首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two environmental tracer methods are applied to the Ti-Tree Basin in central Australia to shed light on the importance of recharge from floodouts of ephemeral rivers in this arid environment. Ground water carbon-14 concentrations from boreholes are used to estimate the average recharge rate over the interval between where the ground water sample first entered the saturated zone and the bore. Environmental chloride concentrations in ground water samples provide estimates of the recharge rate at the exact point in the landscape where the sample entered the saturated zone. The results of the two tracer approaches indicate that recharge rates around one of the rivers and an extensive floodplain are generally higher than rates of diffuse recharge that occurs in areas of lower topographic relief. Ground water 2H/1H and 18O/16O compositions are all depleted in the heavier isotopes (delta2H = -67 per thousand to -50 per thousand; delta18O = -9.2 per thousand to -5.7%o) compared with the long-term, amount-weighted mean isotopic composition of rainfall in the area (delta2H = -33.8 per thousand; delta18O = -6.3 per thousand). This indicates that recharge throughout the basin occurs only after intense rainfall events of at least 150 to 200 mm/month. Finally, a recharge map is developed to highlight the spatial extent of the two recharge mechanisms. Floodout recharge to the freshest ground water (TDS <1,000 mg/L) is approximately 1.9 mm/year compared with a mean recharge rate of approximately 0.2 mm/year to the remainder of the basin. These findings have important implications for management of the ground water resource.  相似文献   

2.
Ground water recharge and flow characterization using multiple isotopes   总被引:2,自引:0,他引:2  
Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system.  相似文献   

3.
The Kathmandu Basin in Nepal contains up to 550 m of Pliocene-Quaternary fluvio-lacustrine sediments which have formed a dual aquifer system. The unconfined sand and gravel aquifer is separated by a clay aquitard, up to 200 m thick, from the deeper, confined aquifer, comprised of Pliocene sand and gravel beds, intercalated with clay, peat, and lignite. The confined aquifer currently provides an important water supply to the central urban area but there are increasing concerns about its sustainability due to overexploitation. A limited number of determinations of the radioisotope 36Cl have been made on bore waters in the basin, allowing us to postulate on the age of ground water in the deeper, confined aquifer. Ground water evolution scenarios based on radioisotope decay, gradual dissolution of formational salts as the ground waters move downgradient, and flow velocity estimations produce comparable ground water ages for the deep waters, ranging from 200,000 to 400,000 years. From these ages, we deduce a mean ground water flow velocity of only 45 mm/year from recharge in the northeast to the main extraction region 15 km to the southwest. We thus estimate current recharge at about 5 to 15 mm/year, contributing 40,000 to 1.2 million m3/year to the ground water system. Current ground water extraction is estimated to be 20 times this amount. The low specific discharge confirms that the resource is being mined, and, based on current projections, reserves will be used up within 100 years.  相似文献   

4.
To improve the knowledge of the regionally important Continental Terminal 3 (CT3) aquifer in south-western Niger, fifteen magnetic resonance soundings (MRS) were carried out in December 2005 in the vicinity of wells and boreholes. The output MRS geophysical parameters, i.e. water content and decay constants versus depth, were compared to hydrogeological characteristics, i.e. water table depth, total porosity, specific yield and transmissivity estimated from direct measurements, pumping tests and transient groundwater modelling. The MRS-determined parameters were then used to estimate the rates of groundwater recharge.Contained in poorly consolidated Tertiary sandstones, the CT3 aquifer's water table has continuously risen by 4 m in total over the past four decades. Additionally, a significant portion of this increase has occurred in the past decade alone, with an annual rise now ranging between 0.1 and 0.3 m depending on the monitored well. Increase in groundwater recharge due to land clearance and deforestation explains this situation. According to previous estimations, the pre-clearing recharge ranged from 1 to 5 mm per year in 1950–60 s, while more recent recharge rates (1990s–2000s) range from 20 to 50 mm per year. These recharge values are directly affected by estimated aquifer specific yield value, while the spatial variation of rates of water table rise can be attributed to large scale hydrodynamic heterogeneities in the aquifer. However, few field measurements were available to confirm these assumptions.The main results of this study are: (1) The water table depth and aquifer transmissivity are estimated from MRS output parameters with an average accuracy of ± 10% and ± 9% respectively. (2) The MRS-determined water content is linked to both the total porosity and the specific yield of the aquifer, but no quantitative formulation can be proposed as yet. (3) Using the average MRS-determined water content over the investigated area, i.e. 13%, the groundwater recharge rates can be estimated to be ~ 2 mm per year in the 1950–1960s (pre-clearing period), and ~ 23 mm per year for the last decade. (4) The variations in specific yield and transmissivity cannot explain by themselves the spatial variability of the rise of the water table. (5) The ranges in transmissivity and water content obtained from MRS are more realistic than the groundwater modelling outputs. Therefore, MRS could be used to better constrain the aquifer parameters in groundwater modelling with a dense site network.Finally, this work illustrates how MRS can successfully improve characterisation and transient multi-year groundwater balance of commonly found sedimentary aquifers, particularly when integrated with well observations and pumping tests.  相似文献   

5.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Accurate representation of artificial recharge is requisite to calibration of a ground water model of an unconfined aquifer for a semiarid or arid site with a vadose zone that imparts significant attenuation of liquid transmission and substantial anthropogenic liquid discharges. Under such circumstances, artificial recharge occurs in response to liquid disposal to the vadose zone in areas that are small relative to the ground water model domain. Natural recharge, in contrast, is spatially variable and occurs over the entire upper boundary of a typical unconfined ground water model. An improved technique for partitioning artificial recharge from simulated total recharge for inclusion in a ground water model is presented. The improved technique is applied using data from the semiarid Hanford Site. From 1944 until the late 1980s, when Hanford's mission was the production of nuclear materials, the quantities of liquid discharged from production facilities to the ground vastly exceeded natural recharge. Nearly all hydraulic head data available for use in calibrating a ground water model at this site were collected during this period or later, when the aquifer was under the diminishing influence of the massive water disposals. The vadose zone is typically 80 to 90 m thick at the Central Plateau where most production facilities were located at this semiarid site, and its attenuation of liquid transmission to the aquifer can be significant. The new technique is shown to improve the representation of artificial recharge and thereby contribute to improvement in the calibration of a site-wide ground water model.  相似文献   

7.
Salinization of a fresh palaeo-ground water resource by enhanced recharge   总被引:2,自引:0,他引:2  
Deterioration of fresh ground water resources caused by salinization is a growing issue in many arid and semi-arid parts of the world. We discuss here the incipient salinization of a 10(4) km2 area of fresh ground water (<3,000 mg/L) in the semiarid Murray Basin of Australia caused by widespread changes in land use. Ground water 14C concentrations and unsaturated zone Cl soil water inventories indicate that the low salinity ground water originated mainly from palaeo-recharge during wet climatic periods more than 20,000 years ago. However, much of the soil water in the 20 to 60 m thick unsaturated zone throughout the area is generally saline (>15,000 mg/L) because of relatively high evapotranspiration during the predominantly semiarid climate of the last 20,000 years. Widespread clearing of native vegetation over the last 100 years and replacement with crops and pastures leads to enhancement of recharge rates that progressively displace the saline soil-water from the unsaturated zone into the ground water. To quantify the impact of this new hydrologic regime, a one-dimensional model that simulates projected ground water salinities as a function of depth to ground water, recharge rates, and soil water salt inventory was developed. Results from the model suggest that, in some areas, the ground water salinity within the top 10 m of the water table is likely to increase by a factor of 2 to 6 during the next 100 years. Ground water quality will therefore potentially degrade beyond the point of usefulness well before extraction of the ground water exhausts the resource.  相似文献   

8.
Geochemical quantification of semiarid mountain recharge   总被引:2,自引:0,他引:2  
Analysis of a typical semiarid mountain system recharge (MSR) setting demonstrates that geochemical tracers help resolve the location, rate, and seasonality of recharge as well as ground water flowpaths and residence times. MSR is defined as the recharge at the mountain front that dominates many semiarid basins plus the often-overlooked recharge through the mountain block that may be a significant ground water resource; thus, geochemical measurements that integrate signals from all flowpaths are advantageous. Ground water fluxes determined from carbon-14 ((14)C) age gradients imply MSR rates between 2 x 10(6) and 9 x 10(6) m(3)/year in the Upper San Pedro Basin, Arizona, USA. This estimated range is within an order of magnitude of, but lower than, prior independent estimates. Stable isotopic signatures indicate that MSR has a 65% +/- 25% contribution from winter precipitation and a 35% +/- 25% contribution from summer precipitation. Chloride and stable isotope results confirm that transpiration is the dominant component of evapotranspiration (ET) in the basin with typical loss of more than 90% of precipitation-less runoff to ET. Such geochemical constraints can be used to further refine hydrogeologic models in similar high-elevation relief basins and can provide practical first estimates of MSR rates for basins lacking extensive prior hydrogeologic measurements.  相似文献   

9.
The area under study covers 3500 km2 in the upstream part of the closed catchment basin of the salt crust of Uyuni. This crust is a remnant of the saline Lake Tauca, which covered the area about 15,000 years ago. In the downstream part of the aquifer, the Cl concentration of ground water and Cl content in the unsaturated zone exceed 20 meq/L and 18 kg/m2, respectively. With the present hydrological conditions under semiarid conditions, the ground water residence time in the study area exceeds 3000 years. Transient simulations over 11,000 years were made using initial conditions as the retreat of Lake Tauca and taking into account a low recharge during the arid mid-Holocene period. The modeling simulates ground water flow, Cl transport, and ground water residence time. It includes the evaporation from the aquifer that leads to the accumulation of chloride in the unsaturated zone. Results of the modeling are consistent with the observations if it is assumed that the Cl previously accumulated in the unsaturated zone was flushed back into the aquifer around 2000 years B.P., contemporaneously with the end of the arid period.  相似文献   

10.
The development of intense agriculture in semiarid areas modifies intensity and spatial distribution of groundwater recharge by summing irrigation return flow to limited rainfall infiltration. Environmental tracers provide key information, but their interpretation is complicated by more complex groundwater flow patterns. In multilayered aquifers, the real origin of the groundwater samples is hard to assess because of local mixing processes occurring inside long‐screened boreholes. We use environmental tracers (14C, 13C, 2H, 18O, 3H) to investigate the long‐term evolution of recharge in the five‐layer Campo de Cartagena aquifer in South‐Eastern Spain, in addition to high‐resolution temperature loggings to identify the depth of origin of groundwater. Despite the complex background, this methodology allowed a reliable interpretation of the geochemistry and provided a better understanding of the groundwater flow patterns. The tritium method did not give good quantitative results because of the high variability of the recharge signal but remained an excellent indicator of recent recharge. Nonetheless, both pre‐anthropization and post‐anthropization recharge regime could be identified and quantified by radiocarbon. Before the development of agriculture, recharge varied from 17 mm.year‐1 at the mountain ranges to 6 mm.year‐1 in the plain, whereas the mean annual rainfall is about 300 mm. In response to the increase of agricultural activity, recharge fluxes to the plain were amplified and nowadays reach up to 210 mm.year‐1 in irrigated areas. These values are strengthened by global water budget and local unsaturated zone studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Estimation of recharge from floods in disconnected stream-aquifer systems   总被引:2,自引:0,他引:2  
Stream-aquifer interaction has been the subject of much research for cases of good hydraulic connection (continuous saturated zone) between a river and an aquifer. Under these conditions, floods do not represent a very large net input to the aquifer because most of the water that enters the aquifer during the flood returns to the river when its stage recedes. The situation is different in disconnected stream-aquifer systems, where the streambed lies above the water level in the aquifer, thus preventing return flow from the aquifer. Under these conditions, floods may represent large, but hard to quantify, water inputs. Here, we present a methodology to estimate recharge from floods for disconnected stream-aquifer systems. Recharge is estimated as the product of a flood time function (dependent on the streamflow) and an unknown factor, which is obtained from calibrating a ground water flow model to aquifer heads. The approach can also benefit from concentration data, which can be very informative when river water concentrations vary over time. This methodology is applied to a field situation where recharge from river flooding is found to amount to nearly 15 million m(3)/year on the average, which represents 40% of the total aquifer inputs. Recharge from flooding helps explain major head recoveries, suggesting that basin water management programs should allow some floods to occur.  相似文献   

12.
At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating, water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observe the effects of the recharge process. At the time of the test, the water table was below the residual oil layer. The responses of the soil-gas and ground water quality were monitored during the recharge and drainage periods, which resulted from the sprinkling.
Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present.  相似文献   

13.
The accurate understanding of groundwater circulation pattern and its renewable capacity is vital for groundwater resource assessment and the rational exploitation and utilization of groundwater. Estimation of groundwater recharge is difficult in arid or semiarid area due to the low amount and variability of recharge. A combination of isotope investigation with hybrid model allows a direct calculation of renewability of the aquifer. In this paper, the phreatic water circulation pattern and its renewable capacity of phreatic water in Yinchuan Basin, a semiarid area located at the northwest China, are investigated by the application of environmental isotope method, which mainly focusses on the isotope characteristics of different water bodies, phreatic water isotope age, phreatic water circulation pattern, and phreatic water renewal rate. The results demonstrate that the two dominant recharge sources of groundwater in Yinchuan Basin, local atmospheric precipitation and Yellow River, account for 13% and 87%, respectively. The average residence time of phreatic water in Yinchuan Basin is about 48 years, and the average renewal rate is 3.38%/a. The results indicate that the phreatic water has a strong renewable capacity and the regeneration rate distribution is consistent with that indicated by isotope age.  相似文献   

14.
Weiss M  Gvirtzman H 《Ground water》2007,45(6):761-773
The fraction of rain that is annually recharged to ground water is a function of the transient quantities of precipitation (wet vs. dry years) as well as other meteorological and geologic factors, and thus it is very difficult to estimate. In this study, we have used long records (20 to 30 years) of precipitation and spring discharge to reconstruct the transient character of yearly recharge. These data sets were used to calibrate numerical ground water flow models on the less than 3 km(2) scale for four separate perched karstic aquifers in the Judean and Samarian Mountains of Israel. The stratification and karstic character of the local carbonate rock aquifers cause ground water to flow through discrete dissolution channels and to discharge at isolated springs. An innovative, dual-porosity approach was used where a finite-difference solution simulates flow in the rock matrix, while the karstic channels are simulated using computationally simple drains. Perched conditions are also simulated innovatively using MODFLOW by treating the bottom unsaturated layer as if it is saturated, but by assuming zero pressure head throughout the "unsaturated" layer. Best fitting between measured and computed spring hydrograph data has allowed us to develop a set of empirical functions relating measured precipitation to recharge to the aquifer. The generic methodology presented gives insight into the suspected changes in aquifer recharge rates between particularly wet or dry years.  相似文献   

15.
Artificially enhancing recharge rate into groundwater aquifer at specially designed facilities is an attractive option for increasing the storage capacity of potable water in arid and semi‐arid region such as Damascus basin (Syria). Two dug wells (I and II) for water injection and 24 wells for water extraction are available in Mazraha station for artificial recharge experiment. Chemical and stable isotopes (δ2H and δ18O) were used to evaluate artificial recharge efficiency. 400 to 500*103 m3 of spring water were injected annually into the ambient shallow groundwater in Mazraha station, which is used later for drinking purpose. Ambient groundwater and injected spring water are calcium bicarbonate type with EC about 880 ± 60 μS/cm and 300 ± 50 μS/cm, respectively. The injected water is under saturated versus calcite and the ambient groundwater is over saturated, while the recovered water is near equilibrium. It was observed that the injection process formed a chemical dilution plume that improves the groundwater quality. Results demonstrate that the hydraulic conductivity of the aquifer is estimated around 6.8*10?4 m/s. The effective diameter of artificial recharge is limited to about 250 m from the injection wells. Mixing rate of 30% is required in order to reduce nitrate concentration below 50 mg/l which is considered the maximum concentration limit for potable water. Deuterium and oxygen‐18 relationship demonstrates that mixing line between injected water and ambient groundwater has a slope of 6.1. Oxygen‐18 and Cl? plot indicates that groundwater salinity origin is from mixing process, and no dissolution and evaporation were observed. These results demonstrate the efficiency of the artificial recharge experiments to restore groundwater storage capacity and to improve the water quality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Magnetic resonance sounding (MRS) is a noninvasive geophysical method that allows estimating the free water content and transmissivity of aquifers. In this article, the ability of MRS to improve the reliability of a numerical groundwater model is assessed. Thirty-five sites were investigated by MRS over a ~5000 km(2) domain of the sedimentary Continental Terminal aquifer in SW Niger. Time domain electromagnetic soundings were jointly carried out to estimate the aquifer thickness. A groundwater model was previously built for this section of the aquifer and forced by the outputs from a distributed surface hydrology model, to simulate the observed long-term (1992 to 2003) rise in the water table. Uncertainty analysis had shown that independent estimates of the free water content and transmissivity values of the aquifer would facilitate cross-evaluation of the surface-water and groundwater models. MRS results indicate ranges for permeability (K = 1 × 10(-5) to 3 × 10(-4) m/s) and for free water content (w = 5% to 23% m(3) /m(3) ) narrowed by two orders of magnitude (K) and by ~50% (w), respectively, compared to the ranges of permeability and specific yield values previously considered. These shorter parameter ranges result in a reduction in the model's equifinality (whereby multiple combinations of model's parameters are able to represent the same observed piezometric levels), allowing a better constrained estimate to be derived for net aquifer recharge (~22 mm/year).  相似文献   

17.
Development of saline ground water through transpiration of sea water   总被引:2,自引:0,他引:2  
As vegetation usually excludes salt during water uptake, transpiration will increase the salinity of the residual water. If the source water is sea water, then the residual water may become highly saline. In the unconfined coastal aquifer of the tropical Burdekin River delta, northeastern Australia, areas of highly saline ground water with chloride concentrations up to almost three times that of sea water occur up to 15 km from the present coastline, and are attributed to transpiration by mangrove vegetation during periods of high sea level. Radiogenic ((14)C) carbon isotope analyses indicate that ground water with chloride concentrations between 15,000 and 35,000 mg/L is mostly between 4000 and 6000 years old, at which time sea level was 2 to 3 m higher than present. Stable isotope analyses of oxygen-18 and deuterium show no evidence for evaporative enrichment of this water. Oxygen-18, deuterium, and stable (delta(13)C) carbon isotope analyses of ground water and soil water point to a recharge environment beneath the mangrove forests during this postglacial sea level high stand. During that period, transpiration of the mangrove forests would have led to high chloride concentrations in the residual ground water, without inducing isotopic fractionation. Due to the higher density, this hypersaline water moved downward through the aquifer by gravity and has formed lenses of highly saline ground water at the bottom of the unconfined aquifer.  相似文献   

18.
Access to fresh water is one of the major issues of northern and sub-Saharan Africa. The majority of the fresh water used for drinking and irrigation is obtained from large ground water basins where there is minor contemporary recharge and the aquifers cross national borders. These aquifers include the Nubian Aquifer System shared by Chad, Egypt, Libya, and Sudan; the Iullemeden Aquifer System, extending over Niger, Nigeria, Mali, Benin, and Algeria; and the Northwest Sahara Aquifer System shared by Algeria, Libya, and Tunisia. These resources are subject to increased exploitation and may be severely stressed if not managed properly as witnessed already by declining water levels. In order to make appropriate decisions for the sustainable management of these shared water resources, planners and managers in different countries need an improved knowledge base of hydrological information. Three technical cooperation projects related to aquifer systems will be implemented by the International Atomic Energy Agency, in collaboration with the United Nations Educational, Scientific and Cultural Organization and United Nations Development Programme/Global Environmental Facility. These projects focus on isotope hydrology studies to better quantify ground water recharge and dynamics. The multiple isotope approach combining commonly used isotopes 18O and 2H together with more recently developed techniques (chlorofluorocarbons, 36Cl, noble gases) will be applied to improve the conceptual model to study stratification and ground water flows. Moreover, the isotopes will be an important indicator of changes in the aquifer due to water abstraction, and therefore they will assist in the effort to establish a sustainable ground water management.  相似文献   

19.
Aquifer natural recharge estimations are a prerequisite for understanding hydrologic systems and sustainable water resources management. As meteorological data series collection is difficult in arid and semiarid areas, satellite products have recently become an alternative for water resources studies. A daily groundwater recharge estimation in the NW part of the Lake Chad Basin, using a soil–plant-atmosphere model (VisualBALAN), from ground- and satellite-based meteorological input dataset for non-irrigated and irrigated land and for the 2005–2014 period is presented. Average annual values were 284 mm and 30°C for precipitation and temperature in ground-based gauge stations. For the satellite-model-based Lake Chad Basin Flood and Drought Monitor System platform (CHADFDM), average annual precipitation and temperature were 417 mm and 29°C, respectively. Uncertainties derived from satellite data measurement could account for the rainfall difference. The estimated mean annual aquifer recharge was always higher from satellite- than ground-based data, with differences up to 46% for dryland and 23% in irrigated areas. Recharge response to rainfall events was very variable and results were very sensitive to: wilting point, field capacity and curve number for runoff estimation. Obtained results provide plausible recharge values beyond the uncertainty related to data input and modelling approach. This work prevents on the important deviations in recharge estimation from weighted-ensemble satellite-based data, informing in decision making to both stakeholders and policy makers.  相似文献   

20.
Regional estimates of aquifer recharge are needed in data-scarce regions such as the Basin of Mexico, where nearly 20 million people are located and where the Basin’s aquifer system represents the main water source. In order to develop the spatio-temporal estimates of aquifer recharge and to analyze to what extent urban growth has affected aquifer recharge, this work presents a daily soil water balance which uses different vegetation and soil types as well as the effect of topography on climatological variables and evapotranspiration. The soil water balance was applied on a daily time step in the Basin of Mexico for the period 1975–1986, obtaining an annually-lumped potential recharge flow of 10.9–23.8 m3/s (35.9–78.1 mm) in the entire Basin, while the monthly values for the year with the largest lumped recharge value (1981 = 78.1 mm) range from 1 m3/s (0.3 mm) in December to 87.9 m3/s (23.7 mm) in June. As aquifer recharge in the Basin mainly occurs by subsurface flow from its enclosing mountains as Mountain Block Recharge, urban growth has had a minimal impact on aquifer recharge, although it has diminished recharge in the alluvial plain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号