首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
气候变化背景下,频发的暴雨事件造成城市内涝、人员伤亡和财产损失,已经成为全社会广泛关注的焦点问题之一。为了诊断中国暴雨的时空变化及其与不同自然因子的关联性,采用1961—2015年中国659个降水站点数据,采用线性趋势、EOF分析等多种统计方法诊断了中国暴雨时空变化特征,结果表明,中国暴雨雨量、雨日和雨强在1961—2015年以胡焕庸线为界呈现出东南高-西北低的气候态空间分布格局;线性趋势分析表明1961—2015年中国暴雨雨量和雨日从东南沿海向西北内陆呈明显“增-减-增”的空间分布格局,且呈增长趋势的站点占主导,分别高达80.88%和79.81%;从西北内陆到东南沿海的年代剖面分析表明中国暴雨雨量和雨日随着年代推移在迅速增长;对低通滤波后的中国暴雨进行EOF分析表明中国暴雨雨量和雨日的增长东南沿海快,内陆地区慢。根据IPCC等已有研究中筛选出对中国地区有影响的28个气候因子,并将其与659个站点的暴雨进行相关分析,结果表明不同气候因子与不同区域暴雨呈现出错综复杂的相关性特征,其中与暴雨雨量呈现以正相关和负相关为主的气候因子分别为15和13个,全局相关因子包含AAO(Antarctic Oscillation)、Pacific Warmpool,而其它气候因子在七大分区中与暴雨的关联性各有突出,表现出明显的空间异质性。   相似文献   

2.
利用四川省2002—2020年降雨灾情数据和156个国家气象观测站及5727个区域气象观测站逐日、逐小时降雨资料,分析四川省降雨灾情时空分布及其与雨量特征的联系。结果表明:四川省近年来降雨灾情数量增长明显,盆地西部、南部灾情数量最多,密度最大,凉山州和盆地东北部死亡人数最多。灾害主要发生在6—9月,灾情分布有从盆地东北部、南部向西部发展,最后到东北部的趋势。盆地在有大暴雨出现时灾害发生可能性最大,致灾频率50%以上,暴雨致灾频率20%~40%;攀西地区暴雨出现时致灾频率20%~30%;川西高原暴雨天气过程较少,大雨出现时致灾频率最大,为10%~30%。最大小时雨量盆地区在10 mm以下的灾害主要发生在盆南和盆东北,盆西在各个雨量等级范围内占比都较大,攀西地区灾害主要集中在10~40 mm,川西高原为20 mm以下。最大日降雨量小于50 mm的灾害主要分布在盆南,超过300 mm的主要发生在盆西北,50~100 mm以盆南和盆西南为主,攀西地区50~100 mm占比最大,川西高原为25~50 mm。  相似文献   

3.
中国大陆地区小时极端降水阈值的计算与分析   总被引:3,自引:0,他引:3  
利用广义极值分布和百分位两种阈值确定方法,对我国465个气象站点不同极端程度的小时降水强度阈值进行了分析。广义极值分布结果表明,重现期为2、5、10、50a的降水强度阈值具有一致的空间分布特征:华南沿海阈值最高,长江中下游地区北部、四川盆地西部、华北地区东部次之,云南中西部、华北西部和东北西部阈值相对更低,最小值出现在我国西部地区。百分位法得到的阈值空间分布呈现出与广义极值分布结果较为一致的东南大、西北小的整体特征。考察465站中位数发现,第99.9百分位的强度阈值与二年一遇降水的阈值接近。具体分析各站第99.9百分位降水阈值对应的重现期发现,长江流域及其以南地区重现期大多低于2a;35°N一带重现期长于4a;我国北方和西北部分地区重现期长于8a。  相似文献   

4.
Spatial autocorrelation analysis of extreme precipitation in Iran   总被引:2,自引:0,他引:2  
Spatial variations in extreme precipitation events make hydrological, climatological, social, environmental and agricultural effects on a country. This study presents the spatiotemporal autocorrelation analysis of extreme precipitation events over Iran using gridded data on daily precipitation for the period 1961–2010. The 95th percentile is considered as extreme precipitation factor. The spatial autocorrelation of extreme precipitation is examined by three commonly used spatial autocorrelation statistics, the G i statistic index, Moran’s I global index, and Local Moran’s I (LISA) index, at the 95 and 99% significant confidence level. The results showed a strong significant spatial autocorrelation for extreme precipitation events with the highest Moran’s I value in January. The positive significant autocorrelation of extreme precipitation is observed over the southern parts of the Caspian Sea and Zagros Mountains ranges, while the negative significant autocorrelation is observed over the central and eastern parts of country. In spring and summer the positive autocorrelation cores displace from the Zagros Mountains ranges to the northwestern and southeastern parts.  相似文献   

5.
该文利用2010—2019年4—8月遵义13个国家站逐时地面降水观测资料,从年变化、月变化、日变化以及空间分布等多个角度进行统计,从不同等级雨强的时空分布进行分析,初步得出了遵义短时强降水事件的时空分布特征:①从短时强降水总频次的空间分布上看,东部发生频次较其余地区高;4月,发生频次地区差异小;5—8月,地区差异大。②从月分布来看,短时强降水高频中心有如下变化:4月集中在东北部、5月在南部和东南部、6月西移北抬到西部和中部、7月西移南压到西部和南部、8月东北移至东北部,高频中心的变化和副热带高压的南北位移有很好的对应。③从年分布来看,短时强降水事件平均每年发生49次,最多的是65次(2019年),最少的是33次(2017年)。4—6月事件频次迅速增加,6月到达峰值,6—8月事件频次开始逐渐减少,74.1%的短时强降水事件发生在夏季,尤其以6月份居多。④从日变化来看,08—13时短时强降水事件发生频次逐渐减少,13时达到一日中最低值,13—07时事件发生频次逐渐增加,有3个峰值,17—19时、20—22时和01—07时,期间有2个短暂的间歇期。4—7月白天平均发生频次较夜间少,8月反之。⑤6—8月是较高等级短时强降水事件的高发季节,尤其以6月份居多,但统计个例中≥70 mm/h的雨强却是在5月份出现。  相似文献   

6.
ENSO对中国西北地区秋季异常降水的影响   总被引:19,自引:3,他引:16  
以奇异值分解(SVD)方法为基础,用1960~1994年35年的资料,分析了ENSO对中国西北地区秋季降水异常的影响,然后用奇异向量的海温场时间系数与500hPa高度场和海平面气压场进行交叉相关,讨论了在ENSO年引起西北地区降水异常的环流特征。结果表明,赤道中东太平洋海表温度异常与西北秋季大范围的区域性降水异常有较好的对应关系,在ElNino年,西北地区秋季大部分地区降水异常偏少,其中青藏高原东北侧的青海东部、甘肃中东部、宁夏南部和陕西北部等西北主要的雨养农业区降水明显偏少。引起这种异常的环流特征表现为500hPa高度场出现PNA异常流型,强异常中心多分布在低纬度,印缅槽偏弱,西太平洋副高加强西伸,脊线南移,南海副高和北美副高加强;东亚中纬度冬季盛行的1波流型在秋季异常发展,新疆脊偏强,东亚大槽加深西移。海平面气压场上,乌拉尔山北部高压、欧洲南部低压及阿留申低压等较高纬度系统异常加强(加深)。LaNino年情况相反。  相似文献   

7.
城市地区强降水发生频次和强度的增加容易诱发内涝现象,年径流总量控制率作为海绵城市的重要设计参数,更是直接受到降水变化的影响。以江苏省为例,利用全省70个国家级气象观测站1961—2019年最新的日降水量资料评估了气候变化对城市年径流总量控制率分区的影响。研究发现,有效降水的年代际变化十分明显,1991—2019年降水日数、降水量、降水强度均比其他时间段上更多、更强;太湖流域的设计雨量较小,连云港地区的设计雨量较大,南北差异随着控制率的提高而扩大,当控制率为85%时,全省设计雨量平均值为38.1 mm,最大值是最小值的1.7倍;气候变化对年径流总量控制率分区影响明显,江苏的苏南、江淮南部大部分地区的分区变大,导致全省IV区所占面积明显增加。不同等级降水的变化趋势是影响年径流控制率分区的关键因素,大雨以上的雨日、雨量在有效降水中占比增加,则分区变大。  相似文献   

8.
Summary The west coast of the Indian peninsula receives very heavy rainfall during the summer Monsoon (June–September) season with average rainfall over some parts exceeding 250 cm. Heavy rainfall events with rainfall more than 15 cm day−1 at one or more stations along the west coast of India occur frequently and cause considerable damage. A special observational programme, Arabian Sea Monsoon Experiment, was carried out during the monsoon season of 2002 to study these events. The spatial and temporal distributions of intense rainfall events, presented here, were used for the planning of this observational campaign. The present study using daily rainfall data for summer monsoon season of 37 years (1951–1987) shows that the probability of getting intense rainfall is the maximum between 14° N–16° N and near 19° N. The probability of occurrence of these intense rainfall events is high from mid June to mid August, with a dip in early July. It has been believed for a long time that offshore troughs and vortices are responsible for these intense rainfall events. However, analysis of the characteristics of cloud systems associated with the intense rainfall events during 1985–1988 using very high resolution brightness temperature data from INSAT-IB satellite shows that the cloud systems during these events are characterized by large spatial scales and high cloud tops. Further study using daily satellite derived outgoing longwave radiation (OLR) data over a longer period (1975–1998) shows that, most of these events (about 62%) are associated with systems organized on synoptic and larger scales. We find that most of the offshore convective systems responsible for intense rainfall along the west coast of India are linked to the atmospheric conditions over equatorial Indian Ocean.  相似文献   

9.
陕西秋季降水变化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
利用1960—2009年陕西74个台站逐月降水资料和同期NCEP/NCAR再分析资料,采用Mann-Kendall和REOF等方法分析了近50年陕西秋季降水变化时空分布及环流特征。研究表明:近50年来,陕西9月降水对整个秋季降水具有决定性作用,呈现出"北少南多"和"北多南少"的空间分布特征;当西太平洋副热带高压位置偏西偏北,纬向环流指数偏弱,海平面气压场为"西低东高"的形势,850 hPa风场上西北地区东部为西太平洋副热带高压外围的东南气流控制时,陕西秋季降水空间分布多呈现"北多南少"型。  相似文献   

10.
Warm-sector heavy rainfalls along the south China coast from April to June during 2009–2014 can be divided into two main types based on their low-level circulations. Type I is the southerly pattern with meridional convergence line at the west of the Pearl River estuary, which is formed by the convergence of southeasterly, southerly, and southwesterly flows. Type II is the southwesterly pattern with a latitudinal convergence line at the east of the Pearl River estuary, which is formed by the convergence of westerly and southwesterly flows. Statistics on 6-hourly heavy rainfall events indicates that, during the afore-mentioned 6 years, there were on average 73.2 occurrences of the southerly pattern and 50.3 occurrences of the southwesterly pattern per year. After the onset of summer monsoon in the South China Sea, the occurrence frequencies of both patterns increase remarkably. The synthetic diagnosis of pattern circulation shows that, at 500 hPa, for the southerly pattern, there is a broad warm high ridge, and a temperature ridge is behind the high ridge, which causes an obvious warm advection at the high ridge area. There is no frontal region. For the southwesterly pattern, the circulation is a weak trough with a temperature trough behind it. The position of the frontal region is near Yangzi River, and the south China coast is in the warm-sector of the frontal region. At the vertical cross-section of each of the two categories of heavy rainfall, there is a strong vertical motion center stretching to 400 hPa, where the convergence layer in the rainfall region is deep and with several vertical convergence centers overlapping one another. Both types of heavy rainfalls are with abundant water vapor, accompanied with deep convective instability energy layers, and with strong release of latent heat caused by condensation of water vapor. The release of latent heat leads to the warming-up and stretching of the air column, thus strengthens deep convergence and vertical velocity upward. There is a stronger latent heat-release in the southwesterly pattern than in the southerly pattern, while in the southerly pattern, the warm advection at middle and upper levels is stronger than the latent head release. To study the thermo-dynamic development mechanisms, weather research and forecasting model (WRF) numerical simulations are made and the results show that, in the two rainstorm regions, latent heat release warms up the air column, hence significantly increase the depth and strength of the vertical velocity. Moreover, the release of latent heat strengthens convergent circulation at lower levels and weakens divergent circulation at middle levels, whose influence can be as strong as 30%–50% of the wind circulation strength of the two types of the warm-sector heavy rainfall over the south China coast, and further enhances deep convection, promoting warm-sector storm development.  相似文献   

11.
Teleconnections:Summer Monsoon over Korea and India   总被引:6,自引:1,他引:5  
This study investigates the relationship between the summer monsoon rainfall over Korea and India,by using correlation analysis and Singular Value Decomposition(SVD).Results reveal that summer monsoon rainfall over Korea is negatively(significant at the 99% level) correlated with the rainfall over the northwest and central parts of India.In addition,coupled spatial modes between the rainfall over Korea and India have been identified by the SVD analysis.The squared covariance fraction explained by the first mode is 70% and the correlation coefficient between the time coefficients of the two fields is significant at the 99% level,indicating that the coupled mode reflects a large part of the interaction between the summer monsoon rainfall over Korea and India.The first mode clearly demonstrates the existence of a significant negative correlation between the rainfall over the northwest and central parts of India and the rainfall over Korea.Possible mechanisms of this correlation are investigated by analyzing the variation of upper-level atmospheric circulation associated with the Tibetan high using NCEP/NCAR Reanalysis data.  相似文献   

12.
华南前汛期持续暴雨环流分型初步研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用1961—2010年NCEP/NCAR逐日再分析资料和台站观测降水量资料,按一定标准选取了华南前汛期24个持续暴雨过程;并且按基本判据确定逐年华南夏季风降水开始日期。然后依据南亚高压环流型和相对于该年夏季风降水开始的早晚,将这些暴雨过程划分为夏季风降水前、后南亚高压东部型,夏季风降水后南亚高压带状、西部型共4个类型;其中,夏季风后南亚高压西部型次数最多、平均持续时间最长。所有类型持续暴雨的相同点是:广东东北部附近均为暴雨频率和雨量高值区;暴雨期间华南150 h Pa位势高度增加、500 h Pa位势高度减少;华南处在150 h Pa偏西风急流南侧辐散区中;850 h Pa华南沿海有明显的西南气流,低层辐合在华南东北部最明显;两广沿海为可降水量大值区;华南的整层水汽输送主要呈现西南向。不同点是:夏季风后南亚高压西部型平均雨量较小,夏季风后南亚高压带状型与西部型在印度洋上存在明显的偏东风高空急流;夏季风后南亚高压类型在两广沿海的可降水量数值较大。  相似文献   

13.
In the present study the Principal Component Analysis (PCA) is used to determine the dominant rainfall patterns from rainfall records over India. Pattern characteristics of seasonal monsoon rainfall (June–September) over India for the period 1940 to 1990 are studied for 68 stations. The stations have been chosen on the basis of their correlation with all India seasonal rainfall after taking the ‘t’ Student distribution test (5% level). The PCA is carried out on the rainfall data to find out the nature of rainfall distribution and percentage of variance is estimated. The first principal component explains 55.50% of the variance and exhibits factor of one positive value throughout the Indian subcontinent. It is characterized by an area of large positive variation between 10°N and 20°N extending through west coast of India. These types of patterns mostly occur due to the monsoon depression in the head Bay of Bengal and mid-tropospheric low over west coast of India. The analysis identifies the spatial and temporal characteristics of possible physical significance. The first eight principal component patterns explain for 96.70% of the total variance.  相似文献   

14.
1981—2000年四川夏季暴雨大尺度环流背景特征   总被引:3,自引:0,他引:3  
利用四川盆地及周边地区1981—2000年逐日降雨量资料和ECMWF逐日4次再分析资料,合成分析近20 a发生在四川夏季的22次典型暴雨过程的大尺度环流背景特征。结果表明,四川夏季暴雨的发生具有显著的轴向分布性和区域移动性特征。西伸的西太平洋副热带高压、北上东进的伊朗高压及高原东部的弱高压、活跃的孟加拉低压和影响四川北部的中高纬长波分裂的低压槽共同作用形成了四川暴雨发生阶段的特殊的"鞍"型大尺度环流背景。在"鞍"型大尺度环流背景下,有利于西南支孟加拉湾水汽和南海水汽输送在四川盆地形成低层辐合,同时在高层形成西南—东北的轴向急流辐合带,水汽输送散度负的大值区即为暴雨发生的主要落区。此外,四川北部在两高压相夹下,有利于高纬度大尺度的两高一脊环流调整产生的弱槽携带冷空气影响四川盆地,形成高层弱冷干与低层强暖湿的强垂直对流不稳定。对比40 a四川夏季平均环流可知,导致四川夏季暴雨发生的"鞍"型大尺度环流背景特征极为显著,具体表现为:西太平洋副热带高压西伸到110°E附近,青藏高原西侧伊朗高压偏北、青藏高原高层南压高压偏东,而高原低层有弱高压,四川北部冷槽显著偏南。  相似文献   

15.
青藏高原东北部强降水天气过程的气候特征分析   总被引:7,自引:2,他引:7  
根据青藏高原东北部地区降水特点,定义青藏高原强降水概念,利用该区域内各测站自建站以来的气象资料,分析青藏高原强降水的时空分布特征和相对强度。结果表明:青藏高原东北部地区强降水的分布明显受到地形影响,年降水量和强降水次数自东向西呈阶梯性递减趋势,分别在青藏高原东北部的外流河谷地区和东南部四川北部地区存在大值中心;外流河谷地区两侧山脉的年降雨量较大,年均强降水日数较多,河源处相对较小,具有河谷地形的特点;青藏高原强降水的时段集中,雨强大,局地性强,且具有夜发性的特点;强降水日数和站数具有明显的年代际变化特征,近10年来出现区域性强降水的次数增加;青藏高原东北部外流河谷地区强降水的相对强度较大,同长江以南地区暴雨相对强度差不多。  相似文献   

16.
利用常规资料、NCEP FNL分析资料和HYSPLIT模式,对2008—2017年川西高原持续性暴雨过程的时空分布、环流分型、水汽源地和输送路径进行分析。结果表明:①2008—2017年川西高原单站持续性暴雨的总频次为337次,在21次区域持续性暴雨中,位于高原与盆地过渡区的泸定、康定、汶川出现持续性暴雨次数最多;②7月发生频率最高,持续时间多为3~4天;③将影响川西高原暴雨的环流分型为两槽一脊型、一脊一槽型、西风槽型和偏西气流型,其中孟加拉湾气旋影响有16例,6—7月个例都有孟加拉湾气旋的存在;④川西高原上空气团主要通过4条路径进入,源自北大西洋、地中海和伊朗中北部的西北路径占比29%,源自里海到咸海之间地区的东北路径占比17%,源自热带印度洋洋面的西南和东南路径各占比43%和11%,偏北路径的空气质点起始高度比偏南路径的高,相应的温度和水汽含量也偏低;⑤将水汽输送分为"S"型、偏西气流型和偏南气流型3个类型。  相似文献   

17.
山东夏季强降水的时空演变特征及成因   总被引:2,自引:0,他引:2  
高理  胡桂芳  孙莎莎 《干旱气象》2013,(4):690-694,731
应用1961—2012年山东省26站夏季降水和西太平洋副热带高压特征量指数等资料,分析了山东夏季强降水的时空演变特征。结果表明:山东夏季强降水日数总体呈减少趋势,部分地区呈增多趋势,暴雨日在1989年前后发生突变;强降水日数比重呈增大趋势,半岛北部增大趋势明显,近208比重明显高于前期,且波动幅度加大,同样在1989年前后发生突变;大雨日降水强度增加,暴雨日降水强度减小,两者均在1990年代降水强度最大,半岛、东南沿海地区为强降水雨强高值区。对其成因初步分析发现,强降水时间变化与西太平洋副高南北位置关系密切,台风带来的强降水是影响东南沿海地区降水强度的关键因子。  相似文献   

18.
The synoptic and dynamic aspects of heavy rainfall occurred on 5th May 2017 and caused flash flooding in arid and semi-arid central-northern Iran is analyzed by the Weather Research and Forecasting (WRF) model. This system synoptically is attributed to a surface low-pressure centered over southern Iran extended to the central parts, linking to a mid-tropospheric tilted-trough over western Iran, and advecting significant moisture from the Mediterranean Sea and the Red Sea to the studied area. The dynamical analysis revealed that the penetration of the upper-tropospheric potential vorticity streamer up to 300 hPa level was not related to such heavy rainfall. Contrarily, the low-level factors such as extensive moisture advection, mid-tropospheric diabatic processes such as the latent heat release, daytime deep convection, and topographical impact of Zagros Mountains were found as the key factors leading to this system. This study also examines 11 different convection schemes simulated by the WRF model and verified against rainfall observation. The forecast skills of the output simulations suggest the Grell-Devenyi scheme as the superior configuration in simulating observed precipitation of the event over the area.  相似文献   

19.
贵州省汛期短时降水时空特征分析   总被引:10,自引:2,他引:8  
彭芳  吴古会  杜小玲 《气象》2012,38(3):307-313
利用贵州区域84测站1991—2009年汛期(4—9月)逐小时降水量资料,分别定义各站点的小时降水量的强降水阈值。阈值的分布有两个高值中心,最强中心在西南部望谟站,西北部的强降水阈值较低。同时利用各站点阈值统计19年不同月份的强降水事件频数,其分布显示:4月份东部和中部偏南地区频数较高,5月份频数高值区呈东北—西南向,随后几个月逐渐向西北推进。4—6月事件频数逐渐增大,7月维持,8—9月开始减少。各月强降水事件发生时次统计表明:一天中有三个相对高值时段,23:00—02:00、05:00—08:00和17:00—20:00,而白天强降水事件很少。短时强降水事件发生时次的空间分布表明,西北部的强降水事件多数发生在傍晚到23:00,中部的强降水集中在23:00—02:00,东南部在05:00—08:00。  相似文献   

20.
Summary Monthly rainfall data for 135 stations for periods varying from 25 to 125 years are utilised to investigate the rainfall climatology over the southeast Asian monsoon regime. Monthly rainfall patterns for the regions north of equator show that maximum rainfall along the west coasts occurs during the summer monsoon period, while the maximum along the east coasts is observed during the northeast monsoon period. Over the Indonesian region (south of the equator) maximum rainfall is observed west of 125 °E during northern winter and east of 125 °E during northern summer. The spatial relationships of the seasonal rainfall (June to September) with the large scale parameters – the Subtropical Ridge (STR) position over the Indian and the west Pacific regions, the Darwin Pressure Tendency (DPT) and the Northern Hemisphere Surface Temperature (NHST) – reveal that within the Asian monsoon regime, not only are there any regions which are in-phase with Indian monsoon rainfall, but there are also regions which are out-of-phase. The spatial patterns of correlation coefficients with all the parameters are similar, with in-phase relationships occurring over the Indian region, some inland regions of Thailand, central parts of Brunei and the Indonesian region lying between 120° to 140 °E. However, northwest Philippines and some southern parts of Kampuchea and Vietnam show an out-of-phase relationship. Even the first Empirical Orthogonal Function of seasonal rainfall shows similar spatial configuration, suggesting that the spatial correlation patterns depict the most dominant mode of interannual rainfall variability. The influence of STR and DPT (NHST) penetrates (does not penetrate) upto the equatorial regions. Possible dynamic causes leading to the observed correlation structure are also discussed. Received October 10, 1996 Revised February 25, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号