首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 845 毫秒
1.
通木溪滑坡为一老滑坡。其前缘为滑坡强变形区;中部为弱变形区;上部为老滑坡区。滑坡复活始于1998年。2001年滑坡发生。造成5400m^2的建筑变形破坏,直接经济损失300多万元。老滑坡的形成是滑坡复活的基础条件之一。中部生活用水入渗滑体滑带,大量建筑物加载,修筑公路局部开挖坡脚,前缘通木溪河常年掏蚀坡脚及降雨冲刷坡体和入渗补给滑体滑带成为滑坡前部复活的重要诱因。目前,老滑坡处于稳定状态。弱变形区和强变形区处于欠稳定一基本稳定状态。滑体饱水及地震工况下,强、弱变形区均处于欠一不稳定状态,且强变形区稳定性最差。横向上,中部稳定性较两侧差;纵向上,滑坡中前部稳定性比后部差。因此,开展对该滑坡的形成机制研究,将具有十分重要的现实意义。  相似文献   

2.
基于对贵州省德江县香树坪斜坡工程地质条件分析及斜坡变形破坏特征分析,建立了缓倾坡外软硬互层型高斜坡演化概念模型,分析了斜坡演化机制,将斜坡形成及变形破坏过程分为河谷形成过程中的时效变形、滑移-逐级拉裂、滑移-弯曲-剪断3个阶段。并通过数值分析,再现了斜坡失稳机理及发生过程。基于软硬互层特性在斜坡演化过程中的作用量化分析表明,由于硬岩层限制软岩层的变形,导致坡体不易发生整体失稳。但软岩持续蠕变导致硬岩内能量积累增大,局部变形扩大,最终发生失稳破坏。  相似文献   

3.
2012年6月29日,岑巩县思旸镇大榕村突发大型滑坡灾害,约310104m3。大榕滑坡为古滑坡堆积区失稳。基于滑坡破坏特征分析和地质原型分析,定性判断滑坡失稳模式为蠕滑-拉裂-牵引式滑移。滑坡启动区在不合理人工填土及强降雨作用下,坡脚蠕滑并发展为失稳,由此导致主滑区坡脚支撑作用明显减弱,主滑区中下部因此滑移失稳,并牵引右侧主滑体中上部坡体逐步失稳。滑带主要位于下伏强风化基岩中。主滑体左侧向西滑移,右侧主体向SW向滑移。基于渗流场-应力场耦合数值分析,再现了滑坡失稳过程及发生机理。大榕滑坡形成机制深入研究对于西部山区类似滑坡分析及识别具有重要的参考价值。  相似文献   

4.
延安市阳崖黄土边坡开挖破坏离心模拟试验研究   总被引:1,自引:0,他引:1  
人工开挖是黄土地区滑坡形成的主要诱发因素之一,开挖导致斜坡一定范围内产生卸荷回弹和应力重分布,斜坡应力重新平衡的过程伴随着斜坡形变,甚至破坏。延安市宝塔区枣园镇阳崖滑坡为典型开挖诱发的黄土边坡,本文选取阳崖滑坡为地质原型,采用TLJ-500大型土工离心机对边坡坡脚开挖状态下变形破坏过程进行模拟试验,通过对模型控制点监测数据分析,研究边坡坡脚开挖前后坡体形变位移特征、坡体内部土压力响应特征以及边坡变形破坏机理。结果表明:坡脚开挖后临空面附近产生局部垮塌,其坡体位移、潜在滑移面以及拉张裂缝均由坡体前缘往后部渐进性变化发展。开挖后坡体内部产生明显的应力松弛,且越靠近开挖面卸荷效应越明显,开挖主要影响坡体的中前部分,对坡体后部影响较小甚至无影响,分析得知坡体变形破坏机理为典型的渐进后退式。  相似文献   

5.
朱元甲  贺拿  钟卫  孔纪名 《岩土力学》2020,41(12):4035-4044
为研究间歇型降雨作用下缓倾堆积层斜坡的变形破坏特征,以樱桃沟滑坡为例,进行了降雨作用下斜坡变形破坏的物理模拟研究。试验结果表明:前期降雨作用下坡体变形特征表现为前缘滑移沉陷、中部滑移、后缘沉陷、坡体裂缝生成,且前缘裂缝扩张明显,后期降雨作用下坡脚区域首先发生滑塌,然后依次向后缘传递发生逐阶滑塌破坏;降雨入渗易在基岩面上储存,形成暂态地下水位、高孔隙水压力区域和坡向渗流场,基岩面附近土体饱水时间长,软化程度高,抗剪强度弱化显著,边坡易沿基覆界面土层发生滑坡;坡体滑动易发生在降雨间歇期,触发特征表现为雨后坡体暂态饱和区水分和坡表积水持续下渗,导致地下水位上升滞后于降雨,造成坡体内浮托力、渗透力和孔隙水压力增大,有效应力降低,诱发滑坡。  相似文献   

6.
降雨条件下酉阳大涵边坡滑动机制研究   总被引:1,自引:0,他引:1  
刘新荣  张梁  余瑜  刘坤 《岩土力学》2013,34(10):2898-2904
以某厚堆积层滑坡为例,基于非饱和土力学理论,利用有限元方法,对雨水入渗条件下坡体的渗流及动态稳定性进行了计算和分析,研究了水分在坡体内的运移对边坡稳定性的时间效应。结果表明:边坡堆积体结构松散,土体强度差,边坡前缘坡降大,坡脚的开挖,为滑坡形成提供了便利条件;强降雨条件下使得坡脚附近首先发生变形失稳,牵引坡体后缘产生张拉裂。雨水沿坡面入渗,在坡体内形成渗流场,弱化岩土体参数,同时坡面形成饱和径流,使滑坡体前缘产生向下的渗透力,促使前缘坡体发生滑动,进而引发分级坡体产生滑移;强降雨初始阶段,滑坡体安全系数降低较快,很容易发生滑坡。该研究揭示了降雨入渗诱发厚堆积层边坡滑动机制,并以此建议采取以截、排、堵措施对边坡进行排水,同时设置嵌岩锚索抗滑桩及进行削坡清方措施对边坡进行综合治理,通过稳定性计算,效果良好。  相似文献   

7.
西藏易贡滑坡源区BH01、BH02与BH03斜坡体呈不稳定状, 严重威胁下游工程设施安全。为防控源区坡体再次高位滑动致灾, 亟待开展斜坡赋存的地质结构及变形趋势分析。文章基于2 m精度的Pleiades数字高程模型及地形影像, 厘定了定量地貌学、地质构造与滑坡学3方面证据, 确定易贡滑坡源区具有前缘叠瓦式逆冲断裂区单面山、逆冲断裂区块体、走滑断裂区块体、走滑断裂区北东向拉裂槽4个次级斜坡单元。现场地质调查发现源区坡体内发育倾向南东、南西两组主控结构面, 这两组结构面是滑坡前缘逆冲断裂、后缘走滑断裂渐进活动的结果。与山脊近直交的北东向拉裂槽可能与晚期东西伸展变形背景相关。研究认为在地质构造影响下, 易贡源区斜坡沿着北东向拉裂槽下延结构面呈现多级、多期次深层滑移, 具有岩质滑坡蠕滑-拉裂-剪断型滑动机制。依据源区拉裂缝扩展的深度判断, 源区BH02坡体具有潜在加速滑移风险, 且BH03坡体亦不稳定。   相似文献   

8.
降雨诱发缓倾顺层滑坡机制离散元模拟   总被引:2,自引:1,他引:1       下载免费PDF全文
降雨在节理岩体的离散元模拟中有一定的局限性。文章提出一种等效渗流法模拟降雨条件下地下水向坡脚的渗流过程。以西南地区某顺层岩质滑坡为例,采用施加固定水头的方法,实现地下水在滑体内部的渗流过程,从而诱发滑坡形成。研究结果表明:(1)雨水入渗从坡顶向坡脚渗流,导致滑体内部空隙水压力升高;(2)斜坡受地下水渗流影响,坡脚首先发生变形并逐渐向上部呈阶梯状扩展。随渗流时间的延长,坡脚产生滑移,斜坡中上部和后缘出现拉裂,沿软弱夹层发生整体向河流方向滑动堆积形成堰塞湖;(3)滑坡形成的地质力学模式为"滑移-拉裂",滑体前缘运动至河流对岸形成前缘鼓丘,模拟结果与现场实际特征吻合。该方法可实现降雨条件下节理岩质斜坡中地下水渗流对滑坡形成的影响模拟。  相似文献   

9.
贵州某公路边坡在雨季产生滑动,坡体后缘的裂缝呈放射状,这一现象较为特殊。通过现场调查、岩土体实验,对该公路滑坡变形破坏机制、放射状裂缝形成机制及滑坡稳定性进行评价。研究结果表明:研究区的地形及物质组成是滑坡发生的地质基础,连续的强降雨是滑坡发生的诱发因素;坡体后缘先破坏滑动,推动挤压前缘土体鼓胀变形,滑移类型为推移式;滑坡处于山区公路弯道外凸弧形斜坡地形,这是后缘放射状张拉裂缝形成的主要因素;滑坡在天然状态下稳定,在强降雨状态下欠稳定,需要采取防治措施进行治理。  相似文献   

10.
张莹  苏生瑞  李鹏 《工程地质学报》2015,23(6):1127-1137
本文针对受红椿坝-曾家坝断裂控制的陕西省安康市岚皋县柳家坡滑坡,在现场调查分析的基础上,采用Midas/GTS软件对其形成机理进行了三维数值模拟研究。模拟结果表明,断裂对该滑坡的发生起着控制性的作用,岩土体的性质决定了该滑坡的类型,而水和人类工程活动触发了该滑坡的发生。得到柳家坡滑坡的变形破坏模式为:坡体前缘向前运动,西侧断层强烈破碎带通过处侧壁剪切破坏,坡体后缘产生张拉裂缝,从而带动东侧坡体的变形破坏。由于坡体前缘为修建公路开挖的临空面,坡脚处缺失支撑,诱发了滑坡的发生。柳家坡滑坡形成机理的模拟结果可为日后相似条件下滑坡的防治提供一定的借鉴。  相似文献   

11.
北川县白什乡老街后山滑坡位于四川省绵阳市北川县城以西, 该滑坡发现时已处于变形发展较快的状态, 前缘多处崩塌, 坡面张拉裂缝密布。为了准确地判断滑坡的稳定性现状, 预测预报滑坡的下滑时间指导避险, 对滑坡开展了专业监测, 专业监测工作持续到了滑坡失稳下滑。本文对滑坡从监测到下滑的变形演化阶段进行了划分, 对各变形阶段滑坡的监测成果及变形破坏特征进行了分析研究。随后在此基础上分析滑坡形成演变过程及失稳机制, 通过分析认为白什乡滑坡形成演变模式为弯曲-拉裂(倾倒)变形模式, 滑坡形成后失稳机制为推移式和牵引式复合型。根据监测成果及宏观变形迹象对滑坡进行了分区, 判断出滑坡失稳下滑的关键控制部位是滑坡前缘Ⅰ-3区, 因此Ⅰ-3区监测数据是准确预测预报滑坡下滑时间的关键数据。  相似文献   

12.
黄土坡复杂滑坡体形成机制研究对滑坡稳定性分析非常重要。通过地层对比并考虑软弱夹层的发育特征建立了巴东城区黄土坡斜坡原岩结构模型,斜坡前缘巴东组第三段上亚段岩体中软弱夹层发育密集,可与黄土坡滑坡深部多级滑带对应。数值模拟计算表明,斜坡在形成演化过程中斜坡前缘巴东组第三段上亚段岩体出现了明显的剪应变集中分布,变形深度与斜坡临江I号崩滑堆积体厚度基本一致,可见斜坡岩体结构和斜坡演化过程的应力应变特征控制了临江I号崩滑堆积体的形成。三峡水库蓄水后会加剧滑坡体的剪切变形,泥化夹层的存在容易诱发深层滑坡。   相似文献   

13.
三峡库区木鱼包滑坡自2006年实施专业监测以来,一直持续变形,对三峡大坝工程和长江航道造成巨大威胁。通过多次野外地质调查资料、长期现场巡查、人工GPS位移监测数据、近1年的全自动监测数据等,深入分析该滑坡在库水涨落及降雨条件下的变形特征、演化规律及变形机制。结果表明,滑坡坡体结构、岩性及地质构造等地质因素控制了木鱼包滑坡的变形,库水位是主要的驱动因素。库水位上升过程中,库水位由145 m升到155 m左右,月位移量为最小值;动水压力向坡内,滑坡变形最小;库水位155 m上升至175 m期间,库水入渗前部坡体,对滑坡前部抗滑段形成浮托减重效应,变形有所增加。库水位由175 m下降到170 m左右,累积位移形成阶跃,坡受向坡外动水压力和浮托减重效应作用,月位移达最大值。库水位由170 m降到145 m期间,浮托减重效应作用减小,月位移量降低。目前,木鱼包滑坡变形趋势减小,产生大规模滑动的可能性较小,但须进一步加强监测和机制研究。  相似文献   

14.
位于白龙江断裂带的甘肃舟曲江顶崖古滑坡规模巨大,受断裂活动、降雨入渗与河流侵蚀和人类工程活动等因素影响,多次发生复活-堵塞白龙江灾害事件,造成极大危害。为研究江顶崖古滑坡的复活机理,本文在野外地质调查的基础上,重点开展了滑体在含水率为10%、15%和20%条件下的离心机模型试验。研究表明:在滑体含水率为10%情况下,试验结束后仅在坡体中后部产生少量裂缝,但滑坡体整体还处于稳定状态; 而在滑体含水率为15%和20%情况下,滑坡均发生了破坏,在滑体含水率分别为15%、20%情况下坡体失稳所需离心加速度分别为100g和50g。试验测试分析表明,江顶崖古滑坡为推移式滑坡,其变形先从坡体中后部开始,坡体中后部产生裂缝,随后裂缝逐渐向前缘扩展,最终裂缝贯通造成滑坡滑动破坏。滑坡体的变形过程主要分为3个阶段: ①变形启动阶段(裂缝开始形成阶段); ②变形加速阶段(裂缝加速发展阶段); ③失稳阶段。通过离心模拟试验,结合野外调查分析,认为江顶崖古滑坡复活的因素主要受降雨和孔隙水压力的影响,是受前缘河流侵蚀牵引、降雨入渗造成滑坡中后部推移的耦合滑动。  相似文献   

15.
江强强  焦玉勇  宋亮  王浩  谢壁婷 《岩土力学》2019,40(11):4361-4370
受库区水位波动和降雨影响,库岸大量老滑坡体变形加剧,地质灾害问题十分突出。为研究库岸滑坡影响因素、变形演化规律及失稳条件,以大型物理模型试验为手段,选取三峡库区黄土坡滑坡临江Ⅰ号崩滑体为对象,通过考虑水位波动、降雨及其组合作用等诱发因素,开展了一系列的库岸滑坡模型试验研究。试验结果表明:水位升降,变形主要集中于模型坡体前缘,其中,水位抬升过程中,滑坡模型变形较小,变形加速阶段出现于水位下降期间,且变形速率与水位下降速率成正比,即临江Ⅰ号崩滑体为典型的动水压力型滑坡;降雨影响下坡体变形在时间和空间上存在明显分区现象,时间上,变形发展主要集中于坡体浅表层饱和之后,即短时降雨对坡体变形未产生显著影响,空间上,坡体前缘和后缘变形剧烈;库水位下降和强降雨联合作用下坡体前缘产生局部流滑破坏,并溯源发展至前缘整体破坏,为典型的牵引式破坏模式。试验揭示处于临滑阶段坡体,其孔隙水压力、土压力变化呈现异常频繁的波动现象,可为滑坡预警预报提供一定参考依据。  相似文献   

16.
K129滑坡位于陕西镇安县青铜镇梅花铺以东古滑坡体上,高速公路的修建迫使102省道向山侧改线,挖除古滑坡前缘近6×104m3土体,未采取合理的防护措施。2009年10月,古滑坡出现复活,变形迅速发展,造成高速公路路面隆起、挡墙开裂,呈现整体下滑趋势。滑坡一旦失稳,不仅中断西康高速公路和102省道,而且可能堵塞乾佑河,形成滑坡坝和堰塞湖,对上下游人民的生命财产造成严重威胁。针对该滑坡,以地质分析为基础,深入研究了滑坡的失稳破坏模式。分析发现,粉质黏土混碎块石与千枚岩组成的脆弱地质结构和水岩作用是形成滑坡的控制因素,集中降雨是滑坡发生的主要诱发因素,工程开挖削弱滑坡的锁固段,加速了滑坡的变形。同时,利用多种监测成果和施工反馈信息,反映出滑坡的变形速率特征和空间变形特征,即以后部推移为主,前部牵引为辅的基岩接触面滑坡,并及时采取应急抢险工程,调整设计和施工方案,做到动态设计和信息化施工,确保了滑坡治理工程安全顺利完成。  相似文献   

17.
浅层滑坡在我国广泛分布,但在区域范围内分布规律性较差,且具有突发性、隐蔽性和破坏性强等特点。湘西武陵山区地质条件复杂、降雨丰沛、人类工程活动强烈,突发性地质灾害频发,尤以降雨诱发的浅层滑坡为主。文章以湘西地区慈利县陈溪峪滑坡为例,开展了降雨量、基质吸力、地下水位和地表变形等的监测;结合滑坡的现场调查及监测成果,分析滑坡的形成条件和变形机理;在此基础上,考虑基质吸力对边坡稳定性的贡献,将强度折减有限元法推广到非饱和土边坡,计算得到了不同降雨工况下滑坡稳定性。结果表明:当强降雨降落到滑坡体上时,坡内基质吸力值均迅速减小,直至一定值后(9.5 kPa左右)不再变化;坡内地下水位受季节性降雨影响显著,短时强降雨引起地下水变化幅度不如长时间降雨对地下水位造成的影响大;陈溪峪滑坡的地质力学成因为蠕滑推移式土质滑坡,运动形式为沿基覆界面的浅层滑坡;短时强降雨是诱发滑坡变形的最关键因素。陈溪峪滑坡在持续降雨条件下的降雨量预警值约为280 mm,在短时强降雨条件下的降雨强度预警值约为240 mm/d。  相似文献   

18.
Pu  Xiaowu  Wang  Lanmin  Wang  Ping  Chai  Shaofeng 《Natural Hazards》2020,103(1):923-945

Light rain or moderate rain is the most common meteorological event in the rainy season in the loess area of China, so the probability of landslide hazards induced by the coupling effect of earthquakes and rainfall under the condition of light rain or moderate rain is relatively higher than that under heavy rain. To study the dynamic response characteristics and instability mechanism of loess slopes by the coupling effect of earthquakes and rainfall under the conditions of moderate rain and light rain, a low-angle slope model test of a large-scale shaking table after 10 mm of rainfall was carried out. By gradually increasing the dynamic loading, the evolution of the macroscopic deformation and the instability failure mode of the slope model are observed; the temporal and spatial trends of the amplification effect, acceleration spectrum, pore pressure and soil pressure are analyzed; and the failure mechanism of the slope is determined. The results showed that the amplification effect increased along the slope surface upward, and a strong amplification effect appeared at the front of the top of the slope. Because of the stronger dynamic stress action on the upper part of the slope, the immersed soil in the upper part of the slope experienced seismic subsidence deformation, the saturation in the seismic subsidence soil increased, and the water content temporarily increased locally. With the further increase in the loading intensity, a large number of tension cracks were generated in the seismic subsidence area, and water infiltrated down along the cracks and the wetting range expanded under dynamic action. The range of seismic subsidence and cracks further extended to the deep part of the slope. Under the reciprocating action of the subsequent ground motion, the swing amplitude of the soil mass in the seismic subsidence area, which is divided by a large number of cracks in the upper part of the slope, increased further, resulting in the further reduction in the residual strength of the seismic subsidence soil mass located at the crack tip due to the pull and shear action. Finally, under the combined action of gravity and dynamic force, the upper soil mass in the seismic subsidence area dragged the lower soil mass in the seismic subsidence area downward because the sliding force is greater than the residual strength of the soil mass, which induced a seismic subsidence-type loess landslide. Under the coupling effect of earthquakes and rainfall, the instability mode and mechanism of this landslide are significantly different from those of liquefaction-type landslides.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号