首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过对已有震害的调查发现,洞口段为山岭隧道抗震的薄弱环节,容易发生边坡失稳及衬砌结构的损坏。对隧道洞口段进行了大型振动台模型试验研究。研究结果表明:由于洞口仰坡临空面的存在,在距离洞口一定范围内会出现加速度的"放大效应",这种"放大效应"会导致衬砌间的非一致振动;应变结果显示:衬砌结构主要以横向受力为主,地震附加应力主要集中在拱肩和拱脚,这些部位为衬砌结构抗震的薄弱环节,试验中距洞口一定距离处的衬砌结构最先破坏,故洞口加速度的"放大效应"并不代表衬砌结构地震反应内力的放大,洞口处衬砌结构惯性力不是结构地震反应附加内力的主导部分;洞口仰坡的坡面位移随着高程的增大呈抛物线形增长,衬砌结构整体变形为椭圆形,变形较大的位置为拱肩和拱脚;随着地震波的逐级加载,洞口仰坡发生推动式滑坡,从而引起衬砌结构的破坏,施工缝的存在消耗围岩变形对衬砌结构产生的附加内力,有助于衬砌结构抗震。试验研究结论可供软弱围岩下山岭隧道洞口段的抗震设计参考。  相似文献   

2.
针对黄土地区山岭隧道面临的强震灾害现实特点,以强震作用下洞口周边土体与隧道结构的地震动放大效应为主要研究目标,通过建立三维数值模型,重点研究不同坡度、坡高与入洞高程模型的坡面高程方向、水平方向以及衬砌结构的加速度与位移响应规律,提出坡面加固区范围和隧道抗震设防长度建议值。研究结果表明:仰坡高度、坡角及进洞高程的变化,均会对隧道洞口段地震响应规律和破坏模式产生重要影响,缓坡易发生坡底处的剪切破坏,而陡坡易发生坡顶的拉裂破坏;随着边坡高度的增大,边坡的滑动破坏范围逐渐增大;隧道的存在对坡面地震动高程放大效应有明显"抑制"作用,在洞口水平向存在动力响应放大区,范围为2.1~2.8倍洞径;通过分析隧道衬砌沿进深方向的动力响应规律,建议黄土隧道洞口段抗震设防长度最小值为3倍洞径。  相似文献   

3.
利用Midas-GTS建立边坡-隧道结构模型,对宝兰客专黄土隧道洞口段在地震作用下的动力响应特征进行数值模拟研究,分析边坡进洞高程对洞口段动力响应的影响,在此基础上讨论隧道洞口段受力变形特征及其分布规律。研究表明:坡面最大位移随着仰坡坡度的增大而增大;仰坡坡度越大、进洞高程越高,隧道洞口段的衬砌变形就越大;坡面和衬砌加速度最大值随着仰坡坡度的增大而减小;当洞口段隧道长度Y≥60 m时,进洞高程越大,衬砌加速度越小。洞口段仰拱最大主应力整体大于拱顶最大主应力,但二者变化趋势基本一致;在洞口段0~20 m范围内,由于坡隧系统相互作用交互影响,衬砌结构受力情况较为复杂。  相似文献   

4.
设计并完成一个1∶30的大比例尺高陡反倾层状岩质边坡的振动台模型试验,坡体内部有6个软弱泥化夹层,研究在组合支护体系作用下EL Centro地震波和汶川-清屏地震波激振下泥化夹层含水量发生变化时边坡的加速度动力响应规律。试验结果表明:(1)坡面X、Z向加速度放大系数均具有非线性高程放大效应,但前者大于后者;(2)泥化夹层含水量的变化对坡面加速度放大效应影响显著,注水后X向减小而Z向增大;(3)支护体系作用下边坡临空面放大效应的现象受限制,预应力锚索抗滑桩以下边坡基本不存在加速度放大效应;边坡分级支护可有效降低X向加速度放大系数的高程增大效应,但对Z向会产生不利作用;(4)边坡的破坏模式为上部受软弱夹层滑动牵引而发生倾倒-拉裂变形,导致顶部框架梁有可能最先发生破坏,且破坏类型可能以绕坡顶为支点向坡体内侧转动,引起上部的锚索产生拔出破坏。  相似文献   

5.
通过大型振动台模型试验并采用Midas-GTS有限元软件进行模拟计算,研究黄土隧道洞口段在地震作用下的动力响应特征、破坏过程和地震波在模型中的传递规律,分析影响黄土隧道洞口段地震动力响应的主要因素。结果表明:边坡沿弧形开裂面的垮塌受坡脚剪切和坡顶拉裂的共同作用;边坡会对其卓越频率内的地震波产生明显放大效应,且在1/2坡高以上放大效应出现饱和现象;隧道临空面是影响隧道洞口段地震动力响应的主要因素。考虑进洞高程效应时隧道洞口段抗震设防长度可取距洞口5倍洞径范围。振动台模型试验与数值计算在位移、加速度、应力三个响应特征上吻合较好,证明二者结果合理可靠。研究成果可为隧道工程设计和地下结构抗震理论研究提供有益参考。  相似文献   

6.
采用振动台物理模拟试验方法,以4种不同覆土厚度的层状边坡模型为研究对象,水平输入振幅逐渐增大的正弦波加速度,分析了结构面上覆不同厚度土层对动力作用下边坡的稳定影响.研究了在动力作用下边坡的破坏位置和性质、破坏形式及最危险覆土厚度,验证了坡面放大效应与高程的关系,采用MIDAS/GTS软件对模型试验进行振型分析,分析了模型边坡的自振频率与覆土厚度的变化关系.试验结果表明:①模型破坏时最先出现的裂缝在边坡的中上部,且6 cm覆土厚度的模型对振动的响应最大,对应到实际工程中时12m厚度土层覆盖的边坡是最应该注意防护的.②不同厚度的土层破坏的形式不同:当土层厚度较薄时模型破坏较迅速,基本沿结构面发生整体滑动破坏,且滑动呈现一定的流体特性;当覆土较厚时裂缝先在模型中上部出现,随着振动的持续裂缝继续发展,最后发生整体性崩塌.③随着高程的增加峰值加速度总体呈放大趋势,但最大值出现在边坡中上部而非坡顶,说明不仅均质边坡有加速度的高程放大效应,层状边坡也具有加速度的高程放大效应.  相似文献   

7.
为了解减震层在地震过程中对隧道衬砌及围岩仰坡动力响应的影响,针对山岭隧道洞口段开展振动台物理模型试验研究,模型试验按有无减震层分为两组工况。试验结果表明:减震层的存在可以有效减弱洞口段衬砌加速度与位移的放大效应,减弱围岩振动向衬砌的传递;衬砌的应变反应在设置减震层后明显减小,特别是应变反应较大的两侧拱肩和拱脚位置,减震层的设置使衬砌的动应变接近均匀,随着地震次数的增加,减震层并不会失效,减震效率反而会有所增强;而减震层的设置不能改变围岩的加速度反应,坡面随高程的放大效应依然明显,较易发生局部的滑塌破坏,特别是高位滑塌,但坡面均为浅层破坏,不会对衬砌产生附加荷载作用,但需要注意的是滑塌的围岩会掩埋洞口,将严重影响隧道的正常使用。  相似文献   

8.
采用动力有限元数值模拟的方法,设置四种不同仰坡坡度的模型,沿隧道轴向方向输入地震波,探究隧道洞口段及仰坡在不同仰坡坡度影响下的动力响应,并通过对无隧道通过的纯边坡模型与相同条件下有隧道通过的边坡模型的动力响应进行对比分析,研究隧道的存在对坡面动力响应的影响。研究结果表明:(1)由于临空面的存在,隧道洞口段的位移与加速度具有明显的放大效应。不同坡度模型的位移峰值皆位于y=0m断面的拱顶处,在距洞口y=40m后的各控制点位移差值迅速减小。(2)随着仰坡坡度的增加,同一断面处隧道的位移值随之增加,洞口段的截面变形也随之增大。(3)当坡度α≥60°时,坡面位移随着坡面高程的增加而增大;当坡度α60°时,坡面位移随着坡面高程的增加先增大后减小,在0.4~0.6倍坡高处达到最大,即随着坡度的增加,坡面的位移峰值也就越靠近坡顶。(4)隧道的存在对于坡面的稳定性有重要影响,这种影响在洞口附近尤为明显。  相似文献   

9.
斜坡的坡体结构是控制斜坡变形破坏模式、影响斜坡动力特性的重要因素。为了进一步了解"坡体结构面如何影响边坡地震动力响应规律"这一问题,对均质斜坡(无结构面)和水平层状岩质斜坡(含水平结构面)两种类型的岩质斜坡进行了大型振动台试验研究,并着重对比分析了有无结构面对岩质斜坡峰值加速度动力响应规律的影响。研究结果表明:水平层状斜坡坡表和坡内加速度动力响应基本上都大于均质斜坡,即水平层状岩质斜坡存在层面放大作用,但水平结构面对斜坡加速度动力响应放大作用的程度与地震波类型、频率、振动强度和激振方向有关,总的来说,水平层面对Z向地震波的放大作用大于对X向地震波;在本试验研究中,频率仅影响层面放大系数量值的变化,而地震波类型及其振动强度和激振方向则对其分布形式和量值均有显著影响。  相似文献   

10.
基于ANSYS软件,对地处地震高烈度区域的西南某水电站引水隧洞洞脸高陡边坡进行三维动力分析,研究高陡边坡在地震作用下的动力响应特征。结果表明:在50年超越概率5%的罕遇地震荷载作用下,引水隧洞洞脸边坡对加速度的放大效应较对位移的放大效应更明显;边坡表面在地震作用期间会产生瞬时拉应力;坡顶开挖侧的地振动加速度较坡顶中央放大效应明显;在高程为94.8 m处的古风化壳和页岩的露头面可能会发生顺层滑动和破坏;边坡整体上可以经受住强震地震动的考验。  相似文献   

11.
地震作用下节理岩质边坡稳定性影响因素研究   总被引:1,自引:0,他引:1  
汶川地震灾害调查表明,在基岩山区地震滑塌主要发育在局部强度相对较大、节理较发育的厚层或块状岩体中.以岩石中含两组节理的岩质边坡为例,输入实际的地震记录,采用离散单元法进行数值模拟,分别探讨坡高、地震烈度、坡角及节理倾角组合对节理岩质边坡稳定性的影响.结果表明:地震作用下坡体中质点的加速度、速度具有高程放大效应;节理岩质边坡稳定性随着坡高、坡角和地震烈度的增加而降低;两组节理不同组合的岩质边坡,其稳定性变化较为复杂,受节理倾角与坡角的关系、节理的倾向、两组节理之间夹角等因素的影响.节理岩质边坡在地震作用下是受拉区逐渐向受剪区扩展而最终导致边坡失稳破坏,是受拉和受剪的复合破坏.上述初步结论为评价山区节理较发育的岩质边坡在地震作用下的稳定性提供一定的依据.  相似文献   

12.
地震作用下含软弱夹层顺层岩质边坡表面放大效应研究   总被引:8,自引:0,他引:8  
为了研究地震作用下含软弱夹层顺层岩质边坡表面的放大效应,借用FLAC3D软件,建立了含软弱夹层顺层岩质边坡动力分析数值模型;在合理考虑地震动输入、边界条件、网格划分与模型参数的基础上,分析了地震动峰值、频率、持时以及初动方向等因素影响下的边坡表面放大效应。研究结果表明:①地震动峰值、频率和初动方向对边坡表面放大效应的影响较显著,而地震动持时对边坡表面放大效应的影响微小;②随着地震动峰值的增加,放大效应由软弱夹层之上的坡面及坡顶面向坡肩点逐渐增大,坡肩点的放大效应最大;③当输入地震动频率小于边坡的自振频率时,边坡表面加速度放大倍数较小,且频率越小,放大倍数越小,当输入地震动频率大于边坡的自振频率时,边坡表面加速度放大倍数较大,且频率越大,放大倍数亦越大。  相似文献   

13.
地震作用下均质土坡动力特性的振动台试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
设计并完成比例尺1∶100的边坡振动台模型试验,讨论模型的相似关系、传感器的布置及模型的建造,并编制相应的动荷载加载方案。通过输入不同类型、不同幅值、频率的动荷载,分析模型边坡在地震作用下的动力响应规律以及地震动参数对边坡动力特性和动力响应的影响。试验结果表明,在坡体的表面和坡内的竖直方向上,加速度放大系数均随着高程增加而明显增大。当输入不同压缩比的地震波时,压缩比越大坡体的动力响应越明显,即随着输入动荷载的频率增加,越接近土体的自振频率加速度放大效应越明显;在坡体的同一高程处,坡面的加速度放大系数略大于坡体内的加速度放大系数,表现出一定的趋表效应,同时随着输入地震波振幅的增加,加速度放大系数整体出现递减的趋势。实验结果分析有助于揭示土质边坡在地震作用下的失稳破坏机制,为今后边坡工程的抗震设计提供积极的参考。  相似文献   

14.
针对黄土边坡与隧道洞口段衬砌的相互作用问题,运用数值模拟的方法分析了以不同进洞高程进洞时黄土隧道洞口段衬砌的动力响应特征和洞口仰坡的动力稳定性。结果表明:进洞高程越大,洞口段隧道衬砌的位移响应与内力响应越大;随着进洞高程的增大,坡面位移放大系数在减小,不同进洞高程进洞时坡面位移放大系数均呈先增大后减小再增大的变化趋势。在0.2~0.6H时变化最为剧烈,0.4H左右时位移放大系数达到了最大值;不同进洞高程进洞时坡面中心和水平方向距离隧道结构1.5D处的坡面位移放大系数变化趋势基本一致,其大小关系为:纯边坡位移放大系数 < 有隧道结构中面位移放大系数 < 距隧道1.5D位移放大系数;随着进洞高程的增大,剪应变增量和坡面位移均在减小,坡面的稳定性在增强。该研究可为黄土地区隧道进洞高程的选择提供一定的参考。  相似文献   

15.
利用大型振动台试验,基于HHT边际谱理论,本文对含软弱夹层反倾岩质边坡地震破坏模式及其能量判识方法进行研究。振动台试验结果表明含软弱夹层反倾岩质边坡的地震破坏模式为中部岩层挤压滑出型。边际谱峰值的变化能清晰地表征边坡内部的震害损伤发展过程,且边际谱的识别结果与试验中坡面位移监测结果吻合较好。振动台试验和能量判识方法表明边坡的破坏过程为:0.1 g和0.2 g地震作用下,边坡未出现震害损伤,边际谱峰值随高程增加近似呈线性增加;0.3 g地震作用下坡顶附近出现震害损伤,坡顶出现局部掉块;0.4 g地震作用下,坡内震害损伤位置发展至相对高度0.295~0.6之间,坡体中部出现水平向微裂隙;0.6 g地震作用时,震害损伤位置进一步向坡脚发展,坡内震害损伤位置发展至相对高度0.295以下,上部坡体(相对高程0.8附近)向坡面方向滑出,坡面出现纵向裂隙,并与水平向裂隙贯通,中部软弱夹层被挤出,坡顶被震碎。边际谱辨识结果显示,边坡坡面附近的震害程度弱于坡体内部。本文的研究对认识含软弱夹层反倾岩质边坡的地震破坏模式具有指导意义。  相似文献   

16.
设计并完成了1∶80比例尺的高陡黄土边坡大型振动台模型试验。通过输入不同类型、幅值、频率的地震波,探讨地震作用下模型洞口仰坡动力响应规律,以及地震动参数对动力响应的影响。试验结果表明,不同地震波加载的过程中,坡面的PGA随着测点高程的增大而增大,在隧道仰拱和拱顶所处的位置,PGA有突然减小的过程。其中仰拱周围边坡坡面的PGA减小更大,说明隧道的存在对坡面加速度的放大作用具有一定的抑制作用,其中仰拱位置比拱顶位置抑制作用更强。台面峰值加速度越大,仰拱对加速度的抑制作用更加明显,坡顶面的PGA最大,因此坡面越高,加速度的放大效应越明显,并没有出现加速度放大系数饱和的这种状态。试验结果有助于揭示黄土隧道仰坡在地震作用下的失稳机制,为工程的抗震设计提供有益的参考。  相似文献   

17.
基于现场调查、振动台试验及理论计算等结果,由宏观现象定性的分析到理论求解的定量计算,全面、系统地研究坡面角度对岩质高陡边坡的加速度高程放大效应的影响。现场调查结果表明,边坡的失稳破坏主要发生在45°及以上的斜坡,从宏观现象上间接说明了随着坡面角度的增大,边坡的加速度放大效应会逐渐增强;振动台试验和理论计算结果从半定量和定量的角度揭示随着坡面角度的增大,临空面方向、竖直方向峰值加速度的高程放大效应逐渐增强,而在增强的过程中同时存在突然增大的拐点45°和渐趋平缓的拐点50°,即在45°以下加速度放大效应的增长较为缓慢,在45°~50°之间突然增大,在50°以上增长又逐渐变缓,这充分解释了“滑坡灾害主要发生在45°以上的斜坡”这一汶川地震震害现象。边坡走向方向的峰值加速度高程放大效应基本上不随坡面角度的增大而变化,其台阶也相对较为平缓。  相似文献   

18.
层状结构岩质边坡动力稳定性试验研究   总被引:8,自引:0,他引:8  
介绍了所进行的层状结构岩质边坡动力稳定性试验。结果表明,在水平地震动加速度达到0.4g时,层状结构岩质边坡就会出现局部的层间错动现象,当水平地震加速度达到0.8g时,层间结合力较弱的边坡将发生大面积的表面滑动和崩塌。而在铅直地震力作用下,当地震加速度达到1.0g时,才会出现破坏现象。因而对层状结构岩质边坡来说,其水平地震力造成的危害是主要的。  相似文献   

19.
付晓  杨长卫  韩宜康 《地震工程学报》2016,38(5):775-782,807
设计并完成了1∶10大比例尺的边坡大型振动台模型试验,试验模型尺寸为4.4m×4.4m×1.8m(长×宽×高),斜坡模型表面包含30°、45°、50°、60°四个不同坡度的坡面,模拟岩体材料采用重晶石粉、河砂、石膏、黏土和水按比例配制而成。通过输入不同类型、幅值、频率的地震波来研究模型边坡的动力响应规律,在试验数据分析中采用三维局部坐标系。试验结果表明:边坡临空面方向和竖直方向的加速度高程放大效应随坡面角度的增大而增强,在坡面角度由45°→50°变化时增长趋势呈明显"台阶状"形式,而边坡走向方向的峰值加速度高程放大效应基本不随坡面角度变化;边坡各向的峰值加速度的高程放大效应随着输入地震波幅值的增大而减小,表现出"量级饱和"特性;加速度傅里叶谱的频谱成分随着高程的增大,边坡岩体对于试验模型自振频率f周围的频率成分具有显著的放大作用,而对于其他频率成分则具有滤波作用;加速度反应谱沿高程的形状基本一致,并且卓越周期对应的反应谱幅值沿高程具有一定的放大作用,而在其他周期T处,尤其是长周期部分(低频部分)则存在一定的减小作用,对于临空面方向来讲,具有明显的波峰现象。试验结果有助于揭示边坡在地震作用下的失稳机制,为边坡工程的抗震设计提供有益的参考。  相似文献   

20.
针对含泥化夹层反倾岩质边坡制作相似比为1∶30的试验模型进行大型振动台试验,研究泥化夹层饱水前(天然含水状态)和饱水状态下边坡的加速度和位移响应规律,探讨边坡的破坏模式。试验结果表明:泥化夹层饱水后坡面水平向加速度放大系数小于饱水前;泥化夹层饱水前和饱水后随着相对高度的增加,坡面水平向加速度放大系数呈现非线性增加的趋势,其整体上大于坡体内部的加速度放大系数;坡面位移从下至上在泥化夹层饱水前,呈现出非线性增长特性;饱水后位移呈先增大后减小,临近坡肩处坡面最大,坡面呈现鼓出形态。泥化夹层饱水前,在幅值为0.3g的地震波作用下坡体仅出现坡肩局部掉块;饱水后,输入地震动幅值≥0.4g时,坡体先出现坡肩的局部掉块,随后坡体沿中上部的饱和泥化夹层滑动剪出,与此同时,坡体中上部出现纵向裂隙并与水平裂隙贯通,坡顶被震碎。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号