首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of undrained cyclic direct simple shear tests, which used a soil container with a membrane reinforced with stack rings to maintain the K0 condition and integrated bender elements for shear wave velocity measurement, were performed to study the liquefaction characteristics of gap-graded gravelly soils with no fines content. The intergrain state concept was employed to categorize gap-graded sand–gravel mixtures as sand-like, gravel-like, and in-transition soils, which show different liquefaction characteristics. The testing results reveal that a linear relationship exists between the shear wave velocity and the minor fraction content for sand–gravel mixtures at a given skeleton void ratio of the major fraction particles. For gap-graded gravelly sand, the gravel content has a small effect on the liquefaction resistance, and the cyclic resistance ratio (CRR) of gap-graded gravelly sands can be evaluated using current techniques for sands with gravel content corrections. In addition, the results indicate that the current shear wave velocity (Vs) based correlation underestimates the liquefaction resistance for Vs values less than 160 m/s, and different correlations should be proposed for sand-like and gravel-like gravelly soils. Preliminary modifications to the correlations used in current evaluations of liquefaction resistance have thus been proposed.  相似文献   

2.
目前,主要依靠室内动力试验对黄土液化势进行评价。由于黄土特殊的结构性,室内试验对其饱和的过程较为复杂,且与实际场地饱和黄土差异明显,导致室内黄土液化试验结果并不能代表现场饱和黄土的抗液化强度。本文选取兰州市西固区寺儿沟村某饱和黄土场地进行钻孔测试,现场实施了标准贯入试验、静力触探试验以及剪切波速测试。应用Robertson的土类指数分类图对该场地不同含水率黄土的土类进行了界定,确定了饱和黄土属于类砂土,有液化势。应用NCEER推荐方法,计算了3组原位试验数据的饱和黄土循环抗力比(CRR),通过与1976年唐山地震和1999年集集地震液化土CRR对比,得出了饱和黄土抗液化强度很低的结论。  相似文献   

3.
In this paper,a distribution map of gravelly soil liquefaction that was caused by the Wenchuan M_s 8.0 earthquake in China is proposed based on a detailed field investigation and an analysis of geological soil profiles. The geological background of the earthquake disaster region is summarized by compiling geological cross sections and borehole logs. Meanwhile,four typical liquefied sites were selected to conduct sample drillings,dynamic penetration tests (DPT),and shear wave velocity tests,to understand the features of liquefied gravelly soil. One hundred and eighteen (118) liquefied sites were investigated shortly after the earthquake. The field investigation showed:(1) sandboils and waterspouts occurred extensively,involving thousands of miles of farmland,120 villages,eight schools and five factories,which caused damage to some rural houses,schools,manufacturing facilities and wells,etc.; (2) the Chengdu plain is covered by a gravelly soil layer with a thickness of 0 m to 541 m according to the geological cross sections; (3) there were 80 gravelly soil liquefied sites in the Chengdu plain,shaped as five belt areas that varied from 20 km to 40 km in length,and about ten gravelly soil liquefied sites distributed within Mianyang area; and (4) the grain sizes of the sampled soil were relative larger than the ejected soil on the ground,thus the type of liquefied soil cannot be determined by the ejected soil. The gravelly soil liquefied sites are helpful in enriching the global database of gravelly soil liquefaction and developing a corresponding evaluation method in further research efforts.  相似文献   

4.
The use of the shear wave velocity data as a field index for evaluating the liquefaction potential of sands is receiving increased attention because both shear wave velocity and liquefaction resistance are similarly influenced by many of the same factors such as void ratio, state of stress, stress history and geologic age. In this paper, the potential of support vector machine (SVM) based classification approach has been used to assess the liquefaction potential from actual shear wave velocity data. In this approach, an approximate implementation of a structural risk minimization (SRM) induction principle is done, which aims at minimizing a bound on the generalization error of a model rather than minimizing only the mean square error over the data set. Here SVM has been used as a classification tool to predict liquefaction potential of a soil based on shear wave velocity. The dataset consists the information of soil characteristics such as effective vertical stress (σ′v0), soil type, shear wave velocity (Vs) and earthquake parameters such as peak horizontal acceleration (amax) and earthquake magnitude (M). Out of the available 186 datasets, 130 are considered for training and remaining 56 are used for testing the model. The study indicated that SVM can successfully model the complex relationship between seismic parameters, soil parameters and the liquefaction potential. In the model based on soil characteristics, the input parameters used are σ′v0, soil type, Vs, amax and M. In the other model based on shear wave velocity alone uses Vs, amax and M as input parameters. In this paper, it has been demonstrated that Vs alone can be used to predict the liquefaction potential of a soil using a support vector machine model.  相似文献   

5.
Field investigations following the 2008 Wenchuan earthquake (Ms=8.0) identified 118 liquefaction sites nearly all of which are underlain by gravelly sediment in the Chengdu Plain and adjacent Mianyang area. Field studies, including core drilling, dynamic penetration tests (DPT), and multiple channel analysis of surface wave velocity tests (MASW) for measurement of shear wave velocities, reveal the following: (1) Sand boils and ground fissures, indicative of liquefaction, occurred across hundreds of square kilometers affecting 120 villages, 8 schools and 5 factories. (2) The Chengdu plain is underlain by sandy gravels ranging in thickness up to 540 m; loose upper layers within the gravels beds liquefied. (3) Mean grain sizes for gravelly layers that liquefied range from 1 mm to more than 30 mm. (4) Shear wave velocities in gravels that liquefied range up to 250 m/s. (5) A 50% probability curve, developed from logistic procedures, correctly bounds all but four data points for the 47 compiled Vs data.  相似文献   

6.
Liquefaction which is one of the most destructive ground deformations occurs during an earthquake in saturated or partially saturated silty and sandy soils, which may cause serious damages such as settlement and tilting of structures due to shear strength loss of soils. Standard (SPT) and cone (CPT) penetration tests as well as the shear wave velocity (V s)-based methods are commonly used for the determination of liquefaction potential. In this research, it was aimed to compare the SPT and V s-based liquefaction analysis methods by generating different earthquake scenarios. Accordingly, the Erci? residential area, which was mostly affected by the 2011 Van earthquake (M w = 7.1), was chosen as the model site. Erci? (Van, Turkey) and its surroundings settle on an alluvial plain which consists of silty and sandy layers with shallow groundwater level. Moreover, Çald?ran, Erci?–Kocap?nar and Van Fault Zones are the major seismic sources of the region which have a significant potential of producing large magnitude earthquakes. After liquefaction assessments, the liquefaction potential in the western part of the region and in the coastal regions nearby the Lake Van is found to be higher than the other locations. Thus, it can be stated that the soil tightness and groundwater level dominantly control the liquefaction potential. In addition, the lateral spreading and sand boiling spots observed after the 23rd October 2011 Van earthquake overlap the scenario boundaries predicted in this study. Eventually, the use of V s-based liquefaction analysis in collaboration with the SPT results is quite advantageous to assess the rate of liquefaction in a specific area.  相似文献   

7.
Based on the liquefaction performance of sites with seismic activity, the normalized shear wave velocity, Vs1, has been proposed as a field parameter for liquefaction prediction. Because shear wave velocity, Vs, can be measured in the field with less effort and difficulty than other field tests, its use by practitioners is highly attractive. However, considering that its measurement is associated with small strain levels, of the order of 10−4–10−3%, Vs reflects the elastic stiffness of a granular material, hence, it is mainly affected by soil type, confining pressure and soil density, but it is insensitive to factors such as overconsolidation and pre-shaking, which have a strong influence on the liquefaction resistance. Therefore, without taking account of the important factors mentioned above, the correlation between shear wave velocity and liquefaction resistance is weak.In this paper, laboratory test results are presented in order to demonstrate the significant way in which OCR (overconsolidation ratio) affects both shear wave velocity and liquefaction resistance. While Vs is insensitive to OCR, the liquefaction resistance increases significantly with OCR. In addition, the experimental results also confirm that Vs correlates linearly with void ratio, regardless of the maximum and minimum void ratios, which means that Vs is unable to give information about the relative density. Therefore, if shear wave velocity is used to predict liquefaction potential, it is recommended that the limitations presented in this paper be taken into account.  相似文献   

8.
In the early morning (1:47 Taiwan time) of September 21, 1999, the largest earthquake of the century in Taiwan (Mw=7.6, ML=7.3) struck this island country. The earthquake killed more than 2400 people and caused great destruction to buildings, bridges, dams, highways, and railways. One of the causes for heavy damages to the structures is soil liquefaction and ground settlement during the earthquake. In this paper, investigation of soil liquefaction and case histories of liquefaction are presented. Three CPT-based simplified methods, the Robertson method, the Olsen method, and the Juang method, are examined using the case histories derived from the Chi-Chi earthquake. The results of the comparison show that the Juang method is more accurate than the two methods in predicting liquefaction potential of soils based on the cases derived from the Chi-Chi earthquake, although all three methods are quite comparable in accuracy.  相似文献   

9.
The destructive 1999 Chi–Chi earthquake (Mw 7.5) was the largest inland earthquake in Taiwan in the 20th century. Several observations witness the non-linear seismic soil response in sediments during the earthquake. In fact, large settlements as well as evidence of liquefaction attested by sand boils and unusual wet ground surface were observed at some sites. In this paper, we present a seismic response simulation performed with CyberQuake software on a site located within the Chang-Hwa Coastal Industrial Park during the 1999 Chi–Chi earthquake in Taiwan. A non-linear multi-kinematic dynamic constitutive model is implemented in the software. Computed NS, EW and UP ground accelerations obtained with this model under undrained and two-phase assumptions, are in good agreement with the corresponding accelerations recorded at seismic station TCU117, either for peak location, amplitudes or frequency content. In these simulations, liquefaction occurs between depths 1.3 and 11.3 m, which correspond to the observed range attested by in place penetration tests and other liquefaction analyses. Moreover, the computed shear wave velocity profile is very close to post-earthquake shear wave velocity profile derived from correlations with CPT and SPT data. Finally, it is shown that in non-linear computations, even though a 1D geometry is considered, it is necessary to take into account the three components of the input motion.  相似文献   

10.
This paper describes a case-history of liquefaction occurred near the village of Vittorito after the April 6, 2009 L’Aquila earthquake (moment magnitude Mw = 6.3), approximately 45 km far from the epicentre. In the document, first, an estimation of the seismic motion in the area has been made. Thereafter, the performed geotechnical investigation is described, followed by the application of some fast assessment criteria for the occurrence of liquefaction, recently proposed by the new Italian Building Code. A careful assessment of all the parameters involved in conventional Seed and Idriss (1971) liquefaction analyses is considered. The cyclic resistance ratio CRR is evaluated by cone penetration tests CPT and by in situ seismic dilatometer tests SMDT; in the latter case CRR is evaluated by different empirical correlations with shear wave velocity Vs and horizontal stress index KD. Analytical data confirmed the observed occurrence of the liquefaction in Vittorito, even if the acceleration field in the area, produced by the L’Aquila earthquake, was very low.  相似文献   

11.
The liquefaction behavior and cyclic resistance ratio (CRR) of reconstituted samples of non-plastic silt and sandy silts with 50% and 75% silt content are examined using constant-volume cyclic and monotonic ring shear tests along with bender element shear wave velocity (Vs) measurements. Liquefaction occurred at excess pore water pressure ratios (ru) between 0.6 and 0.7 associated with cumulative cyclic shear strains (γ) of 4% to 7%, after which cyclic liquefaction ensued with very large shear strains and excess pore water pressure ratio (ru>0.8). The cyclic ring shear tests demonstrate that cyclic resistance ratio of silt and sandy silts decreases with increasing void ratio, or with decreasing silt content at a certain void ratio. The results also show good agreement with those from cyclic direct simple shear tests on silts and sandy silts. A unique correlation is developed for estimating CRR of silts and sandy silts (with more than 50% silt content) from stress-normalized shear wave velocity measurements (Vs1) with negligible effect of silt content. The results indicate that the existing CRR–Vs1 correlations would underestimate the liquefaction resistance of silts and sandy silt soils.  相似文献   

12.
The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (V s)-void ratio (e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR-V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s-e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.  相似文献   

13.
The liquefaction potential of soils is traditionally assessed through geotechnical approaches based on the calculation of the cyclical stress ratio (CSR) induced by the expected earthquake and the ‘resistance’ provided by the soil, which is quantified through standard penetration (SPT), cone penetration (CPT), or similar tests. In more recent years, attempts to assess the liquefaction potential have also been made through measurement of shear wave velocity (VS) in boreholes or from the surface. The latter approach has the advantage of being non-invasive and low cost and of surveying lines rather than single points. However, the resolution of seismic surface techniques is lower than that of borehole techniques and it is still debated whether it is sufficient to assess the liquefaction potential.In this paper we focus our attention on surface seismic techniques (specifically the popular passive and active seismic techniques based on the correlation of surface waves such as ReMiTM, MASW, ESAC, SSAP, etc.) and explore their performance in assessing the liquefaction susceptibility of soils. The experimental dataset is provided by the two main seismic events of ML=5.9 and 5.8 (MW=6.1, MW=6.0) that struck the Emilia-Romagna region (Northern Italy) on May 20 and 29, 2012, after which extensive liquefaction phenomena were documented in an area of 1200 km2.The CPT and drillings available in the area allow us to classify the soils into four classes: A) shallow liquefied sandy soils, B) shallow non-liquefied sandy soils, C) deep non-liquefied sandy soils, and D) clayey–silty soils, and to determine that on average class A soils presented a higher sand content at the depth of 5–8 m compared to class B soils, where sand was dominant in the upper 5 m. Surface wave active–passive surveys were performed at 84 sites, and it was found that they were capable of discriminating among only three soil classes, since class A and B soils showed exactly the same VS distribution, and it is possible to show both experimentally and theoretically that they appear not to have sufficient resolution to address the seismic liquefaction issue.As a last step, we applied the state-of-the art CSR–VS method to assess the liquefaction potential of sandy deposits and we found that it failed in the studied area. This might be due to the insufficient resolution of the surface wave methods in assessing the Vs of thin layers and to the fact that Vs scales with the square root of the shear modulus, which implies an intrinsic lower sensitivity of Vs to the shear resistance of the soil compared to parameters traditionally measured with the penetration tests. However, it also emerged that the pure observation of the surface wave dispersion curves at their simplest level (i.e. in the frequency domain, with no inversion) is still potentially informative and can be used to identify the sites where more detailed surveys to assess the liquefaction potential are recommended.  相似文献   

14.
Shear wave velocity (Vs) measurements from seismic piezocone penetration (SCPTU) soundings have been increasingly used for site characterization and liquefaction potential assessments. Several sites in Tangshan region, China liquefied during the Tangshan earthquake, Mw=7.8 in 1976 and these sites were characterized recently using the SCPTU device. Other sites in the same region where liquefaction was not observed are also included in the present field investigations. Three liquefaction assessment models-based on measured shear wave velocity, shear modulus and tip resistance parameters of SCPTU are evaluated in this paper for their accurate predictions of liquefaction or non-liquefaction at the test sites. Analyses showed that the shear wave velocity—liquefaction resistance model with normalized overburden vertical stress have yielded a success rate of 78% in predicting liquefied site cases and another similar approach with mean stress based normalization has a success rate of 67%. The correlation of qc/Go-CRR7.5 based on geological age has correctly assessed the liquefaction potential at most sites considered in this research. Overall, all three models based on shear wave velocity, shear modulus and cone tip resistance are proven valuable in the assessments of liquefaction at the present test sites in the Tangshan region.  相似文献   

15.
Shear wave velocity (V S) can be obtained using seismic tests, and is viewed as a fundamental geotechnical characteristic for seismic design and seismic performance evaluation in the field of earthquake engineering. To apply conventional geotechnical site investigation techniques to geotechnical earthquake engineering, standard penetration tests (SPT) and piezocone penetration tests (CPTu) were undertaken together with a variety of borehole seismic tests for a range of sites in Korea. Statistical modeling of the in-situ testing data identified correlations between V S and geotechnical in-situ penetration data, such as blow counts (N value) from SPT and CPTu data including tip resistance (q t), sleeve friction (f s), and pore pressure ratio (B q). Despite the difference in strain levels between conventional geotechnical penetration tests and borehole seismic tests, it is shown that the suggested correlations in this study is applicable to the preliminary determination of V S for soil deposits.  相似文献   

16.
汶川地震砾性土液化场地特征解析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过成都平原砾性土场地勘察测试,研究汶川地震中大量砾性土液化场地的基本特性,找出一般规律,对砾性土场地液化发生主客观原因提出解释,并修正以往若干认识偏差.分析表明:汶川地震液化砾性土层粒径范围宽,含砾量5%~85%甚至更大,同时其实测剪切波速140~270 m·s~(-1),修正剪切波速160~314 m·s~(-1),都远超历史记录;液化砾性土场地1/2集中在Ⅷ度区内,表明如砂土层液化一样,砾性土场地大规模液化需要较强地震动触发,但超过触发强度后液化规模增长均有限;成都平原浅表地层二元基本结构是汶川地震中出现大量砾性土场地的客观条件之一,该结构可使饱和砾性土层处于封闭状态,构成了砾性土液化的基本条件;虽然液化砾性土层剪切波速很高,但实际上大多松散状态,是此次地震大量砾性土场地发生液化的客观条件之二;地震中地表(井中)喷出物与地下实际液化土类大相径庭,且液化层埋深大多小于6.0 m,以往以地表喷出物反推地下液化层土性类型的做法不再成立;认为砾性土层波速大、透水性好而不会液化的传统认识也不再成立,但砾性土层液化条件与砂土层液化条件不同,前者要求更高.  相似文献   

17.
Semi-empirical procedures for evaluating the liquefaction potential of saturated cohesionless soils during earthquakes are re-examined and revised relations for use in practice are recommended. The stress reduction factor (rd), earthquake magnitude scaling factor for cyclic stress ratios (MSF), overburden correction factor for cyclic stress ratios (Kσ), and the overburden normalization factor for penetration resistances (CN) are discussed and recently modified relations are presented. These modified relations are used in re-evaluations of the SPT and CPT case history databases. Based on these re-evaluations, revised SPT- and CPT-based liquefaction correlations are recommended for use in practice. In addition, shear wave velocity based procedures are briefly discussed.  相似文献   

18.
This paper is a systematic effort to clarify why field liquefaction charts based on Seed and Idriss׳ Simplified Procedure work so well. This is a necessary step toward integrating the states of the art (SOA) and practice (SOP) for evaluating liquefaction and its effects. The SOA relies mostly on laboratory measurements and correlations with void ratio and relative density of the sand. The SOP is based on field measurements of penetration resistance and shear wave velocity coupled with empirical or semi-empirical correlations. This gap slows down further progress in both SOP and SOA. The paper accomplishes its objective through: a literature review of relevant aspects of the SOA including factors influencing threshold shear strain and pore pressure buildup during cyclic strain-controlled tests; a discussion of factors influencing field penetration resistance and shear wave velocity; and a discussion of the meaning of the curves in the liquefaction charts separating liquefaction from no liquefaction, helped by recent full-scale and centrifuge results. It is concluded that the charts are curves of constant cyclic strain at the lower end (Vs1<160 m/s), with this strain being about 0.03–0.05% for earthquake magnitude, Mw≈7. It is also concluded, in a more speculative way, that the curves at the upper end probably correspond to a variable increasing cyclic strain and Ko, with this upper end controlled by overconsolidated and preshaken sands, and with cyclic strains needed to cause liquefaction being as high as 0.1–0.3%. These conclusions are validated by application to case histories corresponding to Mw≈7, mostly in the San Francisco Bay Area of California during the 1989 Loma Prieta earthquake.  相似文献   

19.
In this paper,a distribution map of gravelly soil liquefaction that was caused by the Wenchuan M_s 8.0 earthquake in China is proposed based on a detailed field investigation and an analysis of geological soil profiles. The geological background of the earthquake disaster region is summarized by compiling geological cross sections and borehole logs. Meanwhile,four typical liquefied sites were selected to conduct sample drillings,dynamic penetration tests (DPT),and shear wave velocity tests,to understand the features of liquefied gravelly soil. One hundred and eighteen (118) liquefied sites were investigated shortly after the earthquake. The field investigation showed:(1) sandboils and waterspouts occurred extensively,involving thousands of miles of farmland,120 villages,eight schools and five factories,which caused damage to some rural houses,schools,manufacturing facilities and wells,etc.; (2) the Chengdu plain is covered by a gravelly soil layer with a thickness of 0 m to 541 m according to the geological cross sections; (3) there were 80 gravelly soil liquefied sites in the Chengdu plain,shaped as five belt areas that varied from 20 km to 40 km in length,and about ten gravelly soil liquefied sites distributed within Mianyang area; and (4) the grain sizes of the sampled soil were relative larger than the ejected soil on the ground,thus the type of liquefied soil cannot be determined by the ejected soil. The gravelly soil liquefied sites are helpful in enriching the global database of gravelly soil liquefaction and developing a corresponding evaluation method in further research efforts.  相似文献   

20.
土体剪切波速是进行土层地震反应分析的动力学参数,对场地地震动参数确定具有重要意义。基于地质地貌分析,将大同盆地划分为5类典型地质单元。对盆地1429个钻孔剪切波速资料进行分析,探讨VS30与VS20的相关性,研究土体埋深、岩性、地质单元、标贯击数及密实度等地质特征对VS的影响,并基于地质单元、剪切波速比、密实度系数及第四系上部覆盖层厚度相关性分析给出土体VS30预测模型。研究结果表明,基于典型地质特征的VS30预测模型拟合优度R2>0.90,预测精度很高,对于离散性较大、直接拟合估算较差及无剪切波速场地来说,以区分地质单元及土体类型的方式进行VS30分解预测是良好的研究思路。首次在区分地质单元及土体类型的前提下提出剪切波速比及密实度系数,并将其与第四系上部覆盖层厚度综合应用于VS30预测研究。研究结果可为大同盆地城市防震减灾规划、震害预测、区域性地震安全评价提供重要技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号