首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
We examined the applicability of the critical‐source area (CSA) concept to the dairy‐grazed 192‐ha Upper Toenepi catchment and its 8·7‐ha Kiwitahi sub‐catchment, New Zealand. We evaluated if phosphorus (P) transport from land into stream is dominated by saturation‐excess (SE) and infiltration‐excess (IE) runoff during stormflow and by sub‐surface (<1·5 m depth) flows during baseflow. We measured stream flow and shallow groundwater levels, collected monthly stream, tile drain (TDA) and groundwater samples, and flow‐proportional stream samples from the Kiwitahi sub‐catchment, and determined their dissolved reactive phosphorus (DRP) and total phosphorus (TP) concentrations. In the Kiwitahi sub‐catchment, during storm events, IE contributions were significant. Contributions from SE appeared significant in the Upper Toenepi catchment. However, in both catchments, sub‐surface contributions dominated stormflow and baseflow periods. Absence of water table at the surface and the water table gradient towards the stream indicated that P transport during events was not limited to surface runoff. The dynamics of the groundwater table and the occurrence of SE areas were influenced by proximity to the stream and hillslope positions. Baseflow accounted for 42% of the annual flow in the Kiwitahi sub‐catchment, and contributed 37 and 52% to the DRP and TP loads, respectively. The P transport during baseflow appeared equally important as P losses from CSAs during stormflow. The close resemblance in P levels between groundwater and stream samples during baseflow demonstrates the importance of shallow groundwater for stream flow. In the Upper Toenepi catchment, contributions from effluent ponds (EFFs) dominated P loads. Management strategies should focus on controlling P release from EFFs, and on decreasing Olsen P concentrations in soil to minimize leaching of P via sub‐surface flow to streams. Research is needed to quantify the role of sub‐surface flow as well as to expand management strategies to minimize P transfers during stormflow and baseflow conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The aim of this study is to identify, in a small catchment area located within a tropical forest, the pedological compartments in which the export of nutrients and chemical erosion of solutes occur during a stormflow event. The catchment area displays two types of lateral flow: (i) overland flow at the surface of the soil in the litter and root mat and (ii) groundwater flow in a macroporous subsurface horizon. We interpret the variations of stream‐water chemistry during a storm‐flow event using the separation of storm‐flow hydrograph data between overland and groundwater flow, and (Cl?) as a chemical parameter characterizing the residence time of water in the soil. It appears that K+ especially was released into the throughfall, whereas Ca++, Mg++ and Na+ were clearly released from the litter. K+ disappeared rapidly from soil solution, whereas Ca++ and Mg++ were more progressively absorbed by the vegetation. The Ca++ and Mg++ contents in groundwater increased with increasing residence time owing to the transpiration of trees. The export of H4SiO4 in the overland flow was moderate, i.e. 24% of total H4SiO4 export in the stream flow, as overland flow represented 39% of total runoff. The subsurface horizon—where active groundwater flow occurs—was successively affected by chemical erosion during the storm‐flow peak, and then by neoformation of kaolinite favoured by increasing water residence time. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Geochemically based hydrograph separation techniques were used in a preliminary assessment to infer how runoff processes change with landscape characteristics and spatial scale (1–233 km2) within a mesoscale catchment in upland Scotland. A two‐component end‐member mixing analysis (EMMA) used Gran alkalinity as an assumed conservative tracer. Analysis indicated that, at all scales investigated, acidic overland flow and shallow subsurface storm flows from the peaty soils covering the catchment headwaters dominated storm runoff generation. The estimated groundwater contribution to annual runoff varied from 30% in the smallest (ca 1 km2) peat‐dominated headwater catchment with limited groundwater storage, to >60% in larger catchments (>30 km2) with greater coverage of more freely draining soils and more extensive aquifers in alluvium and other drift. This simple approach offers a useful, integrated conceptualization of the hydrological functioning in a mesoscale catchment, which can be tested and further refined by focused modelling and process‐based research. However, even as it stands, the simple conceptualization of system behaviour will have significant utility as a tool for communicating hydrological issues in a range of planning and management decisions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The impacts of forest conversion on runoff generation in the tropics have received much interest, but scientific progress is still hampered by challenging fieldwork conditions and limited knowledge about runoff mechanisms. Here, we assessed the runoff generation, flow paths and water source dynamics of a pristine rainforest catchment in Costa Rica using end member mixing analysis (EMMA) and a Bayesian mixing model (MixSIAR). Geochemical tracer data collected over a 4-week field campaign were combined with tritium data used to assess potential deeper groundwater flow pathways to the perennial stream. The streamflow composition was best captured using three end-members, namely throughfall, shallow (5–15 cm) and deeper (15–50 cm) soil water. We estimated the end-member contributions to the main stream and two tributaries using the two mixing approaches and found good agreement between results obtained from EMMA and MixSIAR. The system was overwhelmingly dominated by near-surface sources, with little evidence for deeper and older groundwater as tritium-derived baseflow mean transit time was between 2.0 and 4.4 years. The shallow soil flow pathway dominated streamflow contributions in the main stream (median 39% and 49% based on EMMA and MixSIAR, respectively), followed by the deeper soil (32% and 31%) and throughfall (25% and 19%). The two tributaries had even greater shallow soil water contributions relative to the main stream (83% and 74% for tributary A and 42% and 63% for tributary B). Tributary B had no detectable deep soil water contribution, reflecting the morphology of the hillslope (steeper slopes, shallower soils and lower vegetation density compared to hillslope A). Despite the short sampling campaign and associated uncertainties, this study allowed to thoroughly assess runoff generation mechanisms in a humid tropical catchment. Our results also provide a first comparison of two increasingly used mixing models and suggest that EMMA and MixSIAR yield comparable estimates of water source partitioning in this tropical, volcanic rainforest environment.  相似文献   

6.
Quantifying the relative contributions of different sources of water to a stream hydrograph is important for understanding the hydrology and water quality dynamics of a given watershed. To compare the performance of two methods of hydrograph separation, a graphical program [baseflow index (BFI)] and an end‐member mixing analysis that used high‐resolution specific conductance measurements (SC‐EMMA) were used to estimate daily and average long‐term slowflow additions of water to four small, primarily agricultural streams with different dominant sources of water (natural groundwater, overland flow, subsurface drain outflow, and groundwater from irrigation). Because the result of hydrograph separation by SC‐EMMA is strongly related to the choice of slowflow and fastflow end‐member values, a sensitivity analysis was conducted based on the various approaches reported in the literature to inform the selection of end‐members. There were substantial discrepancies among the BFI and SC‐EMMA, and neither method produced reasonable results for all four streams. Streams that had a small difference in the SC of slowflow compared with fastflow or did not have a monotonic relationship between streamflow and stream SC posed a challenge to the SC‐EMMA method. The utility of the graphical BFI program was limited in the stream that had only gradual changes in streamflow. The results of this comparison suggest that the two methods may be quantifying different sources of water. Even though both methods are easy to apply, they should be applied with consideration of the streamflow and/or SC characteristics of a stream, especially where anthropogenic water sources (irrigation and subsurface drainage) are present. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The lower coastal plain of the Southeast USA is undergoing rapid urbanisation as a result of population growth. Land use change has been shown to affect watershed hydrology by altering stream flow and, ultimately, impairing water quality and ecologic health. However, because few long‐term studies have focused on groundwater–surface water interactions in lowland watersheds, it is difficult to establish what the effect of development might be in the coastal plain region. The objective of this study was to use an innovative improvement to end‐member mixing analysis (EMMA) to identify time sequences of hydrologic processes affecting storm flow. Hydrologic and major ion chemical data from groundwater, soil water, precipitation and stream sites were collected over a 2‐year period at a watershed located in USDA Forest Service's Santee Experimental Forest near Charleston, South Carolina, USA. Stream flow was ephemeral and highly dependent on evapotranspiration rates and rainfall amount and intensity. Hydrograph separation for a series of storm events using EMMA allowed us to identify precipitation, riparian groundwater and streambed groundwater as main sources to stream flow, although source contribution varied as a function of antecedent soil moisture condition. Precipitation, as runoff, dominated stream flow during all storm events while riparian and streambed groundwater contributions varied and were mainly dependent on antecedent soil moisture condition. Sensitivity analyses examined the influence of 10% and 50% increases in analyte concentration on EMMA calculations and found that contribution estimates were very sensitive to changes in chemistry. This study has implications on the type of methodology used in traditional forms of EMMA research, particularly in the recognition and use of median end‐member water chemistry in hydrograph separation techniques. Potential effects of urban development on important hydrologic processes (groundwater recharge, interflow, runoff, etc.) that influence stream flow in these lowland watersheds were qualitatively examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Fire is an important and natural process in the lifecycle of chaparral systems, removing old growth and recycling nutrients. Recent catastrophic wildfires in southern California chaparral have heightened concerns about increased runoff and nutrient export. The goal of this study was to improve understanding of how overland flow is generated in unburned and post‐fire chaparral watersheds. Samples of overland flow were collected from burned and unburned watersheds after rainfall events and multiple regression analysis was used to examine the influence of individual storm characteristics and system moisture on overland flow volume. The results indicate that variation in overland flow generation in the unburned watershed is best explained by storm size, while overland flow in the burned watershed was positively related to storm size and time between storms. These findings suggest that the burned system had decreased infiltration rates and increased soil water repellency. In contrast, there is a statistically significant negative relationship between overland flow 1 year after a fire against different system and precipitation factors revealed a negative correlation with drying period and a positive relationship with rainfall intensity, a combination that suggests reduced repellency. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The quickflow responses of six subcatchment areas in a small hill country catchment in the Craigieburn Range, South Island, New Zealand, were compared for a range of storm sizes, rainfall intensities and antecedent wetness conditions. Topography and soil characteristics suggested that all subcatchments would receive subsurface stormflow input, but that some would receive larger saturation overland flow inputs than others. Quickflow yields and response ratios were positively correlated with storm size and antecedent wetness conditions in the subcatchment most suited to producing saturation overland flow. In subcatchments more likely to be dominated by subsurface flow, quickflow yields and response ratios were positively correlated with storm size, but were either not correlated, or negatively correlated, with antecedent wetness. Quickflow responses were either not significantly or negatively correlated with rainfall intensity variables. Quickflow from the subcatchment most suited to produce saturation overland flow providing an increasing proportion of total catchment quickflow in larger storms and as antecedent conditions became wetter. Subcatchment responses varied greatly in space and time and there was less pattern to the variation than had been expected. Where topographic and pedologic conditions permit substantial responses to storm rainfall by both saturation overland flow and subsurface stormflow, simple topographic and soil indicators may not be useful guides to the relative importance of runoff mechanisms, or to the identification of runoff-source areas.  相似文献   

11.
The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21–22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first‐order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end‐member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
This study uses 2 years of data from a detailed weekly water sampling programme in a 11·4 km2 upland peat catchment in the Northern Pennines, UK. The sampling comprised precipitation, soil‐water samples and a number of streams, including the basin outlet. Samples were analysed for: pH, conductivity, alkalinity, Na, K, Ca, Mg, Fe, Al, Total N, SO4, Cl and colour. Principal component analysis (PCA) was used to identify end‐members and compositional trends in order to identify controls on the development of water composition. The study showed that the direct use of PCA had several advantages over the use of end‐member mixing analysis (EMMA) as it combines an analysis of mixing and evolving waters without the assumption of having to know the compositional sources of the water. In its application to an upland peat catchment, the study supports the view that shallow throughflow at the catotelm/acrotelm boundary is responsible for storm runoff generation and shows that baseflow is controlled by cation exchange in the catotelm and mixing with a base‐rich groundwater. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
There has been a great deal of research interest regarding changes in flow path/runoff source with increases in catchment area. However, there have been very few quantitative studies taking subscale variability and convergence of flow path/runoff source into account, especially in relation to headwater catchments. This study was performed to elucidate how the contributions and discharge rates of subsurface water (water in the soil layer) and groundwater (water in fractured bedrock) aggregate and change with catchment area increase, and to elucidate whether the spatial variability of the discharge rate of groundwater determines the spatial variability of stream discharge or groundwater contribution. The study area was a 5‐km2 forested headwater catchment in Japan. We measured stream discharge at 113 points and water chemistry at 159 points under base flow conditions. End‐member mixing analysis was used to separate stream water into subsurface water and groundwater. The contributions of both subsurface water and groundwater had large variability below 1 km2. The contribution of subsurface water decreased markedly, while that of groundwater increased markedly, with increases in catchment area. The specific discharge of subsurface water showed a large degree of variability and decreased with catchment area below 0.1 km2, becoming almost constant above 0.1 km2. The specific discharge of groundwater showed large variability below 1 km2 and increased with catchment area. These results indicated that the variabilities of stream discharge and groundwater contribution corresponded well with the variability of the discharge rate of groundwater. However, below 0.1 km2, it was necessary to consider variations in the discharge rates of both subsurface water and groundwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This study was designed to develop a physically based hydrological model to describe the hydrological processes within forested mountainous river basins. The model describes the relationships between hydrological fluxes and catchment characteristics that are influenced by topography and land cover. Hydrological processes representative of temperate basins in steep terrain that are incorporated in the model include intercepted rainfall, evaporation, transpiration, infiltration into macropores, partitioning between preferential flow and soil matrix flow, percolation, capillary rise, surface flow (saturation‐excess and return flow), subsurface flow (preferential subsurface flow and baseflow) and spatial water‐table dynamics. The soil–vegetation–atmosphere transfer scheme used was the single‐layer Penman–Monteith model, although a two‐layer model was also provided. The catchment characteristics include topography (elevation, topographic indices), slope and contributing area, where a digital elevation model provided flow direction on the steepest gradient flow path. The hydrological fluxes and catchment characteristics are modelled based on the variable source‐area concept, which defines the dynamics of the watershed response. Flow generated on land for each sub‐basin is routed to the river channel by a kinematic wave model. In the river channel, the combined flows from sub‐basins are routed by the Muskingum–Cunge model to the river outlet; these comprise inputs to the river downstream. The model was applied to the Hikimi river basin in Japan. Spatial decadal values of the normalized difference vegetation index and leaf area index were used for the yearly simulations. Results were satisfactory, as indicated by model efficiency criteria, and analysis showed that the rainfall input is not representative of the orographic lifting induced rainfall in the mountainous Hikimi river basin. Also, a simple representation of the effects of preferential flow within the soil matrix flow has a slight significance for soil moisture status, but is insignificant for river flow estimations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The role of bedrock groundwater in rainfall–runoff processes is poorly understood. Hydrometric, tracer and subsurface water potential observations were conducted to study the role of bedrock groundwater and subsurface flow in the rainfall–runoff process in a small headwater catchment in Shiranui, Kumamoto prefecture, south‐west Japan. The catchment bedrock consists of a strongly weathered, fractured andesite layer and a relatively fresh continuous layer. Major chemical constituents and stable isotopic ratios of δ18O and δD were analysed for spring water, rainwater, soil water and bedrock groundwater. Temporal and spatial variation in SiO2 showed that stream flow under the base flow condition was maintained by bedrock groundwater. Time series of three components of the rainstorm hydrograph (rainwater, soil water and bedrock groundwater) separated by end member mixing analysis showed that each component fluctuated during rainstorm, and their patterns and magnitudes differed between events. During a typical mid‐magnitude storm event, a delayed secondary runoff peak with 1·0 l s−1 was caused by increase in the bedrock groundwater component, whereas during a large rainstorm event the bedrock groundwater component increased to ≈ 2·5 l s−1. This research shows that the contribution of bedrock groundwater and soil water depends strongly on the location of the groundwater table, i.e. whether or not it rises above the soil–bedrock interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Intensive water sampling in conjunction with hydrological observations was conducted during three different rainstorms in order to understand the effects of rainfall events on the temporal variation of streamwater chemistry in a small headwater forest catchment. Concentrations of Na+ and SO42? decreased as the discharge rate increased. Hydrograph separation of the components was made using the three‐component model based on the end‐members mixing analysis (EMMA). The three end‐members were:
  • 1 the groundwater in the saturated zone that prescribes the chemistry of the baseflow;
  • 2 the throughfall that dilutes the streamwater;
  • 3 the groundwater in the transient saturated zone prescribed, which was dependent on the groundwater level.
When the groundwater level was lower, only the two components, groundwater in the saturated zone and throughfall, affected the streamwater chemistry. When the groundwater level rose and the saturated zone spread, the groundwater in the transient saturated zone became the third component. When the groundwater in the transient saturated zone contributed to the discharge, this component became the dominant source and the streamwater chemistry was affected by the groundwater chemistry in the transient saturated zone. When this component was discharged as the saturation overland flow, the streamwater chemistry was greatly affected by this component. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Critical zone influences on hydrologic partitioning, subsurface flow paths and reactions along these flow paths dictate the timing and magnitude of groundwater and solute flux to streams. To isolate first‐order controls on seasonal streamflow generation within highly heterogeneous, snow‐dominated basins of the Colorado River, we employ a multivariate statistical approach of end‐member mixing analysis using a suite of daily chemical and isotopic observations. Mixing models are developed across 11 nested basins (0.4 to 85 km2) spanning a gradient of climatological, physical, and geological characteristics. Hydrograph separation using rain, snow, and groundwater as end‐members indicates that seasonal contributions of groundwater to streams is significant. Mean annual groundwater flux ranges from 12% to 33% whereas maximum groundwater contributions of 17% to 50% occur during baseflow. The direct relationship between snow water equivalent and groundwater flux to streams is scale dependent with a trend toward self‐similarity when basins exceed 5.5 km2. We find groundwater recharge increases in basins of high relief and within the upper subalpine where maximum snow accumulation is coincident with reduced conifer cover and lower canopy densities. The mixing model developed for the furthest downstream site did not transfer to upstream basins. The resulting error in predicted stream concentrations points toward weathering reactions as a function of source rock and seasonal shifts in flow path. Additionally, the potential for microbial sulfate reduction in floodplain sediments along a low‐gradient, meandering portion of the river is sufficient to modify hillslope contributions and alter mixing ratios in the analysis. Soil flushing in response to snowmelt is not included as an end‐member but is identified as an important mechanism for release of solutes from these mountainous watersheds. End‐member mixing analysis used in combination with high‐frequency observations reveals important aspects of catchment hydrodynamics across scale.  相似文献   

20.
Permafrost and fire are important regulators of hydrochemistry and landscape structure in the discontinuous permafrost region of interior Alaska. We examined the influence of permafrost and a prescribed burn on concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and other solutes ( , Ca2+, K+, Mg2+, Na+) in streams of an experimentally burned watershed and two reference watersheds with varying extents of permafrost in the Caribou–Poker Creeks Research Watershed in interior Alaska. The low‐permafrost watershed has limited permafrost (3%), the high‐permafrost watershed has extensive permafrost (53%), and the burn watershed has intermediate permafrost coverage (18%). A three end‐member mixing model revealed fundamental hydrologic and chemical differences between watersheds due to the presence of permafrost. Stormflow in the low‐permafrost watershed was dominated by precipitation and overland flow, whereas the high‐permafrost watershed was dominated by flow through the active layer. In all watersheds, organic and groundwater flow paths controlled stream chemistry: DOC and DON increased with discharge (organic source) and base cations and (from weathering processes) decreased. Thawing of the active layer increased soil water storage in the high‐permafrost watershed from July to September, and attenuated the hydrologic response and solute flux to the stream. The FROSTFIRE prescribed burn, initiated on 8 July 1999, elevated nitrate concentrations for a short period after the first post‐fire storm on 25 July, but there was no increase after a second storm in September. During the July storm, nitrate export lagged behind the storm discharge peak, indicating a flushing of soluble nitrate that likely originated from burned soils. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号