首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 765 毫秒
1.
基于TRMM资料的西南涡强降水结构分析   总被引:1,自引:0,他引:1  
利用热带测雨卫星TRMM资料和NCEP再分析资料,研究了2007年7月17日发生在四川东部和重庆西部地区的一次西南涡强降水系统的水平和垂直结构特征。结果表明,此次强降水系统由一个主降水云团(云带)和多个零散降水云团组成,属于对流性降水,强降水雨强大、范围广。降水系统中对流云降水的样本数量比层云降水少,但对流云降水的平均降水率大,对总降水量的贡献比层云大。对流云降水的雨强谱主要集中在1~50 mm·h-1范围内,而90%层云降水的雨强都在10 mm·h-1以下。从降水系统的垂直结构来看,强降水系统的雨顶高度可伸展到16 km,最大降水率位于地面上空2~6 km的大气层,降水强度的垂直和水平分布不均匀,对流层低层云滴的碰并增长过程对降水起主要作用。西南涡引发的强降水中不管是层云降水还是对流云降水,6 km高度以下降水量的贡献最大,不同高度降水量对总降水量贡献的大小随着高度的升高而减小。  相似文献   

2.
使用中国新一代FY-4A卫星、GPM卫星的降水雷达等多源观测数据,选择两次高原涡与西南涡相互作用的暴雨个例,分析了两涡作用下盆地中尺度降水云系的空间结构特征。结果表明:西南涡与高原涡耦合作用下产生中尺度对流复合体MCC云系,短时强降水主要发生在MCC发展至成熟阶段,强降水区的云顶亮温值低于-60℃,云顶高度在12 km左右;西南涡与高原涡相互作用时,云顶亮温低值区的中心位置和强度与同时刻强降水特征很好对应;降水云体中对流性降水粒子的反射率因子在低层快速增长,层云性降水粒子的反射率因子强度增长的区域为零度亮带层附近;对流性降水雨强远大于层云,其粒子半径也大于层云降水,而对流性降水粒子的浓度高于或等于后者;层云对总降水量的贡献大于对流云,且层云降水量表现出大小均匀的粒子积聚的结果;对流性降水率垂直分布柱状明显且有云墙,层云性降水率垂直分布呈不规则柱状且没有显著的云墙,降水率均随海拔高度的升高而减小,5 km以下对流层对总降水量的贡献最大。  相似文献   

3.
一次高原涡和西南涡作用下强降水的回波结构和演变分析   总被引:3,自引:1,他引:2  
周淼  刘黎平  王红艳 《气象学报》2014,72(3):554-569
2009年7月30—31日,青藏高原东侧背风坡发生了一次持续性强降水过程。在高原涡和西南涡相继出现并相互作用的天气环境中,四川盆地内生成了3个中尺度对流系统。使用新一代天气雷达组网的反射率因子,美国环境预报中心(NCEP)再分析资料,以及热带测雨卫星搭载的测雨雷达(TRMM PR)反射率因子,可以得到这次暴雨的发展演变及其三维结构特征。通过与TRMM PR探测资料的对比验证,地基组网雷达的结果与其非常一致,基本能反映出对流系统的演变全貌,而在高原和山区地基雷达缺测的区域,测雨雷达探测资料可以做为补充。分析表明,降水落区的低层正涡度和水汽辐合上升与高层负涡度和水汽辐散相配合,是触发暴雨的有利条件。第1个降水系统位于高原涡东南侧,随着高原涡的移动衰亡移出盆地并最终消散,降水系统和高原涡在时间上有滞后相关,二者移动速度的突变较为一致;第2和第3个降水系统在西南涡出现的时段强烈发展,在局地停留维持并打通成为一条沿山脉走向的贯穿整个盆地的混合降水回波带,在西南涡发展至成熟阶段给四川盆地南部带来最大小时降水,降水系统和西南涡的相关无论在强度还是移速上都非常显著。在复杂的地形条件下,青藏高原和四川盆地相接处,降水云团的0℃层高度并未随地表发生明显变化,但降水云团进入盆地后,低于0℃层高度的降水粒子融化变为液相,使得云团从对流型降水变为分层结构的层云降水。  相似文献   

4.
《高原气象》2021,40(4):829-839
GPM(Global Precipitation Measurement)卫星目前被广泛应用于对流系统的研究中,但受限于卫星轨道扫描方式,在中纬度青藏高原东部区域,GPM轨道观测数据捕获完整的强对流系统较为困难。本文利用全球降雨观测GPM卫星资料、FY-4A卫星资料、NCEP-FNL和ERA-Interim再分析资料,结合地面观测资料,研究了2018年7月1日发生在高原东坡的一次暴雨强降水系统结构。结果表明:层云降水和对流性降水组成的混合性降水云团中,对流云样本数只有层云的1/5,但平均降水率是层云的14倍,对总降水的贡献达到75%,对流性降水贡献远高于南方强降水系统;强降水质心离地高度约2 km,具有比我国南方同类强对流系统更明显的低质心特征;对流云内云滴谱较宽,云粒子半径差异较大,2~5 km高度出现明显的粒子累积带,与层云系统具有显著差异。在副高外围西南气流的引导下,来自孟加拉湾的水汽通道打通,甘肃省南部700 hPa比湿可达16 g·kg~(-1),大气可降水量普遍达到40 kg·m~(-2)以上,加之大气不稳定能量较高,高原涡和700 hPa切变线合并触发了此次对流性强降水。受云团前侧高压脊阻挡,暴雨云团从高原东部初生至发展旺盛阶段用时接近4 h,自西向东移动约3个经度,属于准静止型暴雨云团,暴雨云团移速缓慢是导致此次局地极端强降水的重要原因。  相似文献   

5.
高原涡诱生西南涡特大暴雨成因的个例研究   总被引:25,自引:6,他引:19       下载免费PDF全文
赵玉春  王叶红 《高原气象》2010,29(4):819-831
利用多途径探测与再分析资料,通过诊断分析、数值模拟和敏感性试验,对2008年7月20~21日一次高原涡东移诱生西南涡并引发川中特大暴雨的天气过程进行了初步分析,探讨了西南涡特大暴雨发生的中尺度环境场特征,特殊地形和非绝热物理过程在高原涡东移诱生西南涡特大暴雨中的作用。结果表明,高原涡形成后沿高原东北侧下滑,在四川盆地诱生出西南涡,川中特大暴雨在西南涡形成过程中由强中尺度对流系统(MCSs)的活动造成。高原涡东移诱生的低层偏东气流在川西高原东侧地形的动力强迫抬升作用下,释放对流有效位能激发出MCSs产生强降水,降水凝结潜热加热反馈驱动西南涡快速发展。地形的动力作用仅能形成浅薄的西南涡,降水凝结潜热的加入才能使西南涡充分发展。高原涡的发展主要受地面热通量影响,它的发展与否在很大程度上决定西南涡能否形成。盆地周边高大山脉对西南涡的位置分别有不同程度的影响,而盆地周边高大山脉上叠加的中小尺度地形对西南涡和暴雨带的整体位置影响不大,在一定程度上影响暴雨的落区。  相似文献   

6.
利用TRMM卫星资料对"07.7"川南特大暴雨的诊断研究   总被引:2,自引:0,他引:2  
利用TRMM卫星探测结果,结合多普勒雷达风廓线资料,研究了2007年7月9日发生于四川盆地南部的一次特大暴雨过程在不同阶段的降水粒子风廓线、潜热和降水结构特征。结果表明:(1)大暴雨区存在低层辐合、高层辐散的典型垂直环流结构。(2)强降水系统由一个主降水云团和多个零散降水云团组成;降水系统中对流降水所占面积比层云降水面积小,但对流降水具有很强的降水率,对总降水量的贡献超过层云降水。(3)降水发展旺盛阶段,强对流降水的雨顶高度可达17 km,强降水主体中垂直方向和水平方向均存在非均匀的降水强度分布;减弱阶段,强降水雨顶高度仅10 km左右,且其层云降水有清晰亮度带。  相似文献   

7.
基于加密自动站降水、葵花8卫星和ECMWF ERA5再分析等多种资料,本文对2018年6月17日08时至18日22时(协调世界时,下同)一次青藏高原(简称高原)中尺度对流系统(Mesoscale Convective System,简称MCS)东移与下游西南低涡作用并引起四川盆地强降水的典型事件进行了研究(四川盆地附近最大6小时降水量高达88.5 mm)。研究表明,本次事件四川盆地的强降水主要由高原东移MCS与西南低涡作用引起,高原MCS与西南低涡的耦合期是本次降水的强盛时段,暴雨区主要集中在高原东移MCS的冷云区。高原东移MCS整个生命史长达33 h,在其生命史中,它经历了强度起伏变化的数个阶段,总体而言,移出高原前后,高原MCS对流的重心显著降低,但对流强度大大增强。在高原MCS的演变过程中,四川盆地有西南低涡发展,该涡旋生命史约为21h,所在层次比较浅薄,主要位于对流层低层。西南低涡与高原MCS存在显著的作用,在高原MCS与西南低涡耦合阶段,两者的上升运动区相叠加直接造成了强降水。此后,由于高原MCS系统东移而西南低涡维持准静止,高原MCS与西南低涡解耦,西南低涡由此减弱消亡,东移高原MCS所伴随的降水也随之减弱。涡度收支表明,散度项是西南低涡发展和维持的最主导因子,此外,倾斜项是800 hPa以下正涡度制造的第二贡献项,而垂直输送项则是西南低涡800hPa以上正涡度增长的另一个主导项,这两项分别有利于西南低涡向下和向上的伸展。相关分析表明,在西南低涡发展期间,高原MCS中冷云面积(相当黑体亮度温度TBB≤?52°C)可以有效地指示西南低涡强度(涡度)的变化,超前两小时的相关最显著,相关系数可达0.83。  相似文献   

8.
《高原气象》2021,40(3):525-534
为提高对西南涡强对流天气特征的深入理解,更好地研究其临近预报与预警方法,利用2014-2017年西南低涡年鉴资料、全国2400余个国家级气象台站逐小时观测数据、国家地基闪电监测资料、危险天气报、欧洲中心ERA-Interim再分析资料,统计分析了西南涡发生发展过程中引发的强对流天气特征和强降水天气形势,并定量诊断了不同移动路径的西南涡强降水在动力学和热力学条件方面的异同点。结果表明:(1)约四分之一西南涡会引发强对流天气,强对流落区主要位于西南涡东南象限,类型以短时强降水为主,强度集中分布在22~32 mm·h~(-1)。这是由于西南涡东南象限和西南气流耦合相互作用带来高温高湿平流,容易引发对流不稳定并产生对流性降水。(2)西南涡强降水集中在春、夏季,移出源地的西南涡(约五分之二)比准静止类(约五分之一)更容易引发强降水,其中春季几乎只有移出源地的西南涡会触发强降水,这与移出源地的西南涡暖湿气流和水汽输送更加旺盛有关。(3)准静止类西南涡比移动类西南涡雨强更强,这可能是因为移动类垂直风切变更强,不利于高效降水。  相似文献   

9.
从大气加热角度分析了发生于2014年10月27~28日的一次非典型西南低涡生成、发展过程及其降水特征,揭示了西南低涡和降水系统之间的相互关系。得到以下结论:(1)西南低涡发生之前的降水使得降水区空气的非绝热加热率随高度不断增加从而促进了此次西南低涡的生成;(2)此次西南低涡的降水主要以对流性降水为主,降水大值中心位于涡心的偏东侧;(3)强盛期的西南低涡伴随有次级环流,次级环流既促进了低涡的进一步发展,又有利于触发涡心东侧的对流从而引发强降水。  相似文献   

10.
青藏高原低涡(简称高原低涡)和西南涡是影响我国降水的重要天气系统,两者同步变化是引发我国西南和东部地区强降水的重要方式,而两低涡同步变化的物理过程和机理目前尚不清晰。为探究高原低涡和西南涡同步变化的物理机制,选取2020年超强超长梅雨期间一次高原低涡与西南涡同步变化过程,利用ERA5逐小时再分析资料及降水观测资料,分析两涡共存时特殊时间节点所对应的强度、结构等演变特征及位涡收支。结果显示:水平位置不重叠的高原低涡和西南涡也可发生同步变化,即强度变化特征大致相似。两低涡在同步变化之前各自的演变机理不同,但同步变化时两者的演变机理基本一致。具体地,未发生同步变化时,高原低涡主要依靠加热场作用维持东移,西南涡则依靠水平位涡通量散度作用得以维持;两涡同步变化时,两者强度变化相似,演变机理一致,两涡维持主要依靠水平位涡通量散度作用,加热场作用次之。  相似文献   

11.
In this study, an east-moving Tibetan Plateau vortex (TPV) is analyzed by using the ERA-5 reanalysis and multi-source satellite data, including FengYun-2E, Aqua/MODIS and CALIPSO. The objective is to demonstrate: (i) the usefulness of multi-spectral satellite observations in understanding the evolution of a TPV and the associated rainfall, and (ii) the potential significance of cloud-top quantitative information in improving Southwest China weather forecasts. Results in this study show that the heavy rainfall is caused by the coupling of an east-moving TPV and some low-level weather systems [a Plateau shear line and a Southwest Vortex (SWV)], wherein the TPV is a key component. During the TPV's life cycle, the rainfall and vortex intensity maintain a significant positive correlation with the convective cloud-top fraction and height within a 2.5° radius away from its center. Moreover, its growth is found to be quite sensitive to the cloud phases and particle sizes. In the mature stage when the TPV is coupled with an SWV, an increase of small ice crystal particles and appearance of ring- and U/V-shaped cold cloud-top structures can be seen as the signature of a stronger convection and rainfall enhancement within the TPV. A tropopause folding caused by ageostrophic flows at the upper level may be a key factor in the formation of ring-shaped and U/V-shaped cloud-top structures. Based on these results, we believe that the supplementary quantitative information of an east-moving TPV cloud top collected by multi-spectral satellite observations could help to improve Southwest China short-range/nowcasting weather forecasts.  相似文献   

12.
一类低涡切变型华南前汛期致洪暴雨的分析研究   总被引:5,自引:2,他引:3  
采用2008年我国南方暴雨野外科学试验(SCHeREX)加密资料和NCEP再分析资料、 FY-2C卫星TBB资料以及常规观测资料对广西致洪暴雨进行了研究。研究发现, 西南涡是此次暴雨过程的直接影响系统, 对流和降水主要发生在低涡的中部及其东南方。中高纬切断低压和副热带高压稳定维持, 500 hPa短波槽沿高原东侧南下, 诱导西南涡向东南移入广西, 这种情况并不太常见, 这是由于槽后冷空气活跃, 但路径偏西。受副热带高压西伸影响, 低槽与西南低涡移动缓慢。在移入广西前西南涡一度减弱, 但由于有明显的中、 低纬系统相互作用存在, 季风槽为本次暴雨输送了充沛的水汽, 致使西南涡再度加强, 引发暴雨。暴雨过程中中尺度对流云团活动频繁, 强度大, 降水强, 有大约11个中尺度雨团缓慢移动。桂林的探空资料表明, 暴雨区中低层温度层结多为中性, 这可能是对流混合的结果, 西南涡过境后, 低层风场有明显变化, 大气抬升凝结高度显著降低, 对流有效位能 (CAPE) 由于释放而降低。在上述研究的基础上, 本文提出了一类华南前汛期低涡切变型暴雨概念模型。  相似文献   

13.
In this paper, we study a persistent heavy precipitation process caused by a special retracing plateau vortex in the eastern Tibetan Plateau during 21–26 July 2010 using tropical rainfall measuring mission (TRMM) data. Results show that during the whole heavy rainfall process, the precipitation rate of convective cloud is steady for all four phases of the plateau vortex movement. Compared with the convective precipitation clouds, the stratiform precipitation clouds have a higher fraction of area, a comparable ratio of contribution to the total precipitation, and a much lower precipitation rate. Precipitation increases substantially after the vortex moves out of the Tibetan Plateau, and Sichuan Province has the most extensive precipitation, which occurs when the vortex turns back westward. A number of strong convective precipitation cloud centers appear at 3–5 km. With strong upward motion, the highest rain top can reach up to 15 km. In various phases of the vortex evolution, there is always more precipitable ice than precipitable water, cloud ice water and cloud liquid water. The precipitating cloud particles increase significantly in the middle and lower troposphere when the vortex moves eastward, and cloud ice particles increase quickly at 6–8 km when the vortex retraces westward. The center of the latent heat release is always prior to the center of the vortex, and the vortex moves along the latent heat release areas. Moreover, high latent heat is released at 5–8 km with maximum at 7 km. Also, the latent heat release is more significant when the vortex moves out of the Tibetan Plateau than over the Tibetan Plateau.  相似文献   

14.
利用高空实况实时分析场、FY-2ETBB以及地面加密自动站实况资料,对2014年9月13~14日发生在四川盆地东北部的大暴雨过程进行了分析。结果表明:(1)川东北大暴雨天气过程形成的关键是较为深厚的西南低涡长时间稳定少动,大暴雨区位于北支西风急流南侧和南支东风显著风速带北侧辐散上升运动区的重叠区内,稳定的东高西低的环流形势是这次暴雨发生的大尺度环流特征,地面风向切变的形成对暴雨的产生具有一定的指示意义;(2)在长生命史、稳定的西南低涡内存在多个MCS对流云团的连续生消,MCS云团冷云中心都呈近圆形,移动缓慢,云团发展到成熟阶段,冷云中心TBB值低于-72℃,在减弱的冷云罩中有中小尺度雨团的生成、畸变、分裂的现象发生,在每个强降雨时段内又存在着两个或多个短时强降水峰值;(3)在此次降水过程中重庆沙坪坝站对于广安13日的强降水更具有指示意义,3个时次中沙坪坝站露点曲线和层结曲线之间形成低层暖湿,中高层干冷,有利于强对流天气发生的“喇叭口”形状。   相似文献   

15.
青藏高原和四川盆地夏季对流性降水特征的对比分析   总被引:3,自引:1,他引:2  
李典  白爱娟  薛羽君  王鹏 《气象》2014,40(3):280-289
本文利用TRMM(Tropical Rainfall Measure Mission)多种探测结果,针对青藏高原和四川盆地各两次对流性降水天气进行了对比分析,结果表明:(1)高原降水系统以对流云降水为主,弱降水样本数量高,由孤立零散的块状降水云团组成,对流中心离散,降水范围小,雨区极不均匀,垂直发展厚度浅薄,降水粒子数量少,雨滴小,潜热释放以地面以上2~5 km高度层为主,夏季近地面层冰晶粒子含量高,降水过程中云顶亮温与地表雨强之间的相关性差,云顶亮温越高的对流云团其闪电频数越高。(2)盆地降水系统强降水样本数量高,由一个主降水系统和周边零散的降水云团组成,降水范围大,对流中心相对集中,雨区较均匀,垂直发展厚度高,对流系统深厚,雨滴大并集中,潜热释放呈一致的双峰型结构,峰值分别出现在7和16km高度上,冰雹粒子在对流层较高层含量高,云顶亮温与地表雨强之间呈显著的负相关,盆地的闪电频数显著高于高原地区,且闪电活动主要集中在亮温偏低的降水云体中。  相似文献   

16.
TRMM卫星对青藏高原东坡一次大暴雨强降水结构的研究   总被引:3,自引:0,他引:3  
利用热带测雨卫星(TRMM)探测资料,NCEP、ERA-Interim再分析资料,结合C波段多普勒雷达和其他地面观测资料,研究了2013年7月21日发生在青藏高原东坡的一次大暴雨强降水结构。结果表明,高能、高湿的不稳定大气在700 hPa切变线及地面辐合线的触发下产生了此次大暴雨,降水具有明显的强对流性质。从水平结构来看,降水系统由成片的层云雨团中分散分布的多个对流性雨团组成,对流样本数远少于层云,但平均雨强是层云的4.7倍,对总降水的贡献达到25.6%;以超过10 mm/h雨强为强度标准,3个20-50 km、回波强度在45-50 dBz的β中尺度对流雨团零散地分布在主雨带中,对应 < 210 K的微波辐射亮温区和≥ 32 mm/h的地面强降水;对流降水的雨强谱集中在1-50 mm/h,其中20-30 mm/h的雨强对总雨强的贡献最大,这与中国东部降水有着显著区别,而90%的层云降水的雨强均小于10 mm/h。从垂直结构来看,对流降水云呈柱状自地面伸展,平均雨顶高度随地面雨强的增强而不断升高(5-12 km),强降水中心区域的质心在2-6 km;降水廓线反映出强降水系统中降水主要集中在6 km以下高度范围,且降水强度在垂直方向分布不均匀,对流降水和层云降水的强度随高度升高的总趋势是趋于减弱,但在一定高度范围内,对流降水强度随高度升高而增大,并且在多个地表雨强廓线中都有体现。此外,地基雷达的探测结果也表明了强降水的低质心特点及显著的逆风区演变特征,这是对TRMM PR探测的验证和补充。   相似文献   

17.
利用TRMM卫星多种探测仪器得到的观测资料,分析研究2010年7月15~18日由西南低涡引发的四川盆地区域性暴雨天气过程,重点揭示了该次过程降水的三维结构特征。结果表明:红外和微波亮温数据均能从一定侧面反映低涡云系的降水特征;西南低涡引发的降水属于中尺度系统降水,层云降水对总降水的贡献率超过90%,存在明显的亮带结构;大范围降水区内包含一条主雨带和若干独立的对流性雨团,表现为大范围层云降水围绕对流降水的结构特征,对流性降水云顶最高能发展到17km,局部最大降水率出现在2~5km高度;降水凸起部分为独立的对流降水云团,呈塔状立体结构。   相似文献   

18.
利用常规地面、高空资料、新一代天气雷达资料、雨滴谱资料,对2012年8月3日发生在伊犁河谷的一次较大范围暴雨的天气背景、雷达回波特征和降雨微物理特征等进行深入分析。结果表明,200hPa西西伯利亚西风槽、500hPa中亚低涡和地面冷锋是这次强降雨过程的主要影响系统。河谷喇叭口地形对气流的机械挤压、东高西低地形对对流的触发、地形强迫抬升对对流和降水的增强具有重要影响。这场降水过程属于积层混合云降水,其中大面积的层状云中嵌有多个对流云团,这些云团连接在一起就构成了对流性雨带,通过对暴雨雨滴谱演变分析得出,这次暴雨主要降水由对流性云团造成,对流云团微物理结构存在明显的不均匀性,其中存在多个强降水中心,其水平尺度多维持在10km左右,持续时间维持在5分钟到10分钟之内,降水集中且雨滴数浓度较高,一般在1000m-1个以上,雨滴谱宽及分布差异很大,小于1mm粒子数浓度很高,对雨强的贡献占两成以上。  相似文献   

19.
两次高原涡与西南涡作用下的暴雨过程对比分析   总被引:3,自引:0,他引:3       下载免费PDF全文
利用FY-2D卫星TBB资料、NCEP1°×1°再分析资料和地面自动站观测资料,对2008年7月20~22日和2012年7月20~22日两次由高原涡和西南涡相互作用,造成四川暴雨过程进行对比分析,结果表明:(1)强降雨落区与引导高原涡移动的高空槽有密切关系,高空槽的移动和变化大致决定了强降雨的落区。(2)造成两次暴雨过程的对流云团生成和发展虽然有一定的差异,但最终会发展合并形成一个MCC;并且强降雨位于对流云团TBB最大梯度区,一般靠近亮云核,并在亮云核的西北部。(3)两次暴雨过程期间,均有低层辐合高层辐散,对应着强的涡度和强的上升运动,并且散度、涡度和垂直速度都是增大的。(4)两次暴雨过程期间水汽来源存在着差异,但水汽是逐渐增强的,并且水汽辐合中心与强降雨落区相对应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号