首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Seismicity of the Ibero-Maghrebian region includes the occurrence of shallow, intermediate depth, and very deep earthquakes. This is a very rare occurrence for a region not associated to an active subduction zone. Detailed studies of the source mechanism of these three types of earthquakes have been made possible through the collaboration with Prof. Madariaga. They give important information about the complex tectonic of the region. Shallow earthquakes at the west and east ends of the region have predominant reverse faulting with NW-SE trending horizontal pressure axes. The center part is the most tectonically complex. At the Strait of Gibraltar, there is a change on focal mechanisms from reverse faulting to strike-slip motion in northern Morocco, conserving the horizontal compression on NW-SE direction. In the Alboran Sea, mechanisms are of normal faulting with E-W trending horizontal tension axes, and in south Spain, mechanisms are of mixed solutions. The intermediate depth earthquakes (40–130 km) are located at both sides of the Strait of Gibraltar, at the western part distributed in E-W direction. The most important concentration, however, is located at the east of Gibraltar in a N-S trending thin vertical body and has different mechanisms. The very deep earthquakes (650 km) are concentrated at a small volume, and their mechanism corresponds to N-S vertical planes or horizontal ones. A tectonic model for the region is presented to explain the shallow, intermediate, and deep earthquakes.  相似文献   

2.
—The plate boundary between Iberia and Africa has been studied using data on seismicity and focal mechanisms. The region has been divided into three areas: A; the Gulf of Cadiz; B, the Betics, Alboran Sea and northern Morocco; and C, Algeria. Seismicity shows a complex behavior, large shallow earthquakes (h < 30 km) occur in areas A and C and moderate shocks in area B; intermediate-depth activity (30 < h < 150 km) is located in area B; the depth earthquakes (h 650 km) are located to the south of Granada. Moment rate, slip velocity and b values have been estimated for shallow shocks, and show similar characteristics for the Gulf of Cadiz and Algeria, and quite different ones for the central region. Focal mechanisms of 80 selected shallow earthquakes (8 mb 4) show thrust faulting in the Gulf of Cadiz and Algeria with horizontal NNW-SSE compression, and normal faulting in the Alboran Sea with E-W extension. Focal mechanisms of 26 intermediate-depth earthquakes in the Alboran Sea display vertical motions, with a predominant plane trending E-W. Solutions for very deep shocks correspond to vertical dip-slip along N-S trends. Frohlich diagrams and seismic moment tensors show different behavior in the Gulf of Cadiz, Betic-Alboran Sea and northern Morocco, and northern Algeria for shallow events. The stress pattern of intermediate-depth and very deep earthquakes has different directions: vertical extension in the NW-SE direction for intermediate depth earthquakes, and tension and pressure axes dipping about 45 ° for very deep earthquakes. Regional stress pattern may result from the collision between the African plate and Iberia, with extension and subduction of lithospheric material in the Alboran Sea at intermediate depth. The very deep seismicity may be correlated with older subduction processes.  相似文献   

3.
Recent improvements in the seismological networks on the Ibero-Maghrebian region have permitted estimation of hypocentral location and focal mechanisms for earthquakes which occurred at South Spain, Alboran Sea and northern Morocco of deep and intermediate depth, with magnitudes between 3.5 and 4.5. Intermediate depth shocks, range from 60 to 100 km, with greater concentration located between Granada and Málaga. Fault-plane solutions of 5 intermediate shocks have been determined; they present a vertical plane in NE-SW or E-W direction. Seismic moments of about 1015 Nm and dimensions of about 1 km have been determined from digital records of Spanish stations.P-wave forms are complex. This may be explained by the crustal structure near the station, discontinuities in the upper mantle and inhomogeneities near the source. Deep activity at about 650 km has only 3 shocks since 1954 (1954, 1973, 1990). Shocks are located at a very small region. Fault-plane solutions show a consistent direction of the pressure axis dipping 45° in E direction. For the 1990 shock seismic moment is 1016 Nm and dimensions 2.6 km. TheP-waves are of simpler form with a single pulse. The intermediate and deep activities are not connected and no activity has been detected between 100 and 650 km. The intermediate shocks may be explained in terms of a recent subduction from Africa under Iberia in SE direction. The very deep activity must be related to a sunk detached block of lithospheric material still sufficiently cold and rigid to generate earthquakes.  相似文献   

4.
During March and April 1984, a temporary network of 29 portable stations was operated in the region of the Mygdonian graben near Thessaloniki (northern Greece), where a destructive earthquake (Ms = 6.5) had occurred in the Summer of 1978. During a period of six weeks we recorded 540 earthquakes with magnitudes ranging from −0.2 to 3.0. From this set of data, 254 events are selected which according to us have a precision in epicenter and depth better than 1.5 km. A total of 54 single-event focal mechanisms have been determined.The seismicity and focal mechanisms show a rather complex pattern. There are no clear individual faults, but the E-W and NW-SE striking zones show N-S extension. Zones striking NNE-SSW show dextral strike-slip motion but NW-SE zones with sinistral strike-slip are also observed.In the center of the graben where the 1978 earthquake was located, we observe several thrust mechanisms distributed in two groups showing either NW-SE or E-W compression; these earthquakes seem to be located 2 km above the earthquakes showing normal mechanisms.The mean direction of the T-axes, found from the focal mechanisms, trends N15° and dips sub-horizontal.We propose a model for the formation and evolution of a complex graben system comprising several stages. In the initial stage the deformation occurs along pre-existing NW-SE or NNE-SSW faults, with normal or strike-slip movements. In the second stage, a new, E-W trending group of normal faults is formed over the ancient fault network. These new faults have a direction perpendicular to the mean T-axis and accommodate better the actual state of stress. At this stage the initial faults adjust to the deformation produced by the E-W trending new faults, and may constitute geometric barriers to the evolution of the new normal faults.  相似文献   

5.
本文首先采用双差定位方法对2014年金寨ML3.9震群序列进行了重新定位, 然后通过Snoke方法和CAP方法计算了该震群序列中较大地震的震源机制解, 分析了震源参数的时空变化特征. 结果表明: 金寨震群序列密集分布在2 km×2 km范围内, 无明显的展布方向; 其震源深度较浅, 大部分集中在3—7 km. 此外, 金寨震群序列中较大地震的震源机制解基本一致, 两组节面的走向分别为NW向和NNE向, 倾角均较高, 表明该震群序列为近E--W向的水平挤压和近N--S向的水平拉张应力场作用下的走滑型地震活动.   相似文献   

6.
利用1971年1月至1982年12月的地震资料,研究了千岛岛弧地区的地震分布及震源机制解,进而讨论了贝尼奥夫带的形态及应力状态。地震分布于沿海沟展布的NE向的弧形带上,除地壳内地震外,形成明显的贝尼奥夫带,贝尼奥夫带最深达619公里,两侧较浅,少于200公里,倾向近于NW55°,倾角为45°。地壳内的压应力轴位于NW方向,且接近于水平,反映了太平洋板块的挤压;俯冲带上应力轴随深度变化:114公里以上的T轴沿俯冲方向,114公里至175公里震源机制解分为两组,T轴沿俯冲方向和P轴沿俯冲方向;320公里至440公里范围内P轴有接近俯冲方向的趋势,但较为分散;515公里以下P轴相当集中,且沿俯冲方向。本文对这种应力分布的成因进行了讨论  相似文献   

7.
We present a study of the lateral structure and mode of deformation in the transition between the Kuril and Honshu subduction zones. We begin by examining the source characteristics of the January 19, 1969, intermediate depth earthquake north of Hokkaido in the framework of slab-tearing, which for the December 6, 1978 event has been well documented by previous studies. We use a least-squares body wave inversion technique, and find that its focal mechanism is comparable to the 1978 event. To understand the cause of these earthquakes, which in the case of the 1978 event occurred on a vertical tear fault but does not represent hinge faulting, we examine the available International Seismological Centre [ISC] hypocenters and Harvard centroid-moment tensor [CMT] solutions to determine the state of stress, and lateral structure and segmentation in the Kuril and northern Honshu slabs. These data are evaluated in the framework of two models. Model (A) requires the subducting slab at the Hokkaido corner to maintain surface area. Model (B) requires slab subduction to be dominated by gravity, with material subducting in the down-dip direction. The distribution of ICS hypocenters shows a gap in deep seismicity down-dip of the Hokkaido corner, supporting model (B). From the CMT data set we find that three types of earthquake focal mechanisms occur. The first (type A) represents dip-slip mechanisms consistent with down-dip tension or compression in the slab in a direction normal to the strike of the trench. These events occur throughout the Honshu and Kuril slabs with focal mechanisms beneath Hokkaido showing NNW plungingP andT axes consistent with the local slab geometry. The second (type B) occurs primarily at depths over 300 km in the southern part of the Kuril slab with a few events in the northern end of the Honshu deep seismicity. These earthquakes have focal mechanisms with P axes oriented roughly E-W, highly oblique to the direction of compression found in the type A events, with which they are spatially interspersed. The third (type C) group of earthquakes are those events which do not fit in either of the first two groups and consist of either strike-slip focal mechanisms, such as the tearing events, or oddly oriented focal mechanisms. Examination of the stress axes orientations for these three types reveals that the compressional axes of the type C events are consistent with those of type B. The slab tearing events are just differential motion reflecting the E-W compressive states of stress which is responsible for the type B family of events. There is no need to invoke down-dip extension which does not fit the slab geometry. We conclude that these two states of stress can be explained as follows: 1) The type A events and the seismicity distribution support model (B). 2) The type B and C events upport model (A). The solution is that the slab subducts according to model (B), but the flow in the mantle maintains a different trajectory, possibly induced by the plate motions, which produces the second state of E-W compressive stress.  相似文献   

8.
Source mechanism of intermediate and deep earthquakes in southern Spain   总被引:1,自引:0,他引:1  
Focal mechanisms of 10 intermediate-depth earthquakes (30相似文献   

9.
肃南5.7级地震序列震源机制研究及其前兆意义   总被引:3,自引:0,他引:3  
金铭  李亚荣 《高原地震》2000,12(2):25-31
用P、S波振幅比方法反演了1988年11月22日肃南5.7级地震序列的震源机制,计算了对应的P轴T轴。结果表明,前震的一组节面比较集中且与主震断层面大体一致,其主压应力轴也表现出对的集中,而余震(以及以后发生在该地区的一些小震)的断层面解则比较散乱,但总体上仍与该区的主要断层保持大体一致,但是余震的P轴和T轴则表现更大的散乱。由此我们可以认为,中强地震发生前震源区微震震源机制的相对一致性是发震断层  相似文献   

10.
利用sPn和Pn震相走时差计算的2014年2月28日石嘴山M_L4.4地震的震源深度为7.21±0.277km;分析不同震源深度下民勤台的理论波形与观测波形拟合结果,得到震源深度为7~8km。研究认为,石嘴山M_L4.4地震属于浅源地震,震源浅和沉积层较厚是此次地震震感较强的主要原因。另外,合理选取地震波形数据和震相识别方法,可有效提高s Pn震相测定震源深度的可靠性。为便于应用,本文还给出了宁夏地区地震震源分别位于上地壳和下地壳时sPn和Pn震相走时差与震源深度的对应关系表。  相似文献   

11.
The sources for thirteen deep focus earthquakes ofm b≥5.5 andh>400 km in Northwest Pacific region were studied using waveform fitting and shear fracture source model. The source parameters were obtained as follows: focal depth, faulting plane, slip direction, rupture velocity, rupture length, rupture direction and scalar moment tensor. It was found that all these earthquake sources can be interpreted as shear faulting and have simple source time functions. The strike direction of faulting plane for most deep focus earthquakes coincides with that of the subduction zone, especially in the deep part of the subduction zone, it results in the tendency of reducing the dip angle of the subduction zone. The multiple point source model was also used to study the source process. The waveform fitting is better than the shear fracture model, but the general rupture direction which coincides with that from unilateral shear source model can not be obtained from the multiple point source model. This study is supported by the National Science Foundation of China and the Chinese Joint Seismological Science Foundation.  相似文献   

12.
The paper addresses the spatiotemporal development of the Kichera sequence of earthquakes of 1999 (more than 6000 events over the year) within the Kichera depression, terminating on land in the Northern Baikal basin; the series was the most intense of all earthquake sequences recorded in the Northern Cis-Baikal region (NCBR) since 1960. The spatial coordinates of earthquakes showed that the source rupture, originating in the area of the Kichera-Upper Angara interbasin mountainous isthmus, propagated in the SW direction toward Lake Baikal. Stresses in the sources of the two strongest shocks (Mw = 6.0 and 5.6) of the sequence were released along fault planes striking NE (normal type) and E-W (normal-strike-slip type). Focal mechanisms of aftershocks revealed the presence of differently oriented faults motions on which were controlled by a large rifting fault striking NE. The Kichera earthquakes are shown to have occurred under seismotectonic conditions dominated by NW-SE extension and to have been accompanied by active normal faulting promoting longitudinal growth of the Upper Angara depression and deepening of the Kichera depression. The seismotectonic strain rates calculated for the NCBR before and after 1999 were of the order of (0.1–1.0) × 10?10 yr?1, whereas their values were two to three orders larger during 1999. Thus, the Kichera earthquakes confirmed the high seismic potential of the NCBR and showed that this rift segment developed through growth of depressions and destruction of interbasin mountainous isthmuses.  相似文献   

13.
沧东断裂是渤海湾裂谷盆地西侧规模最大的正断层,也是沧县隆起与黄骅坳陷的分界断裂,其活动和发展直接控制了沧县隆起和黄骅坳陷的发育与演化。采用近三十年来横跨沧东断裂不同段落获取的5条浅层地震勘探成果资料,并结合测线附近的钻孔资料,深入研究沧东断裂的第四纪活动性及深部构造特征。浅层地震勘探结果发现,沧东断裂上断点埋深从南至北由深变浅,但集中在埋深118~300 m范围,错断的最新地层为中更新统,推断其最新活动时代为中更新世,而且断裂的活动时代未发现具有分段性特征。进一步综合深地震反射、大地电磁测深、沧州地区小地震分布与中强地震震源机制等资料,对沧东断裂的深部构造特征分析后发现,沧东断裂具有典型的铲状正断层特点,在深度10 km左右转为了近水平延伸,沧东断裂并非区域上主要控震断裂,或者只是低风险活动断裂,未来发生中强地震的风险可能相对较低。  相似文献   

14.
1966年邢台7.2级地震的动力学模型   总被引:2,自引:0,他引:2  
根据较新的深地震反射资料,构造应力场和震机制等资料,建立了1966年邢台7.2级地震孕震区的平面和剖面的有限元模型,对平面和剖面模型在EW向水平外压力下的最大剪应力分布进行了计算,剪应力相对集中的部位和大震震源位置比较一致,提出了邢台7.2级地震的动力学模型,认为地震的孕育和发生可能需要深,浅部断层,壳内低速层和EW向水平压力的共同作用,虽然由震源机制和地震宏观烈度分布等资料可指出有具体的发震断层  相似文献   

15.
南北地震带震源机制解与构造应力场特征   总被引:23,自引:7,他引:16       下载免费PDF全文
南北地震带作为中国大陆地应力场一级分区的边界,其构造应力场的研究对理解大陆强震机理、构造变形和地震应力的相互作用具有重要意义.本文收集南北地震带1970—2014年的震源机制解819条,按照全球应力图的分类标准对震源机制解进行分类,发现其空间分布特征与地质构造活动性质比较吻合.P轴水平投影指示了活动块体的运动方向,T轴水平投影在川滇块体及邻近地区空间差异特征最为突出,存在顺时针旋转的趋势.南北地震带的最大水平主应力方向具有明显的分区特征,北段为NE向走滑类型的应力状态,中段为NEE—EW—NWW向的逆冲类型,南段为SE—SSE—NS—NNE向走滑和正断类型,在川滇块体的北部和西边界应力状态为EW—SE—SSE的正断层类型,表明来自印度板块的NNE或NE向的水平挤压应力和青藏高原物质东向滑移沿大型走滑断裂带向SE向平移的复合作用控制了南北地震带的岩石圈应力场.川滇块体西边界正断层类型应力状态范围与高分辨率地震学观测得到的中下地壳低速带范围基本吻合,青藏高原向东扩张的塑性物质流与横向边界(丽江—小金河断裂带)的弱化易于应变能的释放,在局部地区使NS向拉张的正断层向EW向拉张正断层转变.反演得到的应力状态基本上与各种类型地震的破裂方式比较吻合,也进一步验证反演结果的可靠性,可为地球动力学过程的模拟和活动断层滑动性质的厘定提供参考.  相似文献   

16.
We carried out a study of the seismicity and ground deformation occurring on Mt. Etna volcano after the end of the 2002–2003 eruption and before the onset of the 2004–2005 eruption. Data were recorded by the permanent local seismic network run by Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania and by geodetic surveys carried out in July 2003 and July 2004 on the GPS network. Most earthquakes were grouped in two main clusters located in the northeastern and southeastern sectors of the volcano. The areal distribution of seismic energy associated with the recorded earthquakes allowed us to highlight the main seismogenic areas of Mt. Etna. In order to better understand the kinematic processes of the volcano, 3D seismic locations were used to compute fault plane solutions, and a selected dataset was inverted to determine stress and strain tensors. The focal mechanisms in the northeastern sector show clear left-lateral kinematics along an E-W fault plane, consistent with events occurring along the Pernicana Fault system. The fault plane solutions in the southeastern sector show mainly right-lateral kinematics along a NNE and ENE fault plane and left lateral-kinematics along NW fault planes that together suggest roughly E-W oriented compression. Surface ground deformation affecting Mt. Etna measured by GPS surveys highlighted a marked inflation during the same period and exceptionally strong seawards motion of its eastern flank. The 2D geodetic strain tensor distribution was calculated and the results show mainly ENE-WSW extension coupled with WNW-ESE contraction, indicating right-lateral shear along a NW-SE oriented fault plane. The different deformation of the eastern sector of the volcano, as measured by seismicity and ground deformation, must be interpreted by considering the different depths of the two signals. Seismic activity in the southeastern sector of volcano is located between 3 and 8 km b.s.l. and can be associated with a very strong additional E-W compression induced by a pressurizing source just westwards and at the same depth, located by inverting GPS data. Ground deformation, in contrast, is mainly affected by the shallower dynamics of the fast moving eastern flank which produces a shallower opposing E-W extension. The entire dataset shows that two different processes affect the eastern flank at the same time but at different depths; the boundary is clearly located at a depth of 3 km b.s.l. and could represent the décollement surface for the mobile flank.  相似文献   

17.
The earthquakes examined in this paper are all within the oceanic lithosphere and are associated with the bending of plates before subduction. Accurate determinations of the depth of these earthquakes are needed to study the stress pattern within a bending plate. Routinely-determined depths of shallow sub-oceanic earthquakes published in bulletins are unreliable. The depths can be accurately determined to within a few kilometers if the original seismograms from these events are studied. In some cases, the reflected phases pP and pwP can be clearly identified. There exists the possibility that the wave reflected at the water-air interface, pwP, may be misidentified as pP, leading to erroneous estimates of depth. Additional methods of analysis, such as surface wave radiation patterns or the apparent frequency-dependence of reflection at the crust-water interface, can remove this possible source of confusion. One of the most powerful techniques for depth analysis is the modelling of long-period waveforms. The pattern of stresses within the bending oceanic lithosphere revealed by the depths and focal mechanisms of these intraplate earthquakes is one of horizontal, deviatoric tension down to a depth of about 25 km, with horizontal compression at greater depths.  相似文献   

18.
芦山与汶川地震之间存在约40 km的地震空区.震源区和地震空区的深部构造背景的研究对深入了解中强地震的深部孕育环境及地震空区的地震活动性具有重要科学意义.利用本小组布设的15个临时观测地震台以及21个芦山科考台站和21个四川省地震局固定台站记录的远震数据,用H-K叠加方法得到各个台站的地壳厚度和平均泊松比,并构建了接收函数共转换点(CCP)偏移叠加图像以及反演得到台站下方的S波速度模型.我们的结果揭示了震源区和地震空区地壳结构特征差异:(1)汶川震源区的地壳平均泊松比为~0.28;芦山震源区为~0.29;而地震空区处于泊松比变化剧烈的区域;(2)汶川地震与芦山地震的震源区以西下方的Moho面呈现深度上的突变(这与前人的研究成果基本一致),分别从~44 km突变到~59 km,~40 km突变到~50 km,而地震空区地壳平均厚度呈现渐变性变化;(3)地震空区Moho面下凹且具有低速的上地壳.综合一维S波速度结构和H-k以及CCP的初步结果,这可能显示汶川地震的发震断裂在深部方向上向西倾斜并形成切割整个地壳的大型断裂;芦山地震则可能是由于上、下地壳解耦引起的;而地震空区处于两种地震形成机制控制区域的过渡带中.  相似文献   

19.
To evaluate the tectonic significance of the October 20, 1986 Kermadec earthquake (M w =7.7), we performed a comprehensive analysis of source parameters using surface waves, body waves, and relocated aftershocks. Amplitude and phase spectra from up to 93 Rayleigh waves were inverted for centroid time, depth, and moment tensor in a two-step algorithm. In some of the inversions, the time function was parameterized to include information from the body-wave time function. The resulting source parameters were stable with respect to variations in the velocity and attenuation models assumed, the parameterization of the time function, and the set of Rayleigh waves included. The surface wave focal mechanism derived (=275°, =61°, =156°) is an oblique-compressional mechanism that is not easy to interpret in terms of subduction tectonics. A seismic moment of 4.5×1020 N-m, a centroid depth of 45±5 km, and a centroid time of 13±3 s were obtained. Directivity was not resolvable from the surface waves. The short source duration is in significant contrast to many large earthquakes.We performed a simultaneous inversion ofP andSH body waves for focal mechanism and time function. The focal mechanism agreed roughly with the surface wave mechanism. Multiple focal mechanisms remain a possibility, but could not be resolved. The body waves indicate a short duration of slip (15 to 20 s), with secondary moment release 60s later. Seismically radiated energy was computed from the body-wave source spectrum. The stress drop computed from the seismic energy is about 30 bars. Sixty aftershocks that occurred within three months of the mainshock were relocated using the method of Joint Hypocentral Determination (JHD). Most of the aftershocks have underthrusting focal mechanisms and appear to represent triggered slip on the main thrust interface. The depth, relatively high stress drop, short duration of slip, and paucity of true aftershocks are consistent with intraplate faulting within the downgoing plate. Although it is not clear on which nodal plane slip occurred, several factors favor the roughly E-W trending plane. The event occurred near a major segmentation in the downgoing plate at depth, near a bend in the trench, and near a right-lateral offset of the volcanic are by 80 km along an E-W direction. Also, all events in the region from 1977 to 1991 with CMT focal mechanisms similar to that of the Mainshock occurred near the mainshock epicenter, rather than forming an elongate zone parallel to the trench as did the aftershock activity. We interpret this event as part of the process of segmentation or tearing of the subducting slab. This segmentation appears to be related to the subduction of the Louisville Ridge, which may act as an obstacle to subduction through its buoyancy.  相似文献   

20.
新西兰2010年M7.1地震与2011年M6.3地震活动和灾害分析   总被引:3,自引:0,他引:3  
本文对新西兰.2010年9月4日M7.1地震(国际标准时间)与2011年2月22日(国际标准时间)M6.3地震活动和灾害情况进行了分析,用同震位移方法计算了两次地震的地震烈度,结果表明尽管两次地震震级相差较大,但由于M6.3地震震源深度较浅,两次地震在地表的烈度相同.本文用主余震序列方法计算了两次地震的断层滑动参数,结...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号