首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
基于TRMM资料的西南涡强降水结构分析   总被引:1,自引:0,他引:1  
利用热带测雨卫星TRMM资料和NCEP再分析资料,研究了2007年7月17日发生在四川东部和重庆西部地区的一次西南涡强降水系统的水平和垂直结构特征。结果表明,此次强降水系统由一个主降水云团(云带)和多个零散降水云团组成,属于对流性降水,强降水雨强大、范围广。降水系统中对流云降水的样本数量比层云降水少,但对流云降水的平均降水率大,对总降水量的贡献比层云大。对流云降水的雨强谱主要集中在1~50 mm·h-1范围内,而90%层云降水的雨强都在10 mm·h-1以下。从降水系统的垂直结构来看,强降水系统的雨顶高度可伸展到16 km,最大降水率位于地面上空2~6 km的大气层,降水强度的垂直和水平分布不均匀,对流层低层云滴的碰并增长过程对降水起主要作用。西南涡引发的强降水中不管是层云降水还是对流云降水,6 km高度以下降水量的贡献最大,不同高度降水量对总降水量贡献的大小随着高度的升高而减小。  相似文献   

2.
使用中国新一代FY-4A卫星、GPM卫星的降水雷达等多源观测数据,选择两次高原涡与西南涡相互作用的暴雨个例,分析了两涡作用下盆地中尺度降水云系的空间结构特征。结果表明:西南涡与高原涡耦合作用下产生中尺度对流复合体MCC云系,短时强降水主要发生在MCC发展至成熟阶段,强降水区的云顶亮温值低于-60℃,云顶高度在12 km左右;西南涡与高原涡相互作用时,云顶亮温低值区的中心位置和强度与同时刻强降水特征很好对应;降水云体中对流性降水粒子的反射率因子在低层快速增长,层云性降水粒子的反射率因子强度增长的区域为零度亮带层附近;对流性降水雨强远大于层云,其粒子半径也大于层云降水,而对流性降水粒子的浓度高于或等于后者;层云对总降水量的贡献大于对流云,且层云降水量表现出大小均匀的粒子积聚的结果;对流性降水率垂直分布柱状明显且有云墙,层云性降水率垂直分布呈不规则柱状且没有显著的云墙,降水率均随海拔高度的升高而减小,5 km以下对流层对总降水量的贡献最大。  相似文献   

3.
基于TRMM资料的高原涡与西南涡引发强降水的对比研究   总被引:4,自引:0,他引:4  
利用TRMM(Tropical Rainfall Measuring Mission)卫星探测结果结合NCEP(National Centers for Environmental Prediction)再分析资料, 对2007年7月17日四川、重庆地区的一次西南涡强降水系统和2008年7月21日四川东部的东移高原涡强降水系统的三维结构特征、雨顶高度以及降水廓线特征进行对比分析研究。结果表明:(1)两次降水过程均是发生在西南—东北向的水汽辐合带中, 且降水云群均位于低涡的东南方。(2)两次强降水在水平结构上均表现为由一个主降水雨带和多个零散降水云团组成, 高原涡强降水过程比西南涡强降水的降水强度和范围都要大。降水雷达探测到的两个中尺度降水系统均以降水范围大、强度弱的层云降水为主, 但对流性降水对总降水量的贡献较大, 其中西南涡降水中对流降水所占比例比高原涡的大, 对总降水率的贡献也大。(3)垂直结构上:两次强降水的雨顶高度均是随地表雨强的增加而增加, 且最大雨顶高度接近16 km, 但西南涡强降水中的雨顶高度比高原涡更高, 说明西南涡降水过程中对流旺盛程度强于高原涡。(4)两次强降水中雨滴碰并增长过程以及凝结潜热的释放主要集中在8 km以下, 但8 km以上西南涡降水变化大于高原涡, 且前者在8~12 km高度层的降水量对总降水量贡献百分比大于后者。  相似文献   

4.
基于新一代天气雷达三维组网等多源气象数据分析了2009年7月30~31日的一次西南低涡触发的强降水天气过程以及主要降水时段雷达回波三维结构及演变特征,研究发现:(1)西南低涡降水与低涡强度发展存在不一致性,强降水出现在低涡强度达到最强之前;(2)中尺度对流系统的发生、发展是此次低涡降水的重要影响因素,西南低涡与中尺度对流系统既相互独立又相互影响,降水是两者共同作用的结果;(3)最强组合反射率因子同样出现在西南低涡发展到最强盛之前,西南低涡能显著影响盆地内降水雷达回波的强度与类型。   相似文献   

5.
从大气加热角度分析了发生于2014年10月27~28日的一次非典型西南低涡生成、发展过程及其降水特征,揭示了西南低涡和降水系统之间的相互关系。得到以下结论:(1)西南低涡发生之前的降水使得降水区空气的非绝热加热率随高度不断增加从而促进了此次西南低涡的生成;(2)此次西南低涡的降水主要以对流性降水为主,降水大值中心位于涡心的偏东侧;(3)强盛期的西南低涡伴随有次级环流,次级环流既促进了低涡的进一步发展,又有利于触发涡心东侧的对流从而引发强降水。  相似文献   

6.
南京对流降水和闪电的TRMM资料分析   总被引:7,自引:6,他引:1  
张祎  王振会  肖稳安 《气象科学》2010,30(4):468-474
用热带降雨测量卫星的测雨雷达2A25产品、微波成像仪1B11产品和闪电成像仪观测资料分析了2007—2008年南京及周边地区五个对流降水云系的降水结构、微波亮温和闪电特性。结果表明,当对流降水云系处于发展阶段时,对流降水是降水量的主要贡献者;而当对流降水云系处于成熟或者逐渐消亡阶段时,对流降水就逐渐向层云降水转变,此时降水量主要由层云降水产生。两种类型降水在降水强度、雨顶高度存在显著区别。微波亮温与近地面2 km处的降水强度呈负相关,基本能反映出近地面的降水强度,尤其是在对流系统的成熟和消散阶段。37.0 GHz亮温最能指示近地表的降水强度。近地面2 km处的降水强度均随闪电次数的增加而增强。  相似文献   

7.
文中利用TRMM卫星的测雨雷达和微波成像仪探测结果,研究了1998年7月20日21时(世界时)和1999年6月9日21时发生在武汉地区附近和皖南地区的两个中尺度强降水系统的水平结构和垂直结构,以及TMI微波亮温对降水强弱和分布的响应。研究结果表明:这两个中尺度强降水系统中对流降水所占面积比层云降水面积小,但对流降水具有很强的降水率,它对总降水量的贡献超过了层云降水。降水水平结构表明,两个中尺度强降水系统由多个强雨团或雨带组成,它们均属于对流性降水;降水垂直结构分析表明,强对流降水的雨顶高度可达15km,强对流降水主体中存在垂直方向和水平方向非均匀降水率分布区,层云降水有清晰的亮度带,层云降水的上方存在多层云系结构。降水廓线分布表明:对流降水廓线与层云降水廓线有明显的区别,并且降水廓线清晰地反映了降水微物理过程的垂直分布。整个中尺度强降水系统中对流降水与层云降水的区别还反映在标准化的总降水率随高度的分布。微波信号分析表明:TMI85 GHz极化修正亮温,19.4与37.0,19.4与85.5,37.0与85.5 GHz的垂直极化亮温差均能较好地指示陆面附近的降水分布。  相似文献   

8.
台风麦莎与赤道穿透对流云团的初步比较分析   总被引:1,自引:0,他引:1  
陈丹  吕达仁 《气象学报》2010,68(6):885-895
利用TRMM卫星的测雨雷达、微波成像仪、可见光和红外扫描仪资料详细分析比较了麦莎台风和位于南海南部的赤道穿透对流云团(EPCC)的云高以及降水结构特征.首先,对热带地区对流层到平流层的过渡带(TTL)以及进入TTL的穿透对流云团进行了阐述和定义.然后,分析对比了赤道穿透对流云团和台风麦莎不同生命史阶段的云高、降水结构特征,分析对比结果表明:(1)在强降水区:麦莎台风和EPCC的云顶上部均出现了冰粒子散射现象,但EPCC的散射强度强,微波亮温值均低于180 K,并且其雷达云高和红外云顶亮温云高相差较大、云顶亮温曲线平缓.(2)EPCC的深对流数量四分比、穿透对流数量百分比、尤其是穿透对流数量占深对流数量比,都比麦莎台风各阶段的高;在麦莎台风和EPCC(10-20 km)云体中大部分云高集中在10-12 km,但EPCC(10-20 km)的云高谱相对具有连续性、相对较宽.(3)麦莎台风以层云降水为主,对总降水量的贡献中也是从云降水贡献大,但是EPCC中却是对流性降水的贡献大,且EPCC对流降水与层云降水的像素数量比值和降水量比值也比麦莎台风的3个时次都高.(4)EPCC的降水廓线深度无论是从云降水还是对流降水都比麦莎台风深,层云廓线深度达11 km,对流廓线深度达18 km.另外,从EPCC的穿透对流数量百分比比麦莎台风多,层云、对流降水廓线比麦莎台风深这几方面,一定程度上说明了EPCC的局部垂直对流强度比麦莎台风强.  相似文献   

9.
为揭示春季粤北降水微物理过程,选取2020年2—3月粤北2个站点雨滴谱仪观测资料,统计分析了春季粤北地区层云降水、混合性降水、对流性降水的微物理特征,结果表明:(1)对流性降水过程中大雨滴是影响雨强大小的重要因素;层云降水过程,小雨滴数浓度占比大于90%,平均雨强小于1 mm/h,雨滴数是影响雨强的重要因素。(2)层云性降水雨滴谱呈单峰结构,谱宽小;对流性降水雨滴谱为多峰结构,谱宽最大;混合性降水谱型与对流性降水相似。3类降水峰值均在0.2~0.3 mm范围,均是Gamma分布谱型拟合最优。(3)春季粤北地区对流性降水的Z-I关系为Z=173.9I^(1.452),混合性降水的Z-I关系为Z=72.77I^(1.97),层云性降水过程的Z-I关系为Z=194.3I^(1.296)。  相似文献   

10.
基于FY-2C静止卫星红外和水汽通道资料,简单分析了发生在四川盆地的西南低涡暴雨云团生消过程,给出了一些有意义的云团生命特征。同时,结合相应的地面自动站降水资料,详细分析了卫星红外和水汽通道云顶亮温与对流云团降水之间的关系特征,结果表明:对于一完整对流降水过程,1小时内最低水汽亮温和水汽亮温增量能很好地描述地面1小时累计降水特征。然而,用静止卫星红外或水汽通道亮温来表征的云团降水特征是非常复杂的。尽管具有相同的最低云顶红外或水汽亮温,但对不同的对流过程其总体降水量级趋势不一样。而且,对于同一对流过程的不同发展阶段,即使出现云顶红外或水汽亮温一样,但其地面降水特征也是不一致的。甚至是对于同一时刻具有相同最低红外或最低水汽亮温特征的云,其降水落区与量级都不尽相同。正是这些复杂的降水特征,使得西南低涡对流云团的降水估算具有很大的难度。   相似文献   

11.
中国东部云-降水对应关系的分析与模式评估   总被引:2,自引:1,他引:1  
为评估和改进模式中不同类型云与降水的对应关系,利用1998—2007年卫星-台站融合降水资料和国际卫星云气候计划的卫星观测云资料,采用诊断方法分析了中国东部季风区冬季层云、夏季对流云、层云与降水的水平分布及季节变化对应关系,并评估了BCC_AGCM模式的T42和T106分辨率版本对云-降水对应关系的模拟能力。观测资料分析结果表明,中国东部冬季云带和雨带都稳定少动,降水主要来自雨层云和高层云,南部沿海层云和层积云也对降水有贡献;夏季,中国东部表现为层积混合云降水特征,对流云带与降水带具有较好的对应关系,并具有一致的移动特征。对流降水主要来自深对流云和卷层云,深对流云云量和降水中心完全吻合,卷层云云带则表现出比深对流云主体和降水带偏北的现象;层云降水主要来自高层云和层积云。模式评估结果表明,中、低分辨率版本的BCC_AGCM模式均模拟出了冬季层云和稳定少动的降水带、夏季深对流云、卷层云和降水带的对应关系及随季风推进的移动特征。与T42模式版本相比,T106模式版本在夏季对流云云量的模拟及其与降水带的对应关系方面有所改善,说明改进的BCC_AGCM积云对流参数化方案与高分辨率模式网格更匹配,但冬季层云云量模拟误差变大,与降水带的对应关系变差,其原因值得进一步分析研究。  相似文献   

12.
刘鹏  傅云飞 《大气科学》2010,34(4):802-814
本文利用热带测雨卫星(TRMM)上搭载的测雨雷达(PR)十年的探测结果, 对夏季中国南方对流降水和层云降水的气候特征进行了分析。研究结果表明:夏季中国南方层云降水频次较对流降水频次高出两倍以上, 而对流降水强度至少是层云降水强度的4倍; 就整个中国南方而言, 这两种类型的降水对总降水量贡献相当。日变化分析表明夏季中国南方大部分地区的对流降水主要出现在午后, 层云降水出现时间并不集中, 但这两类降水的频次日变化均显示了明显的地域性特征; 对降水廓线日变化的分析结果表明, 对流降水和层云降水廓线的日变化主要表现在“雨顶”高度的日变化, 即对流降水云的厚度有明显的日变化变化特征, 不同地区的降水廓线存在明显的差异。降水率剖面分析结果显示了对流降水的“雨顶” 高度日变化较层云降水剧烈, 降水率的日变化则相反, 且层云降水率的地域性特征更强。  相似文献   

13.
针对2007年7月8~10日四川盆地南部的特大暴雨天气过程,利用逐小时红外云顶黑体亮度温度结合地面加密雨量资料对其进行了对比分析。分析指出此次特大暴雨是由西南低涡内几个中尺度对流云团连续生消造成的,在其开始阶段有一中尺度对流复合体沿基本气流方向强烈发展,此阶段云团虽发展旺盛,但由于雨团随系统移动较快,并未造成洪灾。此云团减弱后,低涡环流仍维持并少动,又依次触发了3个中尺度对流的生成,这3个中尺度对流云团逆基本气流向SSW方向缓慢移动,造成的降水落区集中,中心雨强大,持续时间长,由此导致了暴雨洪涝的产生。强降水位置对于前向传播系统,一是在其发展的前端,二是在冷云中心的略偏后的位置,最大雨强出现在云团成熟之前发展最剧烈时,而后向传播的低涡云团强降水主要在冷云中心附近,最大雨强出现在云团发展最旺盛(冷云中心TBB最低)时。  相似文献   

14.
0302号(鲸鱼)台风降水和水粒子空间分布的三维结构特征   总被引:5,自引:8,他引:5  
由于缺乏关于台风结构信息的高分辨率资料,即探测台风云系内部结构特征的技术限制,造成了进一步理解台风的动力传送特征的困难.作者用热带测雨卫星(TRMM,Tropical Rainfall Measuring Mission)的测雨雷达(PR,Precipitation Radar)和TRMM微波图像仪(TMI,TRMM Microwave Imager)资料详细研究了"鲸鱼"台风(0302号)于2003年4月16日1105 UTC的降水和降水云系中各种水粒子的三维结构特征.通过分析发现该时刻:(1)台风降水中大部分区域为层性降水(占总降水面积的85.5%),对流性降水占总降水面积的13.1%,但对流性降水的贡献却达到41.8%,所以,虽然对流性降水所占面积比例很少,但是它对总降水量的贡献却很大.(2)60%降水主要集中在距离台风中心100 km以内的区域,约占总降水量的60%.(3)各种水粒子含量随着与台风中心距离的增加而减少.降水云系中水粒子最大含量出现高度与水粒子的种类和与台风中心的距离有关.最后,分析了台风降水和降水云系中三维分布的成因.  相似文献   

15.
利用辽宁阜新国家站(121.7458°E,42.0672°N)的毫米波云雷达(8 mm)和微雨雷达(12.5 mm)对2020年8月12-13日东北冷涡影响下的一次降水过程进行了观测,分析了云降水的垂直结构特征并探讨了降水机制。结果表明:本次过程中,云水平方向发展不均匀,以层状云和层积混合云为主,云内有时还嵌有对流泡。云降水阶段性变化明显,先后出现了层状云降水、层积混合云降水和对流云降水。层状云降水和层积混合云降水均表现出明显的亮带特征,但层积混合云降水的雷达回波强度、回波顶高和降水强度明显大于层状云降水。对流云降水的雷达回波会因强降水而产生明显衰减,因此回波顶高不能表示出实际的云顶情况。层状云降水阶段,云雷达反射率随高度降低增长缓慢,雨滴在下落过程中受蒸发和碰并的共同作用,反射率降低。与层状云降水相比,层积混合云降水的碰并效应强,且由于前期降水对近地面的增湿作用,使云下蒸发弱。对流云降水阶段,反射率的增长主要发生在冰水混合层,有利于大滴的产生,拓宽了云滴谱,提高了碰并效率。  相似文献   

16.
2000—2007年登陆台风中闪电活动与降水特征   总被引:2,自引:1,他引:1       下载免费PDF全文
利用TRMM卫星LIS, PR和TMI资料,对2000—2007年41个登陆我国的台风中闪电活动和降水特征进行分析。结果表明:台风中的闪电活动整体较弱,相对而言,外雨带中的闪电活动最强,其次是眼壁,内雨带最弱,而眼壁的闪电密度最大。闪电活动沿台风径向有两个明显的高值区,主峰出现在距台风眼375 km的外雨带,次峰出现在距台风眼55 km的眼壁和内雨带相交的边界附近。台风中对流云降水面积远小于层云降水面积,其中外雨带中的对流云降水面积最大,其次是眼壁,内雨带最小;但对流降水对总降水量的贡献与层云相当。眼壁和内雨带中的对流云和层云的降水回波平均高度都小于外雨带。分析表明:TMI观测到的85.5 GHz极化修正亮温 (TPC85.5) 越低,闪电发生概率越大,外雨带具有最低的TPC85.5。有、无闪电发生区域的平均6 km高度雷达反射率因子和TPC85.5差异明显。台风区域内,闪电活动位置对应的平均6 km雷达回波强度普遍大于20 dBZ,而无闪电发生位置普遍低于30 dBZ。  相似文献   

17.
利用热带测雨卫星测雨雷达的10年探测结果,对夏季亚洲对流降水与层云降水雨顶高度分布、雨顶高度与地表降水强度的关系、雨顶高度日变化特征进行了研究。结果表明,青藏高原和中国东部平原的多数(70%以上)对流降水雨顶高度分布在8—12和5—10km,其他地区分布在5—9km;陆面对流降水雨顶平均高度高于洋面。洋面和陆面层云降水雨顶高度没有明显差异,多在5—8km。夏季亚洲浅对流降水比例少,而深厚对流主要出现在中国东部平原、西南、印度次大陆西部至伊朗高原东部地区,比例约40%。洋面和陆面的弱对流降水的雨顶平均高度在7—8km,弱层云降水相应的雨顶平均高度多小于7.5km;陆面约90%的强对流降水雨顶平均高度在9km以上,而强层云降水雨顶的平均高度通常不超过8.5km。夏季亚洲对流降水和层云降水的雨顶平均高度均随着地面平均降水率的增大而升高,两者遵从二次函数关系。对流降水及层云降水频次、强度和雨顶高度的日变化峰值分析表明,陆面这些参量的日变化强于洋面,并且三者的日变化基本同步。  相似文献   

18.
中国东部暖季对流云与层状云的比例及与降水的对应关系   总被引:2,自引:1,他引:1  
基于1985~2011年逐时地面台站观测云资料,分析了对流云和层状云及其比例关系的时空演变特征,结合逐日融合降水资料研究了对流云、层状云与季风雨带的对应关系。结果表明,中国东部暖季(5~9月)对流云发生频率平均为15.4%,层状云为30.0%。对流云与层状云发生频率的比例在广东、广西、海南省东部和贵州省大部分地区大于1,其它地区均小于1。伴随季风雨带的北进南退,层状云发生频率和云量中心均与降水中心对应,且层状云云带与季风雨带位置吻合,随时间的演变趋势也相同,说明季风雨带主要由层状降水构成,对流云发生频率和云量大值中心则位于季风雨带南侧。对流云和层状云发生频率/云量的变化在华南地区和江淮流域呈显著负相关,云的类型主要由大气稳定度决定。对流云和层状云发生频率在华北地区呈显著正相关,水汽是形成云的决定因素。就降水频率而言,华南地区层状云降水和对流云降水各占一定的比例,而江淮流域和华北地区层状云降水频率更大。  相似文献   

19.
河北一次层状云系降水的微物理机制数值模拟与分析   总被引:1,自引:0,他引:1  
利用一维层状云模式,详细分析了2009年5月1日中国中东部地区一次层状云系的微物理结构和降水过程。结果表明:此次降水为层状云系降水,云系垂直结构符合顾震潮三层概念模型和“播种云-供给云”机制,其中第一层(上层:4.7-7.0 km)存在冰雪晶,雪主要通过冰晶自动转化和凝华增长。第二层(中层:2.6-4.6 km)有冰晶、雪、霰、云水、雨滴,此层贝吉龙过程作用明显。第三层(下层:1.3-2.5 km)主要粒子为云滴、雨滴、从上层融化的雪和霰,霰的融化对于雨滴的形成贡献最大。云体发展成熟时,各层之间存在一定的播种-供应关系,如第一层向第二层顶部播撒雪和冰晶,第二层向第三层顶部播撒霰和雪。  相似文献   

20.
“碧利斯”(0604)暴雨过程不同类型降水云微物理特征分析   总被引:2,自引:3,他引:2  
本文利用"碧利斯"(0604)暴雨增幅过程高分辨率的数值模拟资料, 将降水分成对流降水和层云降水, 对比分析了不同类型降水云微物理特征和过程的差异, 探讨了不同类型降水对暴雨增幅的贡献, 结果指出:(1)暴雨增幅前, 降水基本为层云降水, 对流降水只存在于零星的几个小区域, 暴雨增幅发生时段, 对流降水所占比例较暴雨增幅前有显著增加, 平均降水强度达层云降水强度的3倍多。(2)暴雨增幅时段, 云系发展更加旺盛, 云中各种水凝物含量较增幅前明显增加, 其中, 对流和层云降水区云中水凝物含量均有一定程度增长, 但对流降水区增加更显著;而无论增幅前还是增幅时段, 对流降水区云中水凝物含量均要明显大于层云降水区, 并且两者的这种差异随着地面降水强度的增强而增大。(3)暴雨增幅前后, 对流降水区雨滴的两个主要来源最终均可以追踪到云水, 通过云水与大的液相粒子(雨滴)和大的固相粒子(雪)之间、以及大的固相粒子(雪和霰)之间的相互作用和转化, 造成雨滴增长, 并最终形成地面降水, 而层云降水区中与雨滴形成相关的上述主要云微物理过程明显变弱, 但层云降水区中暴雨增幅时段的上述过程又要强于增幅前, 说明层云降水对暴雨增幅也有一定贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号