Ocean-Bottom-Seismometers, connected to an electro-optical fiber communication cable, at the Sagami trough subduction zone, just south of the Tokyo metropolitan area, central Japan. The network, called ETMC, has six seismic observation sites at approximately 20 km spacing. In addition, there are three tsunami observation sites along the ETMC network to monitor the propagation process of tsunamis around the Sagami trough region.The on-line data from the ETMC has been improving the detection capability of smaller-magnitude earthquakes even at areas close to the margin of the trough. The ETMC data analyzing system, which has a function of real-time digital filtering for each seismic channel, can read the arrival times of P- and S-waves precisely, constraining well the automatic on-line hypocenter locations. The network has been providing useful information regarding the bending and downgoing process of the Philippine sea plate at the Sagami trough subduction zone.The pressure sensors of the installed network have a detection capability of tsunami wave trains with an amplitude of less than 1 cm. For example, the sensors recorded the full time history of tsunami wave trains, with mm order resolution, originating from a tsunami earthquake with 5.7 MW and the tsunami magnitude of 7.5 occurred near Tori Shima (Tori Is.) of the Izu-Bonin Is. arc on September 4, 1996. The maximum amplitude of the tsunami signals on the trough-floor was approximately 1 cm (P-P), in contrast with approximately 20 cm (0-P) at a coastal site on Izu-Oshima, near the trough. Also, the pressure sensors observed tsunamis due to a large tsunami earthquake (7.1 MW) at the northern New Guinea, on July 17, 1998.  相似文献   

13.
A problem in the use of ocean bottom seismometers is the difficulty in leveling the sensors while ensuring good coupling to the seafloor. We have investigated the coupling characteristics of the seismic sensors in the new ONR ocean bottom seismometer. In the deployable sensor package for that instrument, a three-component seismometer set is suspended on a 2-axis passive leveling gimbal and is immersed in a viscous fluid. We report tests, conducted in a seismic vault, comparing the output of a gimbaled seismometer set to that of a set rigidly coupled to the ground. Our results show that the degree to which the gimbaled set is coupled to ground motion is a function of the viscosity of the coupling fluid. The coherence between the two sensor sets is poor (<0.4) at some frequencies within the band of interest (0.15 to 20 Hz) and on some components when the viscosity of the coupling fluid is comparatively low (14 Pa-s or 0.16 kSt kinematic viscosity). In addition, the outputs of some components over portions of this frequency band are attenuated and are phase-shifted relative to the outputs of the set rigidly coupled to the ground. Coherence and phase response similarity improve as the viscosity of the coupling fluid is increased. With a coupling fluid viscosity of 980 Pa-s (10 kSt), coherence and phase agreement between the two sensor sets is good (>0.9) across nearly the entire band of interest on all three components. A simple analytical model of the gimbaled seismometer set as a damped, driven, compound-pendulum provides a basis for understanding the test results.  相似文献   

14.
Deep-sea tsunami measurements play a major role in understanding the physics of tsunami wave generation and propagation, and in the creation of an effective tsunami warning system. The paper provides an overview of the history of tsunami recording in the open ocean from the beginning (about 50 years ago) to the present day. It describes modern tsunami monitoring systems, including the Deep-ocean Assessment and Reporting of Tsunamis (DART), innovative Japanese bottom cable projects, and the NEPTUNE-Canada geophysical bottom observatory. The specific peculiarities of seafloor longwave observations in the deep ocean are discussed and compared with those recorded in coastal regions. Tsunami detection in bottom presure observations is exemplified based on analysis of distant (22000 km) records of the 2004 Sumatra tsunami in the northeastern Pacific.  相似文献   

15.
Seismic monitoring of western Pacific typhoons   总被引:2,自引:0,他引:2  
Typhoons inflict large damage to societies, but are usually difficult to monitor in close proximity in real-time without expensive instruments. Here we study the possibility of using seismic waveforms on the seafloor and on land to monitor the turning of a far away or approaching typhoon. Up to 67% of the typhoons making landfall in Taiwan come from the eastern shore, so that we deployed broadband ocean-bottom seismometers (OBSs) offshore eastern Taiwan in 2006 to study ground motion in close proximity to a typhoon. Typhoons generate ocean waves, which generate pressure signals in the water column before being transmitted to the seafloor as seismic waves and recorded by the OBSs. The ground motions on the seafloor correlate with locally increased (ocean) wave heights and wave periods, suggesting that the ground motions are mostly induced by in situ or nearby pressure fields, as shown by coherence function analyses. When a typhoon turns and changes wave-wave interaction near the source region, a new set of en echelon patterns develops which can be observed by OBSs and land stations. Similar features occur when a typhoon crosses a landmass and re-enters the ocean. The energy level ratio between the single-frequency and double-frequency microseisms also changes abruptly when the typhoon turns. These features can potentially help near real-time early warning with little cost to complement other conventional typhoon early warning methods.  相似文献   

16.
深入研究珠江口地区海陆过渡带壳内低速层的结构和构造特征对于理解板内地震的发震机理、孕震构造及该区域的地壳结构具有重要的地质地球物理意义。利用2015年珠江口区域海陆地震联测L2-ME测线上的19个地震台站(包括陆上台站14台, 海底地震仪5台)记录到的地震数据来探明该区域低速层的结构和构造特征。在常规震相的基础上, 加入了大量的滑行波震相(Ph)进行结构模型计算, Ph震相的增加使得地壳内部10~20km范围内的射线覆盖密度有了显著提高, 从而获得了L2-ME测线下方更为精确的地壳纵波速度结构模型。结果发现, 模型中测线下方13~18km深度范围内稳定连续展布的壳内低速层被清晰成像, 其内部速度稳定在5.7~6.0 km·s-1之间, 与上下层界面速度差分别为0.5km·s-1、0.4km·s-1, 低速特征明显。该低速层厚度由陆侧的3.5km左右降至海侧的1km, 呈现出向海侧逐渐减薄的趋势, 低速层底界面起伏变化较大且具有与莫霍面相似的起伏特征。  相似文献   

17.
As an interoceanic arc, the Kyushu-Palau Ridge(KPR) is an exceptional place to study the subduction process and related magmatism through its interior velocity structure. However, the crustal structure and its nature of the KPR,especially the southern part with limited seismic data, are still in mystery. In order to unveil the crustal structure of the southern part of the KPR, this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detail...  相似文献   

18.
Compared to the northern South China Sea continental margin, the deep structures and tectonic evolution of the Palawan and Sulu Sea and ambient regions are not well understood so far. However, this part of the southern continental margin and adjacent areas embed critical information on the opening of the South China Sea (SCS). In this paper, we carry out geophysical investigations using regional magnetic, gravity and reflection seismic data. Analytical signal amplitudes (ASA) of magnetic anomalies are calculated to depict the boundaries of different tectonic units. Curie-point depths are estimated from magnetic anomalies using a windowed wavenumber-domain algorithm. Application of the Parker–Oldenburg algorithm to Bouguer gravity anomalies yields a 3D Moho topography. The Palawan Continental Block (PCB) is defined by quiet magnetic anomalies, low ASA, moderate depths to the top and bottom of the magnetic layer, and its northern boundary is further constrained by reflection seismic data and Moho interpretation. The PCB is found to be a favorable area for hydrocarbon exploration. However, the continent–ocean transition zone between the PCB and the SCS is characterized by hyper-extended continental crust intruded with magmatic bodies. The NW Sulu Sea is interpreted as a relict oceanic slice and the geometry and position of extinct trench of the Proto South China Sea (PSCS) is further constrained. With additional age constraints from inverted Moho and Curie-point depths, we confirm that the spreading of the SE Sulu Sea started in the Early Oligocene/Late Eocene due to the subduction of the PSCS, and terminated in the Middle Miocene by the obduction of the NW Sulu Sea onto the PCB.  相似文献   

19.
南海西南次海盆被动陆缘洋陆转换带位于陆缘强烈伸展区,蕴含着岩石圈临界伸展破裂和洋盆扩张过程的丰富信息。本文利用多道地震剖面和重力异常数据,对西南次海盆被动陆缘构造单元进行划分,研究陆缘南、北部洋陆转换带结构构造特征,探讨陆缘伸展演化过程。多道地震剖面资料显示,北部洋陆转换带发育有裂陷期断陷和向海倾斜的掀斜断块;南部发育有低角度正断层控制的裂陷期断陷、海底火山以及局部隆起;从陆到洋方向,重力异常值变化明显。根据上述结果南海西南次海盆被动陆缘划分为近端带、洋陆转换带和洋盆三个构造单元,分别对应了其伸展演化过程的三个阶段:前裂谷阶段、陆缘裂陷阶段和海底扩张阶段。  相似文献   

20.
A critical and potentially difficult problem for ocean-bottom observatories is the electrical power sub-system. While huge effort and expense has gone into development of land power grids and ocean communication cable power, the characteristics of ocean-bottom observatories require different strategies. Ocean-bottom observatories terminate on the ocean floor where large variable loads are installed, whereas commercial ocean-bottom cables terminate on land and normally have relatively fixed loads. Design considerations such as whether to use a constant current or constant voltage source, choice of voltage and current levels and cable capacitance and impedance are considered. Ocean-bottom observatory science requirements in the future will demand multiple loads along the cable, cable branches, fault protection and redundancy. The realities of high cable capacitance and the negative dynamic impedance of switching power supplies require that rapid load changes either be anticipated or prevented. Without proper control, rapid changes in load can result in instability and collapse of the power system. The strategy suggested in this paper requires that each load point (or junction box where science experiments will be attached to the system) be "smart" enough to keep load variations within tolerance bounds  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号