首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
青海可可西里地区第四纪冰川与环境演化   总被引:11,自引:2,他引:11  
李世杰  李树德 《冰川冻土》1992,14(4):316-324
  相似文献   

2.
唐古拉山地区第四纪冰川作用与冰川特征   总被引:4,自引:2,他引:2  
自中更新世以来,唐古拉山地区发生过3次更新世冰川作用(即昆仑冰期、倒数第二次冰期和末次错冰期)和2次全新世晚期冰进(即新冰期和小冰期冰进).昆仑冰期(最大冰期)发生在中更新世早期(0.80~0.60MaBP),不仅是本区最早的一次冰期,而且也是冰川规模最大的一次冰期,当时的冰川规模比现代冰川大16~18倍;倒数第二次冰期发生在中更新世晚期(0.30~0.135MaBP),比现代冰川大13~15倍;末次冰期发生在晚更新世晚期,应分为末次冰期早冰阶(75.0~58.0kaBP)和晚冰阶(32.0~15.0kaBP,23.0kaBP时达到极盛),但在唐古拉山地区截止目前还未找到早冰阶的冰川遗迹,因此,只对末次冰期的晚冰阶(LMG)进行了探讨.LMG时,冰川规模比现代冰川大10倍;新冰期发生在全新世高温期后,冰碛物的14C测年为(3540±160)aBP,冰川规模略大于现代冰川;小冰期发生在15~1世纪,冰川规模已接近于现代冰川.由于青藏高原的上升,对高原腹部地区引起的干旱化过程和水分严重不足,使唐古拉山地区的冰川自昆仑冰期以来,冰川规模一次比一次明显的减小.  相似文献   

3.
Late Quaternary glaciation of Tibet and the bordering mountains: a review   总被引:2,自引:0,他引:2  
Abundant glacial geologic evidence present throughout Tibet and the bordering mountains shows that glaciers have oscillated many times throughout the late Quaternary. Yet the timing and extent of glacial advances is still highly debated. Recent studies, however, suggest that glaciation was most extensive prior to the last glacial cycle. Furthermore, these studies show that in many regions of Tibet and the Himalaya glaciation was generally more extensive during the earlier part of the last glacial cycle and was limited in extent during the global Last Glacial Maximum (marine oxygen isotope stage 2). Holocene glacial advances were also limited in extent, with glaciers advancing just a few kilometers from their present ice margins. In the monsoon-influenced regions, glaciation appears to be strongly controlled by changes in insolation that govern the geographical extent of the monsoon and consequently precipitation distribution. Monsoonal precipitation distribution strongly influences glacier mass balances, allowing glaciers in high altitude regions to advance during times of increased precipitation, which are associated with insolation maxima during glacial times. Furthermore, there are strong topographic controls on glaciation, particular in regions where there are rainshadow effects. It is likely that glaciers, influenced by the different climatic systems, behaved differently at different times. However, more detailed geomorphic and geochronological studies are needed to fully explore regional variations. Changes in glacial ice volume in Tibet and the bordering mountains were relatively small after the global LGM as compared to the Northern Hemisphere ice sheets. It is therefore unlikely that meltwater draining from Tibet and the bordering mountains during the Lateglacial and early Holocene would have been sufficient to affect oceanic circulation. However, changes in surface albedo may have influenced the dynamics of monsoonal systems and this may have important implications for global climate change. Drainage development, including lake level changes on the Tibetan plateau and adjacent regions has been strongly controlled by climatic oscillations on centennial, decadal and especially millennial timescales. Since the Little Ice Age, and particularly during this century, glaciers have been progressively retreating. This pattern is likely to continue throughout the 21st century, exacerbated by human-induced global warming.  相似文献   

4.
在对唐古拉山口现代冰川和古冰川考察研究的基础上,结合定位观测资料和TL、^10B-^26Al-^21Ne及^14C测年数据,对区内第四纪冰川遗迹进行了深入讨论,划分出二次冰期(即中更新世晚期的倒数第二次冰期、晚更新世中一晚期的末次冰期)和二次全新世冰进(即新冰期和小冰期)。提出在早更新世时,由于山体未达到当时冰川发育的雪线高度,所以未发育冰川。但在唐古拉山口地区,截止目前还未找到中更新世早期的倒数第三次冰期的冰川遗迹,由于高原隆升的滞后性和冰川发育的延滞效应及“亚洲干极”的耦合,推测仍只发育局部冰川作用。进一步研究表明,古今雪线由高原边缘向腹地升高,唐古拉山地区高出边缘1500m左右,生动表现了“亚洲干极”的作用;广泛分布的湖群说明羌塘地区是一个大江大河尚未伸入的内流地区,意味着青藏高原是个年青的高原。由于青藏高原的隆升,对高原腹地引起的干旱化过程和水分严重不足,使唐古拉山地区的冰川自倒数第二次冰期以来,冰川规模一次比一次明显地减小。  相似文献   

5.
M.Kuhle把青藏高原外缘山地的山麓泥石洪流堆积误认为冰碛,推算出高原上末次冰期雪线普遍比今降低1100-1500m,已低于高原平均高度,以此推断在青藏高原形成了统一大冰盖。本文根据中国学者大量的研究事实和确凿的冰川作用遗迹,重建冰期雪线分布高度,提出了“分散的山地冰川”的观点,并从古气候学和高原构造隆升等方面分析了原因,以此论证了“大冰盖说”的主观性。  相似文献   

6.
贡嘎山第四纪冰川遗迹及冰期划分   总被引:22,自引:1,他引:22  
在对贡嘎山现代冰川和古冰川考察研究的基础上,结合定位观测分析,对该区第四纪冰川遗迹进行了深入讨论,划分出三次冰期,即中更新世早期的倒数第三次冰期,中更新世晚期的倒数第二次冰期和晚更新世的末次冰期,以及全新世的新冰期和小冰期。提出在早更新世时,由于山体未达到当时冰川发育的雪线高度,所以未发育冰川;中更新世早期的冰期冰川为半覆盖式冰川类型,规模不大;中更新世晚期的冰期冰川是本区最大冰川作用时期,形成网状山麓冰川,东坡冰川曾达磨西台地;晚更新世冰期冰川以山谷冰川为主,以后规模逐次缩小。  相似文献   

7.
This is a synthesis of the glacial history of the northern Urals undertaken using published works and the results of geological surveys as well as recent geochronometric and remote sensing data. The conclusions differ from the classical model that considers the Urals as an important source of glacial ice and partly from the modern reconstructions. The principal supporting evidence for the conventional model – Uralian erratics found on the adjacent plains – is ambiguous because Uralian clasts were also delivered by a thick external ice sheet overriding the mountains during the Middle Pleistocene. Alternative evidence presented in this paper indicates that in the late Quaternary the Ural mountains produced only valley glaciers that partly coalesced in the western piedmont to form large piedmont lobes. The last maximum glaciation occurred in the Early Valdaian time at c. 70–90 ka when glacial ice from the Kara shelf invaded the lowlands and some montane valleys but an icecap over the mountains was not formed. The moraines of the alpine glaciation are preserved only beyond the limits of the Kara ice sheet and therefore cannot be younger than MIS 4. More limited glaciation during MIS 2 generated small alpine moraines around the cirques of the western Urals (Mangerud et al. 2008: Quaternary Science Reviews 27, 1047). The largest moraines of Transuralia were probably produced by the outlet glaciers of a Middle Pleistocene ice sheet that formed on the western plains and discharged across the Polar Urals. The resultant scheme of limited mountain glaciation is possibly also applicable as a model for older glacial cycles.  相似文献   

8.
喜马拉雅山脉近期上升的探讨   总被引:7,自引:0,他引:7       下载免费PDF全文
赵希涛 《地质科学》1975,10(3):243-252
喜马拉雅山脉是地球上最高、最长大和最年青的山脉之一。它以宏伟的规模和巨大的海拔高度强烈地影响着我国西藏地区以至亚洲中部自然环境的变化。自1949年中华人民共和国成立以来,在毛主席和党中央的关怀下,曾对珠穆朗玛峰及邻近地区进行过多次考察。在无产阶级文化大革命的1966-1968年,又进行了珠峰地区多学科的科学考察。  相似文献   

9.
西藏阿里阿伊拉日居山脉第四纪冰川作用   总被引:3,自引:1,他引:3       下载免费PDF全文
在西藏阿里阿伊拉日居山脉南北两麓及切割山脉的各沟谷中,分布着4套早更新世以来的冰川沉积物。根据这些冰川沉积物的地层层序和冰川沉积物的电子自旋共振(ESR)年龄测定结果,将阿伊拉日居山脉南北两麓所发生的4次早更新世以来的冰川作用,分别命名为札达冰期(1161-952 ka BP)、阿伊拉日居冰期(762-730 ka BP)、学朗冰期(336-211 ka BP)和弄穷冰期(105-15 ka BP),并与青藏高原及其他地区冰期进行了对比。各次冰期的冰川性质分别为大型山岳冰川、冰帽、山麓冰川和中小型山谷冰川。全新世时期,现代冰川有过冰川推进。近期冰川则发生了明显的后退。  相似文献   

10.
Lewis A. Owen   《Quaternary Science Reviews》2009,28(21-22):2150-2164
The timing and extent of latest Pleistocene and Holocene alpine glacier fluctuations in the Himalaya and Tibet are poorly defined due to the logistical and political inaccessibility of the region, and the general lack of modern studies of the glacial successions. Nevertheless, renewed interest in the region and the aid of newly developing numerical dating techniques have provided new insights into the nature of latest Pleistocene and Holocene glacier oscillations. These studies provide abundant evidence for significant glacial advances throughout the Last Glacial cycle. In most high Himalayan and Tibetan regions glaciers reached their maximum extent early in the Last Glacial cycle. However, true Last Glacial Maximum glacier advances were significantly less extensive. Notable glacier advances occurred during the Lateglacial and the early Holocene, with minor advances in some regions during the mid-Holocene. There is abundant evidence for multiple glacial advances throughout the latter part of the Holocene, although these are generally very poorly defined, and were less extensive than the early Holocene glacier advances. The poor chronological control on latest Pleistocene and Holocene glacial successions makes it difficult to construct correlations across the region, and with other glaciated regions in the world, which in turn makes it hard to assess the relative importance of the different climatic mechanisms that force glaciation in this region. The Lateglacial and Holocene glacial record, however, is particularly well preserved in several regions, notably in Muztag Ata and Kongur, and the Khumbu Himal. These successions have the potential to be examined in detail using newly developing numerical dating methods to derive a high-resolution record of glaciation to help in paleoclimatic reconstruction and understanding the dynamics of climate and glaciation in the Himalaya and Tibet.  相似文献   

11.
综合青藏高原第四纪冰川早期记录的研究进展和典型盆地地层、沉积、古生物、古环境研究的系统成果,扎达盆地香孜组上部冻融层的出现代表了区域的古海拔达到了高原冰缘的高度,即3 500 m以上.这一段地层的时代可能从2.3 Ma前后开始.并与贡巴砾石层下部冰水沉积层的时代基本一致.卓奥友冰期和希夏邦马冰期的时代与扎达盆地沉积结束后,直接覆盖其上的终碛垄和冰碛垄的时代大致相当,展现了这一时期喜马拉雅山脉的山岳冰川进一步发育,也说明喜马拉雅山脉作为青藏高原海拔最高的地区开始冰冻圈的环境很可能在早更新世早中期.川西地区的早更新世的冰川沉积说明东喜马拉雅构造结附近地区这一时期已经抬升至冰冻圈高度,但是,海拨高度与气候环境与喜马拉雅山脉应有不同.具体的时代仍需要深入工作.青藏高原普遍开始冰冻罔记录是在中更新世早期.伴随着全球冰期的到来,这一时期的冰川作用在青藏高原最为发育和广泛.这些暗示着青藏高原在中更新世早期整体性地较快速抬升进入冰冻圈,即海拔3 500 m以上.详细的过程仍有待深入研究.  相似文献   

12.
姜英  陈建军 《地质科学》2009,44(1):159-182
山岳冰川发育是否同步于北半球冰期,西风与季风对山岳冰川发育的控制作用是青藏高原及周边山地的冰川年代学研究的关键.近年来就地宇宙成因核素和光释光测年技术的快速发展为山岳冰川发育规律研究提供了大量的数据支持.本文综合分析了近年来在青藏高原和周边山地获得的冰川年代学数据,发现该地区山岳冰川发育与北半球冰期不同步,冰川发育贯穿于整个MIS 3阶段.在MIS 2阶段冰川活动峰期明显滞后于北半球末次冰期冰盛期.但是,山岳冰川对Heinrich Event 1和Younger Dryas两次快速气候波动事件有显著响应.这可能说明了西风作为纽带可以将北大西洋气候变化与青藏高原联系起来,同时,来自南方的季风对高原冰川的发育也有着重要的控制作用.造山带地区的冰川进退与高原抬升、地貌及气候之间是一个复杂的耦合系统.  相似文献   

13.
念青唐古拉山脉西段第四纪冰川作用   总被引:19,自引:5,他引:19       下载免费PDF全文
在念青唐古拉山脉西段南北两麓及切割山脉的各沟谷中,分布着3套更新世冰川沉积物。在本区最长的现代冰川———西布冰川的前端,也分布着3组全新世冰川沉积物。根据这些冰川沉积物的地层层序和冰川与湖泊沉积物的电子自旋共振(ESR)、U系等时线和光释光(OSL)年龄测定结果,本文将念青唐古拉山脉西段所发生的3次更新世冰川作用,分别命名为宁中冰期、爬然冰期和拉曲冰期,并与青藏高原的邻近地区进行了对比。各次冰期的冰川性质分别为大型山麓冰川、中小型山谷冰川和小型山谷冰川。全新世时期,现代冰川也有新冰期和小冰期的两次冰川前进。近期冰川则发生了明显的后退。本文还根据念青唐古拉山脉两麓冰前期、历次冰期和现代砾石层的砾石岩性及其与山脉各构造层岩性组成的对比,讨论了山脉的剥蚀与隆升问题  相似文献   

14.
青藏高原的快速隆起使其地质、地貌和气候发生了剧烈变化,导致崩塌、滑坡、泥石流、岩屑流和冰湖溃坝等地质灾害频发。利用遥感技术对青藏高原西部地质灾害的分布、形成条件进行了研究,对灾害形成的背景进行了探讨。崩塌、滑坡和泥石流主要发育于喜马拉雅山、冈底斯山、喀喇昆仑山及昆仑山的高山峡谷之中; 冰湖一般分布于雪线附近; 岩屑流发育在雪线之下基岩裸露区的陡坡上; 融冻泥流则位于海拔更低的多年冻土和季节性冻土的过渡地带。高原内部的造山带为灾害提供了地形条件; 冰川和大气降水为灾害提供了水源; 冰川作用和频繁的融冻作用为灾害提供了物源。青藏高原的快速隆升是地质灾害发育的内因,高海拔高寒气候是灾害发育的外因。  相似文献   

15.
This paper presents the first glacial chronology for the Lahul Himalaya, Northern India. The oldest glaciation, the Chandra Glacial Stage, is represented by glacially eroded benches at altitudes greater than 4300 m above sea-level. This glaciation was probably of a broad valley type. The second glaciation, the Batal Glacial Stage, is represented by highly weathered and dissected lateral moraines, which are present along the Chandra valley and some of its tributaries. This was an extensive valley glaciation. The third major glaciation, the Kulti Glacial Stage, is represented by well-preserved moraines in the main tributary valleys of the Chandra valley. This represents a less extensive valley glaciation. Two minor glacial advances, the Sonapani I and II, are represented by small sharp-crested moraines, which are within a few hundred metres or few kilometres of the present-day glaciers. The change in style and extent of glaciation is attributed to an increase in aridity throughout the Quaternary, due either to global climatic change or uplift of the Pir Panjal mountains to the south of Lahul, which restricted the northward penetration of the south Asian summer monsoon. © 1996 John Wiley & Sons, Ltd.  相似文献   

16.
Late Pleistocene and modern ice extents in central Nepal are compared to estimate equilibrium line altitude (ELA) depressions. New techniques are used for determining the former extent of glaciers based on quantitative, objective geomorphic analyses of a 90-m resolution digital elevation model (DEM). For every link of the drainage network, valley form is classified as glacial or fluvial based on cross-valley shape and slope statistics. Down-valley transitions from glacial to fluvial form indicate the former limits of glaciation in each valley. Landsat Multispectral Scanner imagery for the same region is used to map current glacier extents. For both full-glacial and modern cases, ELAs are computed from the glacier limits using the DEM and a toe-to-headwall altitude ratio of 0.5. Computed ELA depressions range from 100–900 m with a modal value of 650 m and a mean of 500 m, values consistent with previously published estimates for the central Himalaya but markedly smaller than estimates for many other regions. We suggest that this reflects reduced precipitation, rather than a small temperature depression, consistent with other evidence for a weaker monsoon under full-glacial conditions.  相似文献   

17.
Research into the Quaternary geology of the NW Himalaya has concentrated on the elucidation of the glacial sequence. However, whilst the main ranges of the Himalaya have been subjected to numerous glaciations and are now an obvious alpine glaciated terrain, much of the landscape in Zanskar and Ladakh is more equivocal and does not appear to have been glaciated during this time. These landscape facets may therefore have a much older origin and relate to preglacial events.In Zanskar, the main ice source in all glaciations was the strongly glaciated and still glacierized north slope of the main Himalaya. This ice then flowed generally northwards in the valleys of the Zanskar river and its tributaries leaving between them a landscape supporting only a few and scattered minor local glaciers. Evidence of early glaciation has been found on isolated valley-side remnants >200 m above the present rivers. Reconstruction of these preglacial valley cross profiles show them to be generally broad and shallow, with gentle slopes. This is in distinct contrast to the present major valley systems which can usually be divided into two parts—a lower unglaciated fluvially eroded section, such as the Lungnak (Tsarap Lingti Chu) Gorge and an upper broad glacial section, such as the Stod (Doda) valley.Down-valley extent of glaciation is defined by the upper ends of unglaciated fluvial gorges. Laterally, the glaciers were confined progressively to their valleys. Inevitably there is only evidence of successively smaller subsequent glaciations, but the tectonic uplift of the southern ranges may have been a factor in this forming an increasing barrier to the snow-bearing monsoon winds.  相似文献   

18.
中国西部MIS12冰期研究   总被引:9,自引:0,他引:9  
祁连山摆浪河上游和天山乌鲁木齐河源是现代冰川和第四纪冰川活动的地方。我们运用ESR技术对第四纪冰碛进行测年研究,摆浪河上游最老的中梁赣冰碛为462.9ka BP;乌鲁木齐河源最老的上槽谷高望峰冰碛为477.1ka BP和459.7ka BP,从而确认了中国西部山地冰川对全球化深海氧同位素12阶段(MIS12)冰期的响应。   相似文献   

19.
Glacial history of southernmost South America   总被引:1,自引:0,他引:1  
In southernmost South America, an incomplete radiometrically dated glacial chronology has been obtained by KAr dating for the interval 3.5-1 MY ago, and a more detailed chronology by C-14 dating for the last 25,000 years, with some older minimal ages. The first major glaciation was about 3.5 MY ago during the middle Pliocene. Little is yet known about glacial fluctuations during the interval 3.5-2.1 MY ago. Between 2.1 and 1 MY ago many glaciations occurred, probably including the greatest of late Cenozoic time which took place after 1.2 MY and, according to inconclusive evidence, before 1 MY ago. The Patagonian Gravel in its type area is mid-Pliocene to early Pleistocene glacial outwash that accumulated from the first to the greatest glaciations. During the late Pleistocene several glaciations occurred, but only the most recent has been radiometrically dated. During the last glaciation the glaciers were most extensive before 56,000 BP. Successively smaller advances that culminated about 19,500 BP and, probably, about 13,000 BP were separated by an interstade when glaciers shrank by more than half. The glaciers receded rapidly after 13,000 BP and were within their present borders by 11,000 BP; they remained so during the European Younger Dryas Stade 11,000-10,000 BP. Neoglacial regional readvances culminated 4600-4200 BP, probably 2700-2000 BP, and during the last three centuries; most glaciers reached their Neoglacial maxima during the first episode. Between readvances, the glaciers shrank within their present borders.  相似文献   

20.
《Quaternary Science Reviews》2005,24(12-13):1391-1411
Temporal and spatial changes in glacier cover throughout the Late Quaternary in Tibet and the bordering mountains are poorly defined because of the inaccessibility and vastness of the region, and the lack of numerical dating. To help reconstruct the timing and extent of glaciation throughout Tibet and the bordering mountains, we use geomorphic mapping and 10Be cosmogenic radionuclide (CRN) surface dating in study areas in southeastern (Gonga Shan), southern (Karola Pass) and central (Western Nyainqentanggulha Shan and Tanggula Shan) Tibet, and we compare these with recently determined numerical chronologies in other parts of the plateau and its borderlands. Each of the study regions receives its precipitation mainly during the south Asian summer monsoon when it falls as snow at high altitudes. Gonga Shan receives the most precipitation (>2000 mm a−1) while, near the margins of monsoon influence, the Karola Pass receives moderate amounts of precipitation (500–600 mm a−1) and, in the interior of the plateau, little precipitation falls on the western Nyainqentanggulha Shan (∼300 mm a−1) and the Tanggula Shan (400–700 mm a−1). The higher precipitation values for the Tanggula Shan are due to strong orographic effects. In each region, at least three sets of moraines and associated landforms are preserved, providing evidence for multiple glaciations. The 10Be CRN surface exposure dating shows that the formation of moraines in Gonga Shan occurred during the early–mid Holocene, Neoglacial and Little Ice Age, on the Karola Pass during the Lateglacial, Early Holocene and Neoglacial, in the Nyainqentanggulha Shan date during the early part of the last glacial cycle, global Last Glacial Maximum and Lateglacial, and on the Tanggula Shan during the penultimate glacial cycle and the early part of the last glacial cycle. The oldest moraine succession in each of these regions varies from the early Holocene (Gonga Shan), Lateglacial (Karola Pass), early Last Glacial (western Nyainqentanggulha Shan), and penultimate glacial cycle (Tanggula Shan). We believe that the regional patterns and timing of glaciation reflect temporal and spatial variability in the south Asian monsoon and, in particular, in regional precipitation gradients. In zones of greater aridity, the extent of glaciation has become increasingly restricted throughout the Late Quaternary leading to the preservation of old (≫100 ka) glacial landforms. In contrast, in regions that are very strongly influenced by the monsoon (≫1600 mm a−1), the preservation potential of pre-Lateglacial moraine successions is generally extremely poor. This is possibly because Lateglacial and Holocene glacial advances may have been more extensive than early glaciations and hence may have destroyed any landform or sedimentary evidence of earlier glaciations. Furthermore, the intense denudation, mainly by fluvial and mass movement processes, which characterize these wetter environments, results in rapid erosion and re-sedimentation of glacial and associated landforms, which also contributes to their poor preservation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号