首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The Puget Sound basin in northwestern Washington, USA has experienced substantial land cover and climate change over the last century. Using a spatially distributed hydrology model (the Distributed Hydrology‐Soil‐Vegetation Model, DHSVM) the concurrent effects of changing climate (primarily temperature) and land cover in the basin are deconvolved, based on land cover maps for 1883 and 2002, and gridded climate data for 1915–2006. It is found that land cover and temperature change effects on streamflow have occurred differently at high and low elevations. In the lowlands, land cover has occurred primarily as conversion of forest to urban or partially urban land use, and here the land cover signal dominates temperature change. In the uplands, both land cover and temperature change have played important roles. Temperature change is especially important at intermediate elevations (so‐called transient snow zone), where the winter snow line is most sensitive to temperature change—notwithstanding the effects of forest harvest over the same part of the basin. Model simulations show that current land cover results in higher fall, winter and early spring streamflow but lower summer flow; higher annual maximum flow and higher annual mean streamflow compared with pre‐development conditions, which is largely consistent with a trend analysis of model residuals. Land cover change effects in urban and partially urban basins have resulted in changes in annual flow, annual maximum flows, fall and summer flows. For the upland portion of the basin, shifts in the seasonal distribution of streamflows (higher spring flow and lower summer flow) are clearly related to rising temperatures, but annual streamflow has not changed much. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Simulations of LGM climate of East Asia by regional climate model   总被引:3,自引:0,他引:3  
ClimateconditionsintheLastGlacialMaximum(LGM)wereremarkablydifferentfromthepresentones.LGMglobalmeantemperaturewas5℃-10℃dropbutprecipitationdecreasescommonly.LGMhasbecomethekeyphasetoreconstructtheearthenvironmentalfield,retrieveextremecoldclimatecondit…  相似文献   

3.
Changes in climate and land use can significantly influence the hydrological cycle and hence affect water resources. Understanding the impacts of climate and land‐use changes on streamflow can facilitate development of sustainable water resources strategies. This study investigates the flow variation of the Zamu River, an inland river in the arid area of northwest China, using the Soil and Water Assessment Tool distributed hydrological model. Three different land‐use and climate‐change scenarios were considered on the basis of measured climate data and land‐use cover, and then these data were input into the hydrological model. Based on the sensitivity analysis, model calibration and verification, the hydrological response to different land‐use and climate‐change scenarios was simulated. The results indicate that the runoff varied with different land‐use type, and the runoff of the mountain reaches of the catchment increased when grassland area increased and forestland decreased. The simulated runoff increased with increased precipitation, but the mean temperature increase decreased the runoff under the same precipitation condition. Application of grey correlation analysis showed that precipitation and temperature play a critical role in the runoff of the Zamu River basin. Sensitivity analysis of runoff to precipitation and temperature by considering the 1990s land use and climate conditions was also undertaken. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Land‐cover/climate changes and their impacts on hydrological processes are of widespread concern and a great challenge to researchers and policy makers. Kejie Watershed in the Salween River Basin in Yunnan, south‐west China, has been reforested extensively during the past two decades. In terms of climate change, there has been a marked increase in temperature. The impact of these changes on hydrological processes required investigation: hence, this paper assesses aspects of changes in land cover and climate. The response of hydrological processes to land‐cover/climate changes was examined using the Soil and Water Assessment Tool (SWAT) and impacts of single factor, land‐use/climate change on hydrological processes were differentiated. Land‐cover maps revealed extensive reforestation at the expense of grassland, cropland, and barren land. A significant monotonic trend and noticeable changes had occurred in annual temperature over the long term. Long‐term changes in annual rainfall and streamflow were weak; and changes in monthly rainfall (May, June, July, and September) were apparent. Hydrological simulations showed that the impact of climate change on surface water, baseflow, and streamflow was offset by the impact of land‐cover change. Seasonal variation in streamflow was influenced by seasonal variation in rainfall. The earlier onset of monsoon and the variability of rainfall resulted in extreme monthly streamflow. Land‐cover change played a dominant role in mean annual values; seasonal variation in surface water and streamflow was influenced mainly by seasonal variation in rainfall; and land‐cover change played a regulating role in this. Surface water is more sensitive to land‐cover change and climate change: an increase in surface water in September and May due to increased rainfall was offset by a decrease in surface water due to land‐cover change. A decrease in baseflow caused by changes in rainfall and temperature was offset by an increase in baseflow due to land‐cover change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The HIRHAM regional climate model suggests an increase in temperature in Denmark of about 3 °C and an increase in mean annual precipitation of 6–7%, with a larger increase during winter and a decrease during summer between a control period 1961–1990 and scenario period 2071–2100. This change of climate will affect the suspended sediment transport in rivers, directly through erosion processes and increased river discharges and indirectly through changes in land use and land cover. Climate‐change‐induced changes in suspended sediment transport are modelled for five scenarios on the basis of modelled changes in land use/land cover for two Danish river catchments: the alluvial River Ansager and the non‐alluvial River Odense. Mean annual suspended sediment transport is modelled to increase by 17% in the alluvial river and by 27% in the non‐alluvial for steady‐state scenarios. Increases by about 9% in the alluvial river and 24% in the non‐alluvial river were determined for scenarios incorporating a prolonged growing season for catchment vegetation. Shortening of the growing season is found to have little influence on mean annual sediment transport. Mean monthly changes in suspended sediment transport between ? 26% and + 68% are found for comparable suspended sediment transport scenarios between the control and the scenario periods. The suspended sediment transport increases during winter months as a result of the increase in river discharge caused by the increase in precipitation, and decreases during summer and early autumn months. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The Nooksack River has its headwaters in the North Cascade Mountains and drains an approximately 2000 km2 watershed in northwestern Washington State. The timing and magnitude of streamflow in a snowpack‐dominated drainage basin such as the Nooksack River basin are strongly influenced by temperature and precipitation. Projections of future climate made by general circulation models (GCMs) indicate increases in temperature and variable changes in precipitation for the Nooksack River basin. Understanding the response of the river to climate change is crucial for regional water resources planning because municipalities, tribes, and industry depend on the river for water use and for fish habitat. We combine three different climate scenarios downscaled from GCMs and the Distributed‐Hydrology‐Soil‐Vegetation Model to simulate future changes to timing and magnitude of streamflow in the higher elevations of the Nooksack River. Simulations of future streamflow and snowpack in the basin project a range of magnitudes, which reflects the variable meteorological changes indicated by the three GCM scenarios and the local natural variability employed in the modeling. Simulation results project increased winter flows, decreased summer flows, decreased snowpack, and a shift in timing of the spring melt peak and maximum snow water equivalent. These results are consistent with previous regional studies, but the magnitude of increased winter flows and total annual runoff is higher. Increases in temperature dominate snowpack declines and changes to spring and summer streamflow, whereas a combination of increases in temperature and precipitation control increased winter streamflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
全球变暖背景下东亚气候变化的最新情景预测   总被引:64,自引:4,他引:60       下载免费PDF全文
在最新的SRES A2和B2温室气体排放情景下,利用国际上7个气候模式针对未来全球变暖的数值模拟结果,本文着重分析了东亚区域气候21世纪的变化趋势. 研究揭示:中国大陆年均表面气温升高过程与全球同步,但增幅在东北、西部和华中地区较大,且表现出明显的年际变化;全球年均表面气温增幅纬向上大体呈带状分布,两极地区最为明显,并在北极地区达到最大;此外,21世纪后半段北半球高纬度地区的年平均强升温幅度主要来自于冬季增温. 在21世纪前50年,温室气体含量的增加除在一定程度上会增加青藏高原大部分夏季降水量外,不会对中国大陆其余地区的年、季节平均降水量产生较大影响;但持续的温室气体含量增加将最终导致大陆降水量几乎是全域性的增加.  相似文献   

8.
The distributed hydrology–soil–vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid‐twenty‐first century. A 60‐year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi‐decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub‐basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain–snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double‐digit increases in winter flows and decreases in summer and fall flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
C. Pilling  J. A. A. Jones 《水文研究》1999,13(17):2877-2895
Nationwide changes in spatially well‐resolved patterns of British runoff were investigated under two climate change scenarios derived from general circulation model (GCM) output. A physical process‐based hydrological model (HYSIM) was used to simulate effective runoff across a 10 km×10 km British grid under baseline and future climate conditions. A gridded baseline climatology for precipitation and the Penman variables was used to validate HYSIM across Britain using grid cell‐specific parameters derived from land use and soil type. The climate change scenarios were constructed from the Hadley Centre's high resolution equilibrium GCM (UKHI) for 2050 and transient GCM (UKTR) for 2065. Future effective runoff was simulated under both scenarios by applying changes in precipitation and the Penman variables to the baseline climatology. Annual effective runoff is shown to increase throughout most of Britain under the UKHI scenario for 2050, whilst it decreases over much of England and Wales under the UKTR scenario for 2065. Both scenarios show an increasing gradient in runoff between a wetter northern Britain and a drier south‐eastern Britain. This gradient is more pronounced under the UKTR scenario. Changes in effective runoff for winter and summer show an increase in seasonality under both scenarios. Winter runoff is shown to increase most in northern Britain under both scenarios, whilst summer runoff is shown to experience major reductions over much of England and Wales under the UKTR scenario. If these simulations are realized, Britain may expect an accentuated north to south‐east imbalance in available water resources. If this is combined with a temporal imbalance suggested by the increased seasonality, there could be problems for the future management of British water resources. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes the use of a continuous streamflow model to examine the effects of climate and land use change on flow duration in six urbanizing watersheds in the Maryland Piedmont region. The hydrologic model is coupled with an optimization routine to achieve an agreement between observed and simulated streamflow. Future predictions are made for three scenarios: future climate change, land use change, and jointly varying climate and land use. Future climate is modelled using precipitation and temperature predictions for the Canadian Climate Centre (CCC) and Hadley climate models. Results show that a significant increase in temperature under the CCC climate predictions produces a decreasing trend in low flows. A significant increasing trend in precipitation under the Hadley climate predictions produces an increasing trend in peak flows. Land use change by itself, as simulated by an additional 10% increase in imperviousness (from 20·5 to 30·5%), produces no significant changes in the simulated flow durations. However, coupling the effects of land use change with climate change leads to more significant decreasing trends in low flows under the CCC climate predictions and more significant increasing trends in peak flows under Hadley climate predictions than when climate change alone is employed. These findings indicate that combined land use and climate change can result in more significant hydrologic change than either driver acting alone. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid‐based spatially distributed model, Distributed Hydrology Soil Vegetation Model‐Water Quality (DHSVM‐WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high‐spatial and high‐temporal resolution. DHSVM‐WQ simulates surface run‐off quality and in‐stream processes that control the transport of non‐point source pollutants into urban streams. We configure DHSVM‐WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here, we focus on total suspended solids (TSS) and total phosphorus (TP) from non‐point sources (run‐off), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely because of substantially increased streamflow and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 °C), TSS load (up to 182%) and TP load (up to 74%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
本文利用Hadley气候预测与研究中心的区域气候模式系统PRECIS进行中国区域气候基准时段(1961~1990年)和SRES B2情景下2071~2100年(2080s)最高、最低气温及日较差变化响应的分析.气候基准时段的模拟结果与观测资料的对比分析表明:PRECIS具有对中国区域最高、最低气温及日较差的模拟能力,能够模拟出中国区域最高、最低气温及日较差的局地分布特征.对SRES B2情景下相对于气候基准时段的最高、最低气温及日较差变化响应分析表明:中国区域2080s时段年、冬季和夏季平均最高、最低气温变化均呈一致增加的趋势,北方地区增温幅度普遍大于南方地区.夏季东北地区极端高温事件发生的频率将会增加,而冬季华北地区极端冷害事件发生频率将会减少.未来中国区域年平均日较差将出现北方地区减小而南方地区增加的趋势.冬季长江中下游以南地区日较差呈增加趋势,而夏季华东地区、西北地区及内蒙古中部日较差将呈减小趋势,其中在青藏高原北部地区存在一个较强的低值中心.  相似文献   

13.
We evaluated the potential impacts of future land cover change and climate variability on hydrological processes in the Neka River basin, northern Iran. This catchment is the main source of water for the intensively cultivated area of Neka County. Hydrological simulations were conducted using the Soil and Water Assessment Tool. An ensemble of 17 CMIP5 climate models was applied to assess changes in temperature and precipitation under the moderate and high emissions scenarios. To generate the business-as-usual scenario map for year 2050 we used the Land Change Modeler. With a combined change in land cover and climate, discharge is expected to decline in all seasons except the end of autumn and winter, based on the inter-model average and various climate models, which illustrated a high degree of uncertainty in discharge projections. Land cover change had a minor influence on discharge relative to that resulting from climate change.  相似文献   

14.
Z. X. Xu  J. Y. Li  C. M. Liu 《水文研究》2007,21(14):1935-1948
Some previous studies have shown that drying‐up of the lower Yellow River resulted from decreasing precipitation and excessive industrial and agricultural consumption of water from the middle and downstream regions of the Yellow River. On the basis of average air temperature, precipitation, and pan evaporation data from nearly 80 gauging stations in the Yellow River basin, the monotonic trends of major climate variables over the past several decades are analysed. The analysis was mainly made for 12 months and the annual means. The isograms for annual and typical months are given in the paper. The result shows that the average temperature in the study area exhibits an increasing trend, mainly because of the increase of temperature in December, January and February. The largest trend is shown in December and the smallest is in August. There are 65 of 77 stations exhibiting a downward trend for annual precipitation. In all seasons except summer, there is a similar trend in the upstream region of the Yellow River, south of latitude 35°N. It is interesting to note that the pan evaporation has decreased in most areas of the Yellow River basin during the past several decades. April and July showed the greatest magnitude of slope, and the area from Sanmenxia to Huayuankou as well as the Yiluo River basin exhibited the strongest declining trend. The conclusion is that the decreasing pan evaporation results from complex changes of air temperature, relative humidity, solar radiation, and wind speed, and both climate change and human activities have affected the flow regime of the Yellow River during the past several decades. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Global climate change will likely increase temperature and variation in precipitation in the Himalayas, modifying both supply of and demand for water. This study assesses combined impacts of land‐cover and climate changes on hydrological processes and a rainfall‐to‐streamflow buffer indicator of watershed function using the Soil Water Assessment Tool (SWAT) in Kejie watershed in the eastern Himalayas. The Hadley Centre Coupled Model Version 3 (HadCM3) was used for two Intergovernmental Panel on Climate Change (IPCC) emission scenarios (A2 and B2), for 2010–2099. Four land‐cover change scenarios increase forest, grassland, crops, or urban land use, respectively, reducing degraded land. The SWAT model predicted that downstream water resources will decrease in the short term but increase in the long term. Afforestation and expansion in cropland will probably increase actual evapotranspiration (ET) and reduce annual streamflow but will also, through increased infiltration, reduce the overland flow component of streamflow and increase groundwater release. An expansion in grassland will decrease actual ET, increase annual streamflow and groundwater release, while decreasing overland flow. Urbanization will result in increases in streamflow and overland flow and reductions in groundwater release and actual ET. Land‐cover change dominated over effects on streamflow of climate change in the short and middle terms. The predicted changes in buffer indicator for land‐use plus climate‐change scenarios reach up to 50% of the current (and future) range of inter‐annual variability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
SRES A2情景下中国气候未来变化的多模式集合预测结果   总被引:56,自引:3,他引:53       下载免费PDF全文
采用政府间气候变化委员会资料中心的模式预测结果,本文分析了SRES A2温室气体和气溶胶排放情景下中国大陆21世纪前30年的10年际气候变化趋势. 研究揭示:大陆冬季和夏季表面温度、表面最高温度和最低温度分别升高0.3~2.3℃、0.1~2.0℃、0.5~2.7℃,增幅大体上呈现东西向带状分布,由南至北升温逐渐加强,且增幅随时间加大. 此外,上述三气候要素冬季升温幅度要大于同期夏季、表面最低温度升幅要强于同期表面最高温度,冬季和夏季表面温度的季节内变化范围减小. 冬季东亚地区海平面气压异常幅度在-1.0hPa至0.4hPa之间变化,呈东西向带状分布,表现为南正北负、随时间推进异常幅度有所加大,正负交界面向南扩展;同时,东北、华北和西部海平面气压负异常较大. 夏季海平面气压异常空间分布与冬季相似. 2001~2030年,青藏高原大部、大陆东南部和河套大部分地区降水量增加0.1~0.8mm/d.  相似文献   

17.
Climate and land use changes greatly modify hydrologic regimes. In this paper, we modelled the impacts of biofuel cultivation in the US Great Plains on a 1061‐km2 watershed using the Soil and Water Assessment Tool (SWAT) hydrologic model. The model was calibrated to monthly discharges spanning 2002–2010 and for the winter, spring, and summer seasons. SWAT was then run for a climate‐change‐only scenario using downscaled precipitation and a projected temperature for 16 general circulation model (GCM) runs associated with the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios A2 scenario spanning 2040–2050. SWAT was also run on a climate change plus land use change scenario in which Alamo switchgrass (Panicum virgatum L.) replaced native range grasses, winter wheat, and rye (89% of the basin). For the climate‐change‐only scenario, the GCMs agreed on a monthly temperature increase of 1–2 °C by the 2042–2050 period, but they disagreed on the direction of change in precipitation. For this scenario, decreases in surface runoff during all three seasons and increases in spring and summer evapotranspiration (eT) were driven predominantly by precipitation. Increased summer temperatures also significantly contributed to changes in eT. With the addition of switchgrass, changes in surface runoff are amplified during the winter and summer, and changes in eT are amplified during all three seasons. Depending on the GCM utilized, either climate change or land use change (switchgrass cultivation) was the dominant driver of change in surface runoff while switchgrass cultivation was the major driver of changes in eT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Study on runoff variations and responses can lay a foundation for flood control, water allocation and integrated river basin management. This study applied the Soil and Water Assessment Tool model to simulate the effects of land use on annual and monthly runoff in the Middle and Upstream Reaches of Taoerhe River basin, Northeast China, under the wet, average and dry climate conditions through scenario analysis. The results showed that from the early 1970s to 2000, land use change with an increase in farmland (17.0%) and decreases in forest (10.6%), grassland (4.6%) and water body (3.1%) caused increases in annual and monthly runoff. This effect was more distinct in the wet season or in the wet year, suggesting that land use change from the early 1970s to 2000 may increase the flood potential in the wet season. Increases in precipitation and air temperature from the average to wet year led to annual and monthly (March and from June to December) runoff increases, while a decrease in precipitation and an increase in air temperature from the average to dry year induced decreases in annual and monthly (all months except March) runoff, and moreover, these effects were more remarkable in the wet season than those in the dry season. Due to the integrated effects of changing land use and climate conditions, the annual runoff increased (decreased) by 70.1 mm (25.2 mm) or 197.4% (71.0%) from the average to wet (dry) year. In conclusion, climate conditions, especially precipitation, played an important role in runoff variations while land use change was secondary over the study area, and furthermore, the effects of changes in land use and/or climate conditions on monthly runoff were larger in the wet season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
1961-2003年间鄱阳湖流域气候变化趋势及突变分析   总被引:21,自引:2,他引:19  
本文利用1961-2003年间鄱阳湖流域14个气象站的气温、降水量、蒸发量等观测数据和8个主要水文站的流量数据,研究该时段内鄱阳湖流域的气候变化趋势、突变及其空间分布的差异.研究表明,鄱阳潮流域气温和降水均在1990年发生突变,继而呈现显著的上升趋势;在季节变化上,冬季平均气温在1986年发生突变,增温显著;夏季降水量和夏季暴雨频率均在1992年发生突变增加,暴雨频率增加是夏季降水量增加的主要原因;蒸发皿蒸发量和参照蒸散量均呈现显著下降趋势,该变化在夏季尤为明显.上述变化趋势均以1990s最为显著,这与长江流域气候变化趋势基本一致.在空间分布上,饶河水系、信江水系和赣江下游等气候变化更为显著.笔者认为,鄱阳湖流域气候变化在长江流域中比较突出.该流域1990s暖湿气候在加强;气温的升高、降水量和暴雨频率的增加以及蒸发量的下降强化了五河流量的增加趋势,由此可大致判定鄱阳湖流域气候变化与洪涝灾害之间可能存在的关系,这可为理解气候变化在该流域的响应和预测该流域未来可能的洪涝灾害提供依据.  相似文献   

20.
This study aims to quantify the contribution of land use/cover change (LUCC) during the last three decades to climate change conditions in eastern China. The effects of farmland expansion in Northeast China, grassland degradation in Northwest China, and deforestation in South China were simulated using the Weather Research and Forecasting (WRF) model in addition to the latest actual land cover datasets. The simulated results show that when forestland is converted to farmland, the air temperature decreased owing to an increase in surface albedo in Northeast China. The climatic effect of grassland degradation on the Loess Plateau was insignificant because of the negligible difference in albedo between grassland and cropland. In South China, deforestation generally led to a decrease in temperature. Furthermore, the temperature decrease caused by the increase in albedo counteracted the warming effects of the evapotranspiration decrease, so the summer temperature change was not significant in South China. Excluding the effects of urbanization in the North China Plain, the LUCC effects across the entire region of East China presented an overall cooling trend. However, the variation in temperature scale and magnitude was less in summer than that in winter. This result is due mainly to the cooling caused by the increase in albedo offset partly by the increase in temperature caused by the decrease in evaporation in summer. Summer precipitation showed a trend of increasing–decreasing–increasing from southeast to northwest after LUCC, which was induced mainly by the decrease in surface roughness and cyclone circulations appearing northwest of Northeast China, in the middle of the Loess Plateau, and in Yunnan province at 700 hPa after forests were converted into farmland. All results will be instructive for understanding the influence of LUCC on regional climate and future land planning in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号