首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张鑫磊  王志华  许振巍  吕丛 《岩土力学》2016,37(8):2347-2352
采用振动台激励使饱和砂土发生液化,并侧向拖拽埋入砂土中的铝管,模拟液化土体与管体相对运动以分析液化砂土流动的力学效应。引入流体力学理论与方法,推导出以拉力反算表观黏度的表达式以及液化土体作为流体对管壁作用的黏滞剪切力。分析和比较了振时拖动、振后拖动下土体的流体性质及其流动效应的率相关性和孔压相关性,探讨了砂土密实度对土体流动效应的影响。结果表明,土体初始密实度与液化后土体的表观黏度正相关;液化土体的表观黏度以及因流动产生的黏滞剪切力与孔压反相关;液化砂土流动产生的黏滞剪切力具有强烈的率相关性。针对可液化场地中的结构抗震分析,应考虑土-结构率相关相互作用。  相似文献   

2.
孙凯  陈正林  陈剑  徐学燕 《岩土力学》2015,36(Z1):142-146
冻土在高应力水平下通常会表现出加速蠕变特性。经典西原(Nishihara)模型可以反映衰减蠕变和稳态蠕变,但不适用于描述加速蠕变。通过对Nishihara模型中黏性元件进行修正,将黏弹性元件中的定常的黏滞系数修正为时间的函数,并在黏塑性元件中采用非定常、非牛顿黏性元件,得到的蠕变柔量可以考虑应力水平和时间的影响,使其能够反映其加速蠕变的过程。用提出的模型分别对一维和三维应力、不同应力水平下的冻土蠕变试验数据进行了拟合,拟合结果能够反映冻土从衰减蠕变和稳定蠕变状态进入加速蠕变的过程,说明了该模型对于描述冻土在不同应力下不同蠕变状态的适用性。  相似文献   

3.
砂土液化流动变形的简化方法   总被引:1,自引:0,他引:1  
陈育民  高星  刘汉龙 《岩土力学》2013,34(6):1567-1573
已有的液化砂土流动特性试验结果表明,砂土在液化流动状态下是剪切稀化非牛顿流体,可以用幂函数表示其剪应力-剪应变率的关系,从而建立了砂土液化流动的本构方程。基于FLAC3D程序的二次开发平台,将液化流动本构方程开发到FLAC3D中,建立了液化流动变形的简化分析方法。通过倾斜场地的液化流动变形分析,发现倾斜场地的液化变形曲线可以用正弦函数曲线描述,这与Towhata的理论分析成果一致,验证了本方法的合理性。分析了液化层坡度、稠度系数、流动指数以及弹性参数等变量对液化变形的影响。计算结果表明,液化变形随液化层坡度的增大而逐渐增大,液化砂土的稠度系数和流动指数对液化流动变形有重要的影响,而弹性参数对变形基本无影响,因此,在实际工程分析中,需要对流动模型参数进行深入研究。  相似文献   

4.
Liquefaction can result in the damage or collapse of structures during an earthquake and can therefore be a great threat to life and property. Many site investigations of liquefaction disasters are needed to study the large-scale deformation and flow mechanisms of liquefied soils that can be used for performance assessments and infrastructure improvement. To overcome the disadvantages of traditional flow analysis methods for liquefied soils, a soil–water-coupled smoothed particle hydrodynamics (SPH) modeling method was developed to analyze flow in liquefied soils. In the proposed SPH method, water and soil were simulated as different layers, while permeability, porosity, and interaction forces could be combined to model water-saturated porous media. A simple shear test was simulated using the SPH method with an elastic model to verify its application to solid phase materials. Subsequently, the applicability of the proposed SPH modeling method to the simulation of interaction forces between water and soil was verified by a falling-head permeability test. The coupled SPH method produced good simulations for both the simple shear and falling-head permeability tests. Using a fit-for-purpose experimental apparatus, a physical flow model test of liquefied sand has been designed and conducted. To complement the physical test, a numerical simulation has been undertaken based on the soil–water-coupled SPH method. The numerical results correspond well with the physical model test results in observed configurations and velocity vectors. An embankment failure in northern Sweden was selected so that the application of the soil–water-coupled SPH method could be extended to an actual example of liquefaction. The coupled SPH method simulated the embankment failure with the site investigation well. They have also estimated horizontal displacements and velocities, which can be used to greatly improve the seismic safety of structures.  相似文献   

5.
Soil flow and induced air blasts are of great harm to humanity, and historically they have caused a lot of damage to infrastructure. However, these phenomena cannot be described by traditional analog modeling methods that limit their use in disaster prevention efforts. Computational fluid dynamics (CFD) is an applied technique commonly used in a range of fields including the chemical industry, and aircraft and automobile manufacturing, but little is reported on the use of this method to simulate flowing soil in geotechnical engineering applications. The CFD method can effectively make up for the deficiency of normal calculation methods in the analysis of soil flow and air blasts. This paper uses the FLUENT (version 6.3) CFD calculation software to simulate the processes of soil flow and induced air blast changes during soil flow with an Eulerian air–soil two-phase model included in a standard k-ε turbulence model. Velocity vectors of air blasts at different times during soil flow are obtained, and the characteristics of turbulent flow can be found based on the velocity vectors. The numerical simulation techniques adopted in this paper captured precise configurations of soil flow. The results show that the CFD method is especially suitable for simulating the process of soil flow; hazard assessments can be implemented, and the performance of structures involved with disaster prevention can be improved based on the numerical simulation of changing air blasts.  相似文献   

6.
陈健云  李静  李建波 《岩土力学》2006,27(3):373-377
在结构-地基的动力相互作用分析所提出的众多方法中,无质量地基和黏性边界地基仍然是应用最为广泛的近似方法。针对当前结构-地基动力相互作用分析中地基模型处理中的一些问题,通过结构-地基动力相互作用分析公式的推导以及各变量物理意义的解释,详细阐明了当前考虑地基影响的动力分析中无质量地基和黏性边界地基的概念和应用范围,对当前部分研究中应用这两种地基中存在的问题进行了分析说明,为简化地基动力分析模型提供了思路。  相似文献   

7.
A simplified regression model is here calibrated on the basis of rainfall data records of Sicily (southern Italy), in order to show the model reliability in assessing the R-factor of the Universal Soil Loss Equation and its revised version (RUSLE) and to provide an estimate of long-term rainfall erosivity at medium-regional scale. The proposed model is a rearrangement of a former simplified model, formulated for the Italian environment, grouping three easily available rainfall variables on various time scales, which has been shown to be more successful than others in reproducing the rainfall erosive power over different locations of Italy. A geostatistical interpolation procedure is then applied for generating the regional long-term erosivity map with associated standard error. Areas with severe erosive rainfalls (from 2,000 up to more than 6,000 MJ mm ha−1 h−1) are pointed out which will correspond to areas suffering from severe soil erosion. Solving the problem of calculating the R-factor value in the RUSLE equation by means of such a simplified model here formulated will allow to predict the related soil loss. Moreover, given the availability of long time-series of concerned rainfall data, it will be possible to analyse the variability of rainfall erosivity within the last 50 years, and to investigate the application of RUSLE or similar soil erosion models with forecasting purposes of soil erosion risk.  相似文献   

8.
This paper presents a model which can be used for fast landslides where coupling between solid and pore fluid plays a fundamental role. The proposed model is able to describe debris flows where the difference of velocities between solid grains and fluid is important. The approach is based on the mathematical model proposed by Zienkiewicz and Shiomi, which is similar to those of Pitman and Le and Pudasaini. The novelty of the present work is the numerical technique used, the smoothed particle hydrodynamics (SPH). We propose to use a double set of nodes for soil and water phases, the interaction between them being described by a suitable drag law. The paper presents both mathematical and numerical models, describing the main assumptions and their limitations. Then, the model is applied to (1) a simple case where shocks and expansion waves appear, (2) a dam break problem on a horizontal plane with a frictional soil phase, and (3) a debris flow which happened in Hong Kong. The main conclusions that can be drawn from the applications are:
  1. Debris flows having 2 phases with important relative mobility present a rich structure of shocks and rarefaction waves, which has to be properly modeled. Otherwise, the model will have numerical damping or dispersion.
  2. Dambreak exercises provide interesting information in simple and controlled situations. We can see how both phases move relative to each other.
  3. Real debris flows can be simulated with the proposed model, obtaining reasonable results.
  相似文献   

9.
Monitoring of the progressive convergence of a tunnel shows that deformations occurring in the soil surrounding a tunnel exhibit a strong evolution with time. This time‐dependent behaviour can be linked to three essential factors: the distance from the point of interest to the working face over time, the distance of unsupported tunnel to the working face and the viscous properties of the soil. The objective of this paper is to propose a constitutive model of the time‐dependent behaviour of soil which has been developed within the framework of elastoplasticity–viscoplasticity and critical state soil mechanics. The consideration of viscoplastic characteristic sets the current model apart from the CJS (Cambou, Jafari and Sidoroff) model as the basic elastoplastic model, and introduces an additional viscous mechanism. The evolution of the viscous yield surface is governed by a particular hardening called ‘viscous hardening’ with a bounding surface. The proposed constitutive model has been applied in the analysis of tunnelling. Two kinds of numerical calculations have been used in the analysis, axisymmetric analysis and plane strain analysis. Monitoring of the progressive convergence of a tunnel conducted in the railway tunnel of Tartaiguille (France), has been used to describe the calculation procedure proposed and the capability of the model. The finite difference software, fast Lagrangian analysis of continua (FLAC), has been used for the numerical simulation of the problems. The comparison of results shows that the observed deformations could have been reasonably predicted by using the constitutive model and calculation strategy proposed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
为指导生态脆弱区"保水采煤",掌握土层中导水裂缝带发育高度,采用微电阻率扫描成像技术、物理模拟、数值模拟、钻孔冲洗液消耗量观测等手段综合研究,结果表明:物理模拟、数值模拟辨别出的裂采比为28.1~29.1,微电阻率扫描成像探测出裂采比28.3~28.5,微电阻率扫描成像识别与其他手段所得结果吻合。微电阻率扫描成像技术可推广应用于其他矿区土层中导水裂缝带发育高度的探测。   相似文献   

11.
王家鼎  黄海国 《现代地质》1993,7(1):102-108
本文在文献[1],[2]的基础上对黄土区饱和土蠕动及滑动液化作了进一步研究。文中首先列举了黄土滑坡现场饱和土液化的一些典型实例及其所造成的宏观危害。从不同的角度提出了饱和土蠕(滑)动液化的定义,在大量现场及室内试验的基础上分析了饱和土蠕(滑)动液化的机理和影响因素,最后给出了液化势的评价方法。  相似文献   

12.
季宪军  梁瑛  欧国强  杨顺  王钧  陆桂红 《岩土力学》2015,36(8):2402-2408
由无黏粗颗粒与黏性泥浆组成的黏性碎屑流,其运动过程会产生不连续变形,基于连续介质假定的流体理论无法描述。根据散体材料理论,在考虑黏性泥浆影响情况下,以PFC3D为平台,编写黏性碎屑坡面运动数值模型试验程序,根据泥浆(成都黏土,密度1.413 g/cm3)室内拉伸试验和旋转剪切试验结果,设置数值模型参数,开展黏性碎屑流坡面运动数值模型试验,再现黏性碎屑坡面运动过程及运动过程中不连续变形现象,并通过同尺寸黏性碎屑坡面运动物理模型试验进行验证。结果表明:基于散体材料理论的PFC3D离散单元法能很好地再现黏性碎屑坡面运动过程及运动过程中不连续变形现象,为深入分析黏性泥浆介质影响下黏性碎屑坡面运动过程提供新的途径。  相似文献   

13.
Mapping of erosion risk areas is an important tool for the planning of natural resources management, allowing researchers to propose the modification of land use properly and implement more sustainable long-term management strategies. The objective of this study was to assess and identify critical sub-catchments for soil conservation management using the USLE, GIS, and remote sensing techniques. The Tapacurá catchment is one of the planning units for water resource management of the Recife Metropolitan Region. Maps of the erosivity (R), erodibility (K), slope (LS), cover-management (C), and support practice (P) factors were derived from the climate database, digital elevation model, and soil and land-use maps. In order to validate the simulation process, total sediment delivery ratio was estimated. The results showed a mean sediment delivery ratio (SDR) of around 11.5?% and a calculated mean sediment yield of 0.108?t?ha?1?year?1, which is close to the observed one, 0.169?t?ha?1?year?1. The obtained soil loss map could be considered as a useful tool for environmental monitoring and water resources management. The methodology applied showed acceptable precision and allowed the identification of the most susceptible areas to soil erosion by water, constituting an important predictive tool for soil and environmental management in this region, which is highly relevant for the prediction of varying development scenarios for Tapacurá catchment. This approach can be applied to other areas for simple and reliable identification of critical areas of soil erosion in catchments.  相似文献   

14.

In this work, a dynamic GIS modeling approach is presented that incorporates: a) geoinformatic techniques, b) 55-year historical meteorological data, and c) field measurements, in order to estimate soil erosion risk in intensively cultivated regions. The proposed GIS-based modeling approach includes the estimation of soil erosion rates due to surface water flow under current and future climate change scenarios A2 and B1 for the years 2030 and 2050. The soil erosion was estimated using the Universal Soil Loss Equation (USLE). The proposed soil erosion model was validated using field measurements at different sites of the study area. The results show that an extended part of the study area is under intense erosion with the mean annual loss to be 4.85 t/ha year−1. Moreover, an increase in rainfall intensity, especially for scenario B1, can generate a significant increase (32.44 %) in soil loss for the year 2030 and a much more (50.77 %) for the year 2050 in comparison with the current conditions. Regarding the scenario A2, a slight decrease (1.85 %) in soil loss was observed for the year 2030, while for 2050 the results show an adequate increase (7.31 %) in comparison with the present. All these approaches were implemented at one of the most productive agricultural areas of Crete in Greece dominated by olive and citrus crops.

  相似文献   

15.
We present results of the study of a three-layer tectonosphere model of the West Pacific Transition Zone based on modeling of a piecewise inhomogeneous medium caused by local density reduction of the asthenosphere, whose viscosity decreases due to fluid accumulation. We used the viscous liquid motion equation in the Stokes approximation. It was shown that the anomalous asthenosphere in the back-arc basins can move as a convective cell with an uprising flow in the zone of maximum density reduction and extension of the lithosphere above it. At the initial stages, this process causes formation of the central crustal uplift, which is transformed into a system of depressions as the asthenosphere viscosity decreases to values of the order of 4.0 × 1019 Pa s and lower. The modeling results satisfactorily agree with the reconstructions of the Cretaceous Cenozoic lithotectonic evolution of the Okhotsk Sea region.  相似文献   

16.
A soil-reinforcement load transfer model was developed by the authors1 to simulate the response of the reinforced soil material to triaxial compression and direct shearing. This paper presents the application of the proposed model for the numerical analysis of direct shear tests on sand samples reinforced with different types of tension resisting reinforcements. A parametric study is conducted to evaluate the effect of the mechanical characteristics and dilatancy properties of the soil, extensibility (elastic modulus) of the reinforcements, and their inclination with respect to the failure surface on the response of the reinforced soil material to direct shearing. An attempt is made to verify the proposed model by comparing numerical test simulations with experimental results reported by Jewell,2 and Gray and Ohashi.3 Comparisons of predicted and experimental results illustrate that the model can provide adequate simulations of the response of the reinforced soil material to shearing. In particular, it allows an evaluation of the effect of soil dilatancy (or contractancy), and extensibility of the reinforcement on tension forces generated in inclusions during shearing.  相似文献   

17.
Petrographic, fluid inclusion, geochemical and isotopic evidence from xenoliths in alkali basalts suggests that low-viscosity fluids rich in O-H-C, dissolved silicates and especially the incompatible elements may ascend, decompress and precipitate crystalline phases and/or induce partial fusion in the upper mantle. Such mantle metasomatic fluids (MMF) may be important in generating isotopic heterogeneity and in transporting and focusing mantle heat. In order to model the movement of MMF, the ordinary differential equations governing the variation ofP, T, ascent velocity and fluid density of a compressible, viscous, single-phase (H2O or CO2) non-reacting fluid ascending through a vertical crack of constant width have been solved. A large number of numerical simulations were carried out in which the significant factors affecting flow behavior (thermodynamic and transport fluid properties, roughness and width of cracks, geothermal gradient, initial conditions, etc.) were systematically varied. The calculations show that: (1) MMF tends to move at uniform rates following a short period of rapid initial acceleration, (2) MMF ascends nearly isothermally, (3) MMF acts as an efficient heat transfer agent; numerical experiments show that transport of heat into regions undergoing metasomatism can lead to partial fusion. The heat transported by movement of MMF averaged over the age of the Earth is sufficient to generate about 0.1 km3 of basaltic magma per year, which is approximately equal to the production rate of alkaline magma. If an intense period of mantle degassing occured early in the history of the Earth, the transport of heat and mass (K, U, Rb, LREE) by migrating fluids might have been important.  相似文献   

18.
This paper is the result of a study which was carried out in order to verify if the traditional methods to evaluate the intrinsic vulnerability or vulnerability related parameters, are able to clarify the problem of nitrate pollution in groundwater. In particular, the aim was to evaluate limitations and problems connected to aquifer vulnerability methods applied to nitrate contamination prevision in groundwater. The investigation was carried out by comparing NO3 concentrations, measured in March and November 2004 in the shallow aquifer, and the vulnerability classes, obtained by using GOD and TOT methods. Moreover, it deals with a comparison between NO3 concentrations and single parameters (depth to water table, land use and nitrogen input). The study area is the plain sector of Piemonte (Northern Italy), where an unconfined aquifer nitrate contamination exists. In this area the anthropogenic presence is remarkable and the input of N-fertilizers and zootechnical effluents to the soil cause a growing amount of nitrates in groundwater. This approach, used in a large area (about 10,000 km2) and in several monitoring wells (about 500), allowed to compare the efficiency of different vulnerability methods and to verify the importance of every parameter on the nitrate concentrations in the aquifer. Furthermore it allowed to obtain interesting correlations in different hydrogeological situations. Correlations between depth to water table, land use and nitrogen input to the soil with nitrate concentrations in groundwater show unclear situations: in fact these comparisons describe the phenomenon trend and highlight the maximum nitrate concentrations for each circumstance but often show wide ranges of possible nitrate concentrations. The same situation could be observed by comparing vulnerability indexes and nitrate concentrations in groundwater. These results suggest that neither single parameters nor vulnerability methods (GOD and TOT) are able to describe individually the complex phenomena affecting nitrate concentrations in soil, subsoil and groundwater. In particular, the traditional methods for vulnerability analysis do not analyze physical processes in aquifers, such as denitrification and nitrate dilution. According to a recent study in the shallow unconfined aquifer of the Piemonte plain, dilution can be considered as the main cause for nitrate attenuation in groundwater.  相似文献   

19.
A one-dimensional mathematical model based on convection–dispersion equation in unsaturated porous media is presented to compute inorganic total solid concentration in the soil column under the Shiraz landfill. In addition, a dynamic mathematical model is formulated to simulate concentrations of ions such as Ca2+ , Mg2+, Fe2+, K+, Na+, Cl, SO4 2− and HCO3 as well as PH and EC in soil profile under the Shiraz landfill. Leachw model was applied to simulate water flow, water content and hydraulic conductivity in soil depth. The model was calibrated and verified by using different sets of data collected from several segments of soil depth in the study area. The numerical solution obtained using finite element method. The simulated values for the parameters were compared with measured values as well as analytical solution. The simulated results are in good agreement with measured values. This model could be applied to field scale problems for the landfill management.  相似文献   

20.
Due to the powerful anisotropy of the physical properties of volcanic reservoirs, their component minerals and pore configuration are very complex, rendering fluid identification very difficult. This paper first computed the cementation exponent, which was based on triple porosity model, then used the varied matrix density and matrix neutron to compute the porosity, and finally combined with resistivity well log, and a P 1/2 probability distribution curve was built. The fluid properties were predicted from the shape of the P 1/2 probability distribution curve. Good results were achieved when these methods were used in the volcanic reservoir of the Wangfu fault depression, which indicated that these methods can be used in the fluid property identification of volcanic reservoirs and can also be referred to for other lithology reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号