首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
—The plate boundary between Iberia and Africa has been studied using data on seismicity and focal mechanisms. The region has been divided into three areas: A; the Gulf of Cadiz; B, the Betics, Alboran Sea and northern Morocco; and C, Algeria. Seismicity shows a complex behavior, large shallow earthquakes (h < 30 km) occur in areas A and C and moderate shocks in area B; intermediate-depth activity (30 < h < 150 km) is located in area B; the depth earthquakes (h 650 km) are located to the south of Granada. Moment rate, slip velocity and b values have been estimated for shallow shocks, and show similar characteristics for the Gulf of Cadiz and Algeria, and quite different ones for the central region. Focal mechanisms of 80 selected shallow earthquakes (8 mb 4) show thrust faulting in the Gulf of Cadiz and Algeria with horizontal NNW-SSE compression, and normal faulting in the Alboran Sea with E-W extension. Focal mechanisms of 26 intermediate-depth earthquakes in the Alboran Sea display vertical motions, with a predominant plane trending E-W. Solutions for very deep shocks correspond to vertical dip-slip along N-S trends. Frohlich diagrams and seismic moment tensors show different behavior in the Gulf of Cadiz, Betic-Alboran Sea and northern Morocco, and northern Algeria for shallow events. The stress pattern of intermediate-depth and very deep earthquakes has different directions: vertical extension in the NW-SE direction for intermediate depth earthquakes, and tension and pressure axes dipping about 45 ° for very deep earthquakes. Regional stress pattern may result from the collision between the African plate and Iberia, with extension and subduction of lithospheric material in the Alboran Sea at intermediate depth. The very deep seismicity may be correlated with older subduction processes.  相似文献   

2.
Source mechanism of intermediate and deep earthquakes in southern Spain   总被引:1,自引:0,他引:1  
Focal mechanisms of 10 intermediate-depth earthquakes (30相似文献   

3.
The source mechanism of 19 earthquakes that occurred in Peru (1990–1996) is studied using broad band data. Focal mechanisms are obtained using polarities of P wave and body wave form inversion. Shallow earthquakes show complex source time functions, intermediate and deep depth shocks have simpler ones. Stress distributions have been obtained from focal mechanisms estimated in this study and previous studies. Shallow earthquakes show reverse faulting with an ENE-WSW to E-W oriented pressure axes. Intermediate depth shocks indicate horizontal extension on E-W direction, normal to the Peru-Chilean trench. Earthquakes with foci at very deep depth show horizontal extension in the E-W direction in Peru-Brazil and N-S in Peru-Bolivia borders. This difference in stress orientation may indicate a different origin for deep activity at each region.  相似文献   

4.
Intraplate seismic activity in Bolivia is mainly located in the central region (16°–19°S, 63°–67°W) which includes the East Andean Cordillera and the Sub-Andean Sierras. At this region there is a bend in the trend of the main geological structures from NW-SE in the north to N-S in the south. Focal mechanisms have been calculated for 10 earthquakes of magnitudes 4.9–5.6, using first motionP-waves from long period instruments. Their solutions correspond to reverse faulting, some with a large component of strike-slip motion. Their solutions can be grouped into two types; one with pure reverse faulting on planes with azimuth NW-SE and the other with a large strike-slip component on planes with azimuths nearly N-S or WNW-ESE. The maximum stress axis (P-axis) is practically horizontal (dipping less than 5°) oriented in a mean N56°E direction. This orientation may be related with the direction of compression resulting from the collision of the Nazca plate against the western margin of the South American continent. Wave-form analysis of long-periodP-waves for one event restricts the focal depth to 8 km in the Sub-Andean region. Seismic moments and source dimensions determined from spectra of Rayleigh waves are in the range of 1016–1017Nm and 17–24 km, respectively. The Central Bolivia region can be considered as a zone of intraplate deformation situated between the Bolivian Altiplano and the Brazil shield.  相似文献   

5.
To better understand the mechanics of subduction and the process of breaking a mature seismic gap, we study seismic activity along the western New Britain subduction segment (147°E–151°E, 4°S–8°S) through earthquakes withm b 5.0 in the outer-rise, the upper area of subducting slab and at intermediate depths to 250 km, from January 1964 to December 1990. The segment last broke fully in large earthquakes of December, 28, 1945 (M s =7.9) and May 6, 1947 (M s =7.7.), and its higher seismic potential has been recognized byMcCann et al., (1979). Recently the segment broke partially in two smaller events of February, 8, 1987 (M s =7.4) and October 16, 1987 (M s =7.4), leaving still unbroken areas.We observe from focal mechanisms that the outer-rise along the whole segment was under pronounced compression from the late 60's to at least October 1987 (with exception of the tensional earthquake of December 11, 1985), signifying the mature stage of the earthquake cycle. Simultaneously the slab at intermediate depths below 40 km was under tension before the earthquake of October 16, 1987. That event, with a smooth rupture lasting 32 sec, rupture velocity of 2.0 km/sec, extent of approximately 70 km and moment of 1.2×1027 dyne-cm, did not change significantly the compressive state of stress in the outer-rise of that segment. The earthquake did not fill the gap completely and this segment is still capable of rupturing either in an earthquake which would fill the gap between the 1987 and 1971 events, or in a larger magnitude event (M s =7.7–7.9), comparable to earthquakes observed in that segment in 1906, 1945 and 1947.  相似文献   

6.
In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical valueT cr.Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650–700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth.Our results imply that no barrier to slab penetration at a depth of 650–700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.  相似文献   

7.
Joint hypocenter determination is performed for intermediate and deep earthquakes of the Tyrrhenian Sea region.This analysis allowed us to obtain a catalogue of 70 well-located events in this peculiar Benioff zone, which is characterized by quite low seismic activity, compared to the Pacific deep earthquake regions. The method used for the analysis is that ofFrohlich (1979), a variant of the successive approximation technique, which allows use of a great number of events and stations but saves computer memory. The results show a spoon-shaped Benioff zone, dipping NW in the Tyrrhenian Sea to 500km depth. 32 reliable fault-plane solutions have been determined using these new earthquake locations, confirming the predominance of down-dip compression in the central part of the slab and more complex motion along the borders of the zone, as previously suggested byGasparini et al. (1982).  相似文献   

8.
Seismicity of the Ibero-Maghrebian region includes the occurrence of shallow, intermediate depth, and very deep earthquakes. This is a very rare occurrence for a region not associated to an active subduction zone. Detailed studies of the source mechanism of these three types of earthquakes have been made possible through the collaboration with Prof. Madariaga. They give important information about the complex tectonic of the region. Shallow earthquakes at the west and east ends of the region have predominant reverse faulting with NW-SE trending horizontal pressure axes. The center part is the most tectonically complex. At the Strait of Gibraltar, there is a change on focal mechanisms from reverse faulting to strike-slip motion in northern Morocco, conserving the horizontal compression on NW-SE direction. In the Alboran Sea, mechanisms are of normal faulting with E-W trending horizontal tension axes, and in south Spain, mechanisms are of mixed solutions. The intermediate depth earthquakes (40–130 km) are located at both sides of the Strait of Gibraltar, at the western part distributed in E-W direction. The most important concentration, however, is located at the east of Gibraltar in a N-S trending thin vertical body and has different mechanisms. The very deep earthquakes (650 km) are concentrated at a small volume, and their mechanism corresponds to N-S vertical planes or horizontal ones. A tectonic model for the region is presented to explain the shallow, intermediate, and deep earthquakes.  相似文献   

9.
Historically, large and potentially hazardous earthquakes have occurred within the interior of Alaska. However, most have not been adequately studied using modern methods of waveform modeling. The 22 July 1937, 16 October 1947, and 7 April 1958 earthquakes are three of the largest events known to have occurred within central Alaska (M s =7.3,M s =7.2 andM s =7.3, respectively). We analyzed teleseismic body waves to gain information about the focal parameters of these events. In order to deconvolve the source time functions from teleseismic records, we first attempted to improve upon the published focal mechanisms for each event. Synthetic seismograms were computed for different source parameters, using the reflectivity method. A search was completed which compared the hand-digitized data with a suite of synthetic traces covering the complete parameter space of strike, dip, and slip direction. In this way, the focal mechanism showing the maximum correlation between the observed and calculated traces was found. Source time functions, i.e., the moment release as a function of time, were then deconvolved from teleseismic records for the three historical earthquakes, using the focal mechanisms which best fit the data. From these deconvolutions, we also recovered the depth of the events and their seismic moments. The earthquakes were all found to have a shallow foci, with depths of less than 10 km.The 1937 earthquake occurred within a northeast-southwest band of seismicity termed the Salcha seismic zone (SSZ). We confirm the previously published focal mechanism, indicating strike-slip faulting, with one focal plane parallel to the SSZ which was interpreted as the fault plane. Assuming a unilateral fault model and a reasonable rupture velocity of between 2 and 3 km/s, the 21 second rupture duration for this event indicates that all of the 65 km long SSZ may have ruptured during this event. The 1947 event, located to the south of the northwest-southeast trending Fairbanks seismic zone, was found to have a duration of about 11 seconds, thus indicating a rupture length of up to 30 km. The rupture duration of the 1958 earthquake, which occurred near the town of Huslia, approximately 400 km ENE of Fairbanks, was found to be about 9 seconds. This gives a rupture length consistent with the observed damage, an area of 16 km by 64 km.  相似文献   

10.
We have conducted body waveform modeling studies of 13 historic earthquakes to provide a better understanding of the long-term spatial and temporal pattern of seismicity and deformation within a region extending from Barbuda, Lesser Antilles, to Cumana, Venezuela. Our results suggest that shallow earthquakes (<50 km deep) along the South American-Caribbean plate margin reflect right-lateral and extensional deformation. Intermediate depth events (100 km) show left-lateral strike-slip motion beneath the Paria peninsula of Venezuela. In the Lesser Antilles the 1960 Barbuda and 1946 Martinique earthquakes appear to be interplate thrust events, however the greatest moment release in the region has occurred at intermediate depths as a mixture of normal and strike-slip faulting, generally along trends oblique to the arc. The deformation rate estimated from the seismic moment release between 1926 and 1960 is only 1 to 10% of the estimated plate convergence rate for the region.  相似文献   

11.
The source process of the deep-focus Spanish earthquake of March 29, 1954 (mb = 7.1, h = 630 km) has been studied by using seismograms recorded at teleseismic distances. Because of its unusual location, this earthquake is considered to be one of the most important earthquakes that merit detailed studies. Long-period body-wave records reveal that the earthquake is a complicated multiple event whose wave form is quite different from that of usual deep earthquakes. The total duration of P phases at teleseismic distances is as long as 40 s. This long duration may explain the considerable property damage in Granada and Malaga, Spain, which is rather rare for deep earthquakes. Using the azimuthal distribution of the differences between the arrival times of the first, the second and later P phases, the hypocenters of the later events are determined with respect to the first event. The focus of the second event is located on the vertical nodal plane of the first shock suggesting that this vertical plane is the fault plane. This fault plane which strikes in N2°E and dips 89.1°E defines a nearly vertical dip-slip fault, the block to the west moving downwards. The time interval and spatial separation between the first and the second events are 4.3 s and 19 km respectively, giving an apparent rupture velocity of 4.3 km/s which is about 74% of the S-wave velocity at the source. A third event occurred about 8.8 s after the first event and about 35.6 km from it. At least six to ten events can be identified during the whole sequence. The mechanism of some of the later events, however, seems to differ from the first two events. Synthetic seismograms are generated by superposition of a number of point sources and are matched with the observed signals to determine the seismic moment. The seismic moments of the later events are comparable to, or even larger than, that of the first. The total seismic moment is determined to be 7 · 1027 dyn cm while the moments of the first and the second shocks are 2.1 · 1026 dyn cm and 5.1 · 1026 dyn cm, respectively. The earthquake may represent a series of fractures in a detached piece of the lithosphere which sank rapidly into the deep mantle preserving the heterogeneity of material property at shallow depths.  相似文献   

12.
段刚 《地震工程学报》2016,38(3):466-470,490
福建台网负责监测中国台湾地区地震。对于中深源地震使用何种定位方法能获得较好的地震参数,这直接影响到地震定位精度。利用JOPENS系统中交互分析软件MSDP提供的定位方法,对同一地震进行两次定位,即不使用和使用接入的台湾台站,将福建台网得出的两次结果与中国台湾公布的地震参数进行对比,分析定位精度,进而找出适用于台湾地区中深源地震的定位方法,以便进一步判断在地震速报中使用这些台站进行辅助定位的可行性,并给出相关的操作方法及建议。  相似文献   

13.
分析了大华北浅源地震与日本海西部及我国东北深震的关系,认为本世纪来日本海西部—我国东北深震经历了5个相对活跃期,大华北各地震区相应经历这5个活跃期的影响期。根据大华北M≧6级浅源地震与深震活动的相关性,建立了太平洋板块楔形俯冲带端部重大深震事件导致大华北浅源M≧6级地震发生的板块俯冲模型,应变波传播速度约94km/年,地表视速度约100km/年。重大深震事件突出、模型稳定性强,预测实验表明模型公式可做大华北地震监测参考。用本模型可以解释浅源地震迁移、各地震区地震与深震活动相关等现象。  相似文献   

14.
SourceparametersoftheGonghe,QinghaiProvince,China,earthquakefrominversionofdigitalbroadbandwaveformdataLI-SHENGXU(许立生)andYUN...  相似文献   

15.
Following 198 years of dormancy, a small phreatic eruption started at the summit of Unzen Volcano (Mt. Fugen) in November 1990. A swarm of volcano-tectonic (VT) earthquakes had begun below the western flank of the volcano a year before this eruption, and isolated tremor occurred below the summit shortly before it. The focus of VT events had migrated eastward to the summit and became shallower. Following a period of phreatic activity, phreatomagmatic eruptions began in February 1991, became larger with time, and developed into a dacite dome eruption in May 1991 that lasted approximately 4 years. The emergence of the dome followed inflation, demagnetization and a swarm of high-frequency (HF) earthquakes in the crater area. After the dome appeared, activity of the VT earthquakes and the summit HF events was replaced largely by low-frequency (LF) earthquakes. Magma was discharged nearly continuously through the period of dome growth, and the rate decreased roughly with time. The lava dome grew in an unstable form on the shoulder of Mt. Fugen, with repeating partial collapses. The growth was exogenous when the lava effusion rate was high, and endogenous when low. A total of 13 lobes grew as a result of exogenous growth. Vigorous swarms of LF earthquakes occurred just prior to each lobe extrusion. Endogenous growth was accompanied by strong deformation of the crater floor and HF and LF earthquakes. By repeated exogenous and endogenous growth, a large dome was formed over the crater. Pyroclastic flows frequently descended to the northeast, east, and southeast, and their deposits extensively covered the eastern slope and flank of Mt. Fugen. Major pyroclastic flows took place when the lava effusion rate was high. Small vulcanian explosions were limited in the initial stage of dome growth. One of them occurred following collapse of the dome. The total volume of magma erupted was 2.1×108 m3 (dense-rock-equivalent); about a half of this volume remained as a lava dome at the summit (1.2 km long, 0.8 km wide and 230–540 m high). The eruption finished with extrusion of a spine at the endogenous dome top. Several monitoring results convinced us that the eruption had come to an end: the minimal levels of both seismicity and rockfalls, no discharge of magma, the minimal SO2 flux, and cessation of subsidence of the western flank of the volcano. The dome started slow deformation and cooling after the halt of magma effusion in February 1995.  相似文献   

16.
The basic parameters for the earthquake with a moment magnitude (M W) of 5.2 on the 23rd of June 2010 have been investigated. The earthquake occurred on a hidden fault in the northwest direction about 60?km north-northeast of Ottawa in the Western Quebec Seismic Zone (WQSZ) and had a focal depth of about 21?km. The focal mechanism was a thrust type with strike in the northwest direction and dipping in the northeast direction. The relative relocations of seven larger aftershocks show that the source rupture area was about 6?km2. The b value of the aftershock sequence was 0.8?C1.0, and the decay rate of the aftershocks was faster than normal cases. The dominant seismogenic depths are about 12 to 22?km in most parts of the WQSZ, while the seismogenic depth along the Ottawa?CBonnechere Graben can be as deep as 28?km. Based on the seismic activity in the WQSZ and vicinity since 1961, it seems that the periods of moderate earthquakes are about 6?C10?years.  相似文献   

17.
On November 6, 1988, two earthquakes with magnitude>7 occurred on the Lancang-Gengma fault zone in south-west China. The extensive destruction and loss of lives resulted mainly from widespread collapse of unreinforced masonry and mud brick structures; the maximum preliminary intensity of the Lancang earthquakes was IX on the Chinese scale, which is similar to the Modified Mercall scale, and the highest preliminary intensity of the Gengma earthquake was probably X. The surface manifestation of tectonic activity of the Lancang earthquake was the occurrence of the earthquake-related extensional ground cracks and small fault scarps in the epicentral region. The cracks with small fault scarps occurred mainly in four relatively continuous north-northwest-trending linear zones that ranged from a few hundred meters to 6 km in length. The area within which the cracks and small scarps occurred is 35 km long by 3 km wide. The maximum net throw and the dextral horizontal offset were 1.5m and 1.4m, respectively. Clear evidence of new surface faulting caused by the Gengma earthquake includes a series of relatively continuous north-northwest-trending linear ground crack zones and a 5 km long section of fault scarps. The total length of the surface rupture zones of the Gengma earthquakes is about 24 km, with 3.5m maximum net throw and 3m maximum right-lateral slip. Both earthquakes were associated with surface faulting showing a combination of normal and right lateral motion. The distribution of seismic intensities and surface rupture characteristics of these two earthquakes are discussed in this paper. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 344–353, 1991. The research project was performed out under the direction of Professors. Xingyuan Ma and Yuntai Chen, and the field investigation was performed with help of Kui Jiang and Junchang Zhang of the Seismological Bureau of Yunnan Province. Here the authors express great appreciation.  相似文献   

18.
A genetic algorithm inversion of receiver functions derived from a dense seismic network around Iwate volcano, northeastern Japan, provides the fine S wave velocity structure of the crust and uppermost mantle. Since receiver functions are insensitive to an absolute velocity, travel times of P and S waves propagating vertically from earthquakes in the subducting slab beneath the volcano are involved in the inversion. The distribution of velocity perturbations in relation to the hypocenters of the low-frequency (LF) earthquakes helps our understanding of deep magmatism beneath Iwate volcano. A high-velocity region (dVS/VS=10%) exists around the volcano at depths of 2–15 km, with the bottom depth decreasing to 11 km beneath the volcano’s summit. Just beneath the thinning high-velocity region, a low-velocity region (dVS/VS=−10%) exists at depths of 11–20 km. Intermediate-depth LF (ILF) events are distributed vertically in the high-velocity region down to the top of the low-velocity region. This distribution suggests that a magma reservoir situated in the low-velocity region supplies magma to a narrow conduit that is detectable by the hypocenters of LF earthquakes. Another broad low-velocity region (dVS/VS=−5 to −10%) occurs at depths of 17–35 km. Additional clusters of deep LF (DLF) events exist at depths of 32–37 km in the broad low-velocity zone. The DLF and ILF events are the manifestations of magma movement near the Moho discontinuity and in the conduit just beneath the volcano, respectively.  相似文献   

19.
Wave-form modelling of body waves has been done to study the seismic source parameters of three earthquakes which occurred on October 21, 1964 (M b =5.9), September 26, 1966 (M b =5.8) and March 14, 1967 (M b =5.8). These events occurred in the Indochina border region where a low-angle thrust fault accommodates motion between the underthrusting Indian plate and overlying Himalaya. The focal depths of all these earthquakes are between 12–37 km. The total range in dip for the three events is 5°–20°. TheT axes are NE-SW directed whereas the strikes of the northward dipping nodal planes are generally parallel to the local structural trend. The total source durations have been found to vary between 5–6 seconds. The average values of seismic moment, fault radius and dislocation are 1.0–11.0×1025 dyne-cm, 7.7–8.4km and 9.4–47.4 cm, respectively whereas stress drop, apparent stress and strain energy are found to be 16–76 bars, 8.2–37.9 bars and 0.1–1.7×1021 ergs, respectively. These earthquakes possibly resulted due to the tension caused by the bending of the lithospheric plate into a region of former subduction which is now a zone of thrusting and crustal shortening.  相似文献   

20.
Introduction South China Sea (SCS) is located in the convergence zone between Euro-Asian plate, Pacific plate (Philippine plate) and Indian plate. Interactions of three plates made the crust of this region suffer tectonic stress in many directions and made the South China Sea be in the complex environ-ment of the tectonic stress. There are four different marginal types in the surrounding of the South China Sea: The tectonic zone of the rifting margin in the north of SCS, the NS direct…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号