首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用常规气象资料和NCEP再分析资料,从前期天气背景、大气环流演变及产生持续性强降水的动力、热力和水汽等条件,分析了2008年6月广西出现的一次持续性强降水过程。结果发现:这次持续性强降雨过程期间500hPa环流形势稳定,高空西风小槽呈阶梯状持续下滑影响广西,不断诱发暴雨出现;200hPa广西处于南亚高压东部脊区和高空西风急流出口区右方,风速辐散明显,在高低空急流耦合作用下,华南出现了正反两支垂直环流,广西上空辐合上升运动明显,为强降水的出现提供极好的动力条件;南海季风暴发和副热带高压在华南沿海的稳定维持,使得华南低空形成了印度洋和南海两支水汽通道,为暴雨区上空提供了源源不断的水汽;高温、高湿、高能的热力条件,有利于扰动的形成和对流不稳定能量产生,为广西持续性暴雨提供必要的能量条件。  相似文献   

2.
陕西南部一次区域性大暴雨过程成因分析   总被引:1,自引:1,他引:0  
韩宁 《陕西气象》2009,(2):22-26
根据常规气象站观测资料和美国NCEP/NCAR发布的1°×1°逐6h分析资料,分析2007年7月4—5日陕西南部一次区域性大暴雨过程的环流动力特征。结果表明:西太平洋副热带高压东退、500hPa西风槽和700hPa低涡、低空西南风急流是此次暴雨过程的主要诱发系统;来自南海和孟加拉湾的水汽在西太平洋副热带高压外围西南气流和低空西南风急流的引导下为暴雨区提供了源源不断的水汽;散度的辐合辐散的加强和垂直速度系统性的加强,导致了短时强降水的出现。暴雨强盛期,在暴雨区上空有一个明显的垂直反环流存在。  相似文献   

3.
广东6月持续性暴雨期间的大气环流异常   总被引:1,自引:0,他引:1  
利用1979—2011年共33年广东86个观测站日降水和全球大气多要素日平均资料,分析广东前汛期降水异常(包括暴雨和无雨)的环流特征。结果表明,广东6月持续性暴雨和持续性无雨期间大气存在显著的经向遥相关波列,其中,持续性暴雨过程波列更完整,非持续性暴雨(或非持续性无雨)则波列不显著,而4、5月的持续性暴雨或持续性无雨过程都没有波列出现。在经向波列存在的情况下,对流层中高层大气西风带环流经向度增大、槽脊发展增强,中高纬度这种持续稳定的环流形势,有利于冷空气和高空槽影响华南;在高层200 hPa,华南处于偏西风和西南风异常之间的气流辐散区域,有利于高层辐散;对流层中低层西太平洋副热带高压偏强、西脊点偏西,华南上升、南海下沉的垂直异常经圈环流建立;同时对流层低层来源于印度和孟加拉湾北部以及热带太平洋的水汽输送明显加强,从而为持续性暴雨过程提供有利的环流背景以及暴雨区所需的动力和水汽条件,可见经向波列通过对流层高、中、低层大气环流异常影响持续性暴雨。在没有经向波列的情况下,当500 hPa华南地区有西风槽活动、850 hPa南海北部西风偏强,广东局地动力上升条件和水汽输送条件达到一定程度,则只能出现非持续性暴雨。因此,经向波列可为区分持续暴雨与非持续暴雨预报提供参考。与广东降水持续异常相关的经向波列受中高纬度罗斯贝波、热带对流以及中低纬度太平洋地区大气异常等多方面的共同影响。  相似文献   

4.
利用常规气象资料及T213分析场资料,对2005年6月18日~23日华南大范围持续性暴雨过程的高低空形势、能量及动力条件进行诊断分析。发现:这次过程低空急流维持了低空对流不稳定形势,高空急流维持了高空辐散、低空辐合的有利形势,高空西南急流与高空西北急流一样,能造成暴雨区高空有利的辐散形势,形成高层辐散、底层辐合,触发强烈的上升运动,高低空耦合是此次强降雨爆发的重要机制,强降雨落区位于低空西南风急流出口区的左侧和200hPa西北风急流的出口区西南侧,即低空急流的左侧与切变线的前沿;暴雨区域高湿能条件的维持,保证了强降雨过程的能量供给,是强降雨持续的重要条件。  相似文献   

5.
2004年7月9~12日,广西东北部和南部出现了一次大范围暴雨天气过程,暴雨导致部分河流超警戒水位。现简要分析了这次大范围强降雨的原因,主要是华北低槽在东移加深过程,与北涌的西南季风云系相遇,从而进一步加强次级环流所造成的。华北低槽在缓慢东移过程中,引导河套的冷空气南下入侵到广西。同时,在副热带高压西侧由于季风云系北涌,华南西部盛行西南气流,南北风在广西境内交换,高空槽的南伸为冷暖空气交换提供了次级环流加强的条件,为强降雨天气的产生提供了有利的动力条件,它直接产生的动力不稳定扰动是造成这次暴雨天气的主要原因。另外,西太平洋副高处于加强期,对高空槽起到阻挡作用,使低槽东移缓慢或滞溜,恰遇西南季风爆发与北方弱冷空气汇合,造成持续性暴雨天气的产生。在11日850hPa图上可分析出,切变线的右下方,出现一支西南-东北向的低空急流,急流核位于广西中部,入口在北部湾,出口在湖南东部,平均风速达到16m.-s 1,大暴雨出现在广西东北部,24h达到7站,从而验证了这种低涡切变线配合形势,是造成华南暴雨、强对流天气发生的主要触发机制的结论。重点分析了高空环流形势的演变以及物理量场配置的一些征兆,发现在850hPa比湿场图上,广西东部有一狭长的比湿高值带,它正好位于高低空急流系统之间,q值普遍在14g.k-g 1以上,最大值达到了16g.k-g 1。表明有充足的水汽输送带为暴雨区提供了源源不断的水汽和不稳定能量。在10日8时的850hPa水汽通量图上,高值区位于广西的东北部,中心达到了22g/cm.hPa.s,满足强对流天气发生条件(指标20g/cm.hPa.s),所以广西境内出现最的强降水在10日和11日,也都发生在桂东北,而沿海地区的强降雨则是由季风云团北涌过程在沿海迎风坡作用所形成。随低槽移近,在850hPa涡度图上,8日20时正涡度中心位于广西西北上空,广西西北部暴雨开始,11日08时850hPa正涡度中心达到极大,中心数值达40×10-5~60×10-5S-1,并且复盖整个广西大部分地区,这天正是广西暴雨最多的一天。  相似文献   

6.
2008年6月广西持续性暴雨的诊断与数值模拟   总被引:6,自引:5,他引:1  
陈业国  农孟松 《气象科学》2010,30(2):250-255
用NCEP/NCAR全球逐日再分析格点资料和广西区域日降水资料,对2008年6月12—13日发生在广西的持续性暴雨过程进行了诊断分析,并利用中尺度数值模式WRF进行了数值模拟研究。结果表明:暴雨过程的水汽来源主要为孟加拉湾南部和南海北部;在强降水期间,暴雨区上空低层为较强的大气层结不稳定区,中高层为大气层结相对稳定区,不稳定能量与降水强度有着很好的对应关系;西南急流作为对流系统上升的触发机制,为广西持续性暴雨过程的发生和发展提供了水汽条件和动力条件。WRF模式成功模拟出本次暴雨过程的大尺度环流形势的演变及中尺度降雨分布,本次暴雨与850hPa上一个β中尺度低涡的生成和强烈发展直接关联。  相似文献   

7.
2005年6月华南持续性暴雨爆发和维持机制分析   总被引:7,自引:0,他引:7  
利用常规气象资料及T213分析场资料,对2005年6月18日~23日华南大范围持续性暴雨过程的高低空形势、能量及动力条件进行诊断分析。发现:这次过程低空急流维持了低空对流不稳定形势,高空急流维持了高空辐散、低空辐合的有利形势,高空西南急流与高空西北急流一样,能造成暴雨区高空有利的辐散形势,形成高层辐散、底层辐合,触发强烈的上升运动,高低空耦合是此次强降雨爆发的熏要机制,强降雨落区位于低空西南风急流出口区的左侧和200hPa西北风急流的出口区西南侧,即低空急流的左侧与切变线的前沿;暴雨区域高湿能条件的维持.保证了强降雨过程的能量供给,是强降雨持续的重要条件。  相似文献   

8.
高低空急流耦合对长江中游强暴雨形成的机理研究   总被引:16,自引:7,他引:9  
对1998-07-22T08-14发生于武汉附近的一次强暴雨过程的分析发现,这次强暴雨发生于南方暖区与北方冷空气脱离的孤立系统中,副热带经圈环流上升支是暴雨发生的大尺度背景场,它的低空入流和高空出流对大尺度雨区的生成与维持具有重要作用.边界层南风急流、低空西风急流和高空西风急流上下的耦合作用是强暴雨发生的重要原因.925hPa上边界层偏南风急流是暴雨区所需水汽的最大提供者和暴雨区对流不稳定能量释放的触发者,850hPa上低空偏西风急流的主要作用是建立和维持了暴雨区中低空的对流不稳定,200hPa上中纬高空西风急流的主要作用是建立和维持了暴雨区高空的条件对称不稳定,三者上下耦合使得中低空对流上升运动得以向上发展和加强,从而产生强暴雨.  相似文献   

9.
高低空急流耦合对长江中游强暴雨形成的机理研究   总被引:25,自引:1,他引:25  
对1998-07-22T08-14发生于武汉附近的一次强暴雨过程的分析发现,这次强暴雨发生于南方暖区与北方冷空气脱离的孤立系统中,副热带经圈环流上升支是暴雨发生的大尺度背景场,它的低空入流和高空出流对大尺度雨区的生成与维持具有重要作用。边界层南风急流、低空西风急流和高空西风急流上下的耦合作用理强暴雨发生的重要原因。925hPa上边界层偏南风急流是暴雨区所需水汽的最大提供者和暴雨区对流不稳定能量释放的触发者,850hPa上低空偏西风急流的主要作用是建立和维持了暴雨区中低空的对流不稳定,200hPa上中纬高空西风急流的主要作用是建立和维持了暴雨区高空的条件对称不稳定,三者上下耦合使得中低空对流上升运动得以向上发展和加强,从而产生强暴雨。  相似文献   

10.
利用常规地面与高空观测资料、自动站逐时资料、NECP1°×1°再分析资料,对阿克苏地区2015年9月7日局地暴雨进行分析。结果表明,此次暴雨的主要成因有:(1)100hPa南亚高压双体型、200 hPa高空急流以及500 h Pa中亚槽提供了有利的环流背景,"三支气流"配合加强了动力以及热力条件并促使水汽快速汇集,强度为8 g·cm~(-1)·hPa~(-1)·s~(-1);(2)暴雨过程的大部分水汽是通过低层偏东气流接力输送,水汽的来源主要为南海及孟加拉湾;(3)暴雨发生前阿克苏处于高能高湿不稳定区域,存在315.9 J·kg~(-1)的不稳定能量,水汽上干下湿体现了一定的对流特征,同时锋区、垂直风切变、湿层以及不稳定能量的突变预示了强对流天气的发生;(4)低层风场辐合触发对流,地面辐合线及偏东风输送位置影响暴雨落区,加之较好的地面热力条件以及独特的地形增益暴雨强度。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

19.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号