首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The last two successful flybys of Io by Galileo in 2001 (orbits I31, I32) allowed the Near Infrared Mapping Spectrometer to enrich its collection of IR spectral image cubes of the satellite. These data cover hemispheric portions of Io, several volcanic centers as well as their surroundings with a spatial resolution ranging from 2 to 93 km pixel−1. They map thermal emission from the hot-spots and the distribution of solid SO2 in the 1.0-4.7 μm spectral range. We obtain maps of SO2 abundance and granularity from the NIMS data using the method of Douté et al. (2002, Icarus 158, 460-482). The maps are correlated to distinguish four different physical units that indicate zones of SO2 condensation, metamorphism and sublimation. We relate these information with visible images from Galileo's Solid State Imaging System and with detailed mapping of the thermal emission produced by Io's surface. Our principal goal is to understand the mechanisms controlling how lava, pyroclastics and gas are emitted by different types of volcanoes and how these products evolve. The 800 km diameter white ring of fallout created by a violent “Pillanian” eruption during summer of 2001 is at least partly composed of solid SO2 and has enriched preexisting regional deposits. Orange materials have been recently or are currently emplaced 240 km south from the main eruption site, possibly as sulfur flows. A similar event may have taken place in the past at Ababinili Patera (12.5° N, 142° W). Carefull study of SO2 maps covering the Emakong region also suggests that sulfur forms the bright channel-fed flow emerging from the south eastern side of the caldera. Within the main caldera of Tvashtar Catena completely cooled patches of crust exist. Elsewhere, the caldera is still cooling from previous episodes of flooding. We confirm that Amirani emits constantly large amount of SO2 gas by interaction of fresh lava with the volatiles of the underlying plains. Nevertheless SO2 frost is not the major component of the bright white ring seen in the SSI images. Over the whole Gish Bar region, SO2 frost seems barely stable and is constantly regenerated. The stability increases along gray filamentary structures which could be faults filled with materials having peculiar thermal properties. Northwest of Gish Bar Patera, a localized bright deposit shows an unusual spectral signature potentially indicative of H2O molecules forming ice crystals or being trapped in a nonidentified matrix. The Chaac region may present a thickened old crust reducing the geothermal flux to levels lower than 0.5 W m−2 and thus creating a cold trap for SO2. Looking at the abundance and degree of metamorphose of SO2, we establish the relative age of different flows and ejecta for the Sobo Fluctus. Finally the assumption that the white patches in visible images indicate SO2 rich deposits is once again challenged. In the Camaxtli region we identify a topographically controlled compact white deposit showing only moderate SO2 abundance. In contrast, we detect two spots of quite pure SO2 ice on the gray flanks of Emakong. Furthermore, the close association of fumarolic SO2 and red S2 already noted for several volcanic centers is observed at Tupan.  相似文献   

2.
Keck AO survey of Io global volcanic activity between 2 and 5 μm   总被引:1,自引:0,他引:1  
We present in this Keck AO paper the first global high angular resolution observations of Io in three broadband near-infrared filters: Kc (2.3 μm), Lp (3.8 μm), and Ms (4.7 μm). The Keck AO observations are composed of 13 data sets taken during short time intervals spanning 10 nights in December, 2001. The MISTRAL deconvolution process, which is specifically aimed for planetary images, was applied to each image. The spatial resolution achieved with those ground-based observations is 150, 240, and 300 km in the Kc, Lp, and Ms band, respectively, making them similar in quality to most of the distant observations of the Galileo/NIMS instrument. Eleven images per filter were selected and stitched together after being deprojected to build a cylindrical map of the entire surface of the satellite. In Kc-band, surface albedo features, such as paterae (R>60 km) are easily identifiable. The Babbar region is characterized by extremely low albedo at 2.2 μm, and shows an absorption band at 0.9 μm in Galileo/SSI data. These suggest that this region is covered by dark silicate deposits, possibly made of orthopyroxene. In the Lp-Ms (3-5 μm) bands, the thermal emission from active centers is easily identified. We detected 26 hot spots in both broadband filters over the entire surface of the minor planet; two have never been seen active before, nine more are seen in the Ms band. We focused our study on the hot spots detected in both broadband filters. Using the measurements of their brightness, we derived the temperature and area covered by 100 brightness measurements. Loki displayed a relatively quiescent activity. Dazhbog, a new eruption detected by Galileo/NIMS in August 2001, is a major feature in our survey. We also point out the fading of Tvashtar volcanic activity after more than two years of energetic activity, and the presence of a hot, but small, active center at the location of Surt, possibly a remnant of its exceptional eruption detected in February 2001. Two new active centers, labeled F and V on our data, are detected. Using the best temperature and the surface area derived from the L and M band intensities, we calculated the thermal output of each active center. The most energetic hot spots are Loki and Dazhbog, representing respectively 36 and 19% of the total output calculated from a temperature fit of all hot spots (20.6×1012 W). Based on the temperature derived from hot spots (∼400 K), our measurement can unambiguously identify the contribution to the heat flux from the silicate portion of the surface. Because the entire surface was observed, no extrapolation was required to calculate that flux. It is also important to note that we measured the brightness of the individual hot spots when they were located close to the Central Meridian. This minimizes the line-of-sight effect which does not follow strictly a classical cosine law. Finally, we argue that despite the widespread volcanic activity detected, Io was relatively quiescent in December 2001, with a minimum mean total output of 0.4-1.2 W m−2. This output is at least a factor of two lower than those inferred from observations made at longer wavelengths and at different epochs.  相似文献   

3.
Polar brightness temperatures on Io are higher than expected for any passive surface heated by absorbed sunlight. This discrepancy implies large scale volcanic activity from which we derive a new component of Io's heat flow. We present a ‘Three Component’ thermal background, infrared emission model for Io that includes active polar regions. The widespread polar activity contributes an additional ∼0.6 W m−2 to Io's heat flow budget above the ∼2.5 W m−2 from thermal anomalies. Our estimate for Io's global average heat flow increases to ∼3±1 W m−2 and ∼1.3±0.4×1014 watts total.  相似文献   

4.
We obtained time-resolved, near-infrared spectra of Io during the 60-90 min following its reappearance from eclipse by Jupiter on five occasions in 2004. The purpose was to search for spectral changes, particularly in the well-known SO2 frost absorption bands, that would indicate surface-atmosphere exchange of gaseous SO2 induced by temperature changes during eclipse. These observations were a follow-on to eclipse spectroscopy observations in which Bellucci et al. [Bellucci et al., 2004. Icarus 172, 141-148] reported significant changes in the strengths of two strong SO2 bands in data acquired with the VIMS instrument aboard the Cassini spacecraft. One of the bands (4.07 μm [ν1 + ν3]) observed by Bellucci et al. is visible from ground-based observatories and is included in our data. We detected no changes in Io’s spectrum at any of the five observed events during the approximately 60-90 min during which spectra were obtained following Io’s emergence from Jupiter’s shadow. The areas of the three strongest SO2 bands in the region 3.5-4.15 μm were measured for each spectrum; the variation of the band areas with time does not exceed that which can be explained by the Io’s few degrees of axial rotation during the intervals of observation, and in no case does the change in band strength approach that seen in the Cassini VIMS data. Our data are of sufficient quality and resolution to show the weak 2.198 μm (4549.6 cm−1) 4ν1 band of SO2 frost on Io for what we believe is the first time. At one of the events (June 22, 2004), we began the acquisition of spectra ∼6 min before Io reappeared from Jupiter’s shadow, during which time it was detected through its own thermal emission. No SO2 bands were superimposed on the purely thermal spectrum on this occasion, suggesting that the upper limit to condensed SO2 in the vertical column above Io’s surface was ∼4 × 10−5 g cm−2.  相似文献   

5.
We present adaptive optics (AO) observations of Io taken with the W.M. Keck II telescope on 18 December 2001 (UT) before the satellite went into eclipse, and while it was in Jupiter's shadow. Making these kind of Io-in-eclipse observations, as well as the associated data reduction and analysis are challenging; hence one focus of the paper is to explain the methods and tools used for these data sets. For the sunlit images Io itself was used as the wavefront reference source, while nearby Ganymede was used as reference ‘star’ when Io was in eclipse. Observations were obtained in K′-, L′-, and M-bands. The sunlit images have been deconvolved using MISTRAL. The Io-in-eclipse data were deconvolved with IDAC and MISTRAL. The former gives better results, both in absolute photometry and in matching the original images. We determined the flux densities of the hot spots from the original Io-in-eclipse data with StarFinder, as well as from the deconvolved images by integrating the intensity over the relevant areas. We determined the highly anisoplanatic PSF via a FFT method from the original data, and used this in StarFinder and as a starting PSF for IDAC and MISTRAL. We derived temperatures and areal coverage of all 19 spots detected in both K′- and L′-band images of Io-in-eclipse. We also determined temperatures and areal coverage of the hot spots visible on the L′- and M-band images of sunlit Io. Most volcanoes contain a compact hot ‘core’ (?10 km2 at 600-800 K) within a larger area at lower temperatures (e.g., ∼102-104 km2 at 300-500 K). The total heat flow contributed by these active volcanoes is 0.2 W m−2, ∼8% of the average global heat flow measured at 5-20 μm by Veeder et al. [J. Geophys. Res. 99 (1994) 17095].  相似文献   

6.
The vertical profile of H2SO4 vapor is calculated using current atmospheric and thermodynamic data. The atmospheric data include the H2O profiles observed at 70-112 km by the SOIR solar occultations, the SPICAV-UV profiles of the haze extinction at 220 nm, the VeRa temperature profiles, and a typical profile of eddy diffusion. The thermodynamic data are the saturated vapor pressures of H2O and H2SO4 and chemical potentials of these species in sulfuric acid solutions. The calculated concentration of sulfuric acid in the cloud droplets varies from 85% at 70 km to a minimum of 70% at 90 km and then gradually increasing to 90-100% at 110 km. The H2SO4 vapor mixing ratio is ∼10−12 at 70 and 110 km with a deep minimum of 3 × 10−18 at 88 km. The H2O-H2SO4 system matches the local thermodynamic equilibrium conditions up to 87 km. The column photolysis rate of H2SO4 is 1.6 × 105 cm−2 s−1 at 70 km and 23 cm−2 s−1 at 90 km. The calculated abundance of H2SO4 vapor at 90-110 km and its photolysis rate are smaller than those presented in the recent model by Zhang et al. (Zhang, X., Liang, M.C., Montmessin, F., Bertaux, J.L., Parkinson, C., Yung, Y.L. [2010]. Nat. Geosci. 3, 834-837) by factors of 106 and 109, respectively. Assumptions of 100% sulfuric acid, local thermodynamic equilibrium, too warm atmosphere, supersaturation of H2SO4 (impossible for a source of SOX), and cross sections for H2SO4·H2O (impossible above the pure H2SO4) are the main reasons of this huge difference. Significant differences and contradictions between the SPICAV-UV, SOIR, and ground-based submillimeter observations of SOX at 70-110 km are briefly discussed and some weaknesses are outlined. The possible source of high altitude SOX on Venus remains unclear and probably does not exist.  相似文献   

7.
Galileo's Near-Infrared Mapping Spectrometer (NIMS) obtained its final observations of Io during the spacecraft's fly-bys in August (I31) and October 2001 (I32). We present a summary of the observations and results from these last two fly-bys, focusing on the distribution of thermal emission from Io's many volcanic regions that give insights into the eruption styles of individual hot spots. We include a compilation of hot spot data obtained from Galileo, Voyager, and ground-based observations. At least 152 active volcanic centers are now known on Io, 104 of which were discovered or confirmed by Galileo observations, including 23 from the I31 and I32 Io fly-by observations presented here. We modify the classification scheme of Keszthelyi et al. (2001, J. Geophys. Res. 106 (E12) 33 025-33 052) of Io eruption styles to include three primary types: promethean (lava flow fields emplaced as compound pahoehoe flows with small plumes <200 km high originating from flow fronts), pillanian (violent eruptions generally accompanied by large outbursts, >200 km high plumes and rapidly-emplaced flow fields), and a new style we call “lokian” that includes all eruptions confined within paterae with or without associated plume eruptions). Thermal maps of active paterae from NIMS data reveal hot edges that are characteristic of lava lakes. Comparisons with terrestrial analogs show that Io's lava lakes have thermal properties consistent with relatively inactive lava lakes. The majority of activity on Io, based on locations and longevity of hot spots, appears to be of this third type. This finding has implications for how Io is being resurfaced as our results imply that eruptions of lava are predominantly confined within paterae, thus making it unlikely that resurfacing is done primarily by extensive lava flows. Our conclusion is consistent with the findings of Geissler et al. (2004, Icarus, this issue) that plume eruptions and deposits, rather than the eruption of copious amounts of effusive lavas, are responsible for Io's high resurfacing rates. The origin and longevity of islands within ionian lava lakes remains enigmatic.  相似文献   

8.
The Galileo probe entered the jovian atmosphere at the southern edge of a 5-micron hot spot, one of typically 8-10 quasi-evenly-spaced longitudinal areas of anomalously high 5-micron IR emission that reside in a narrow latitude band centered on +7.5 degrees. These hot spots are characterized primarily by a low abundance of the cloud particles that dominate the 5-micron opacity at other locations on the planet, and by significant desiccation of ammonia, water and hydrogen sulfide in the upper layers of the troposphere. Ortiz et al. [1998. Evolution and persistence of 5-micron hot spots at the Galileo probe entry latitude. J. Geophys. Res. 103, 23,051-23,069] found that the latitude and drift rate of the hot spots could be explained if they are formed by an equatorially trapped Rossby wave of meridional degree 1 moving with a phase speed between 99 and 103 m s−1 relative to System III. Here we model additional properties of the hot spots in terms of the amplitude saturation of such a wave propagating in the weakly stratified deep troposphere. We identify the hot spots with locations where the wave plus mean thermal stratification becomes marginally stable. In these locations, potential temperature isotherms stretch downward to very deep levels in the troposphere. Since fluid parcels follow these isotherms under adiabatic flow conditions, the parcels dive downward when they enter the portion of the wave associated with the hot spot and soar upward upon leaving the spot. We show that this model can account for the anomalous vertical profiles of NH3, H2O, and H2S mixing ratio measured by the Galileo probe. Pressures vary by as much as 20 bar over potential temperature isotherms in solutions that produce sufficient desiccation of water and H2S in hot spots. Approximately 6×10−2 of Jupiter's internal heat flux must be tapped to maintain the wave over the mean hot spot lifetime of 107 s. The results suggest that the phenomenon that causes hot spots may occur widely, although in less dramatic form, across Jupiter's surface, and consequently NH3, H2S, and H2O mixing ratio profiles may vary significantly from location to location in Jupiter's troposphere.  相似文献   

9.
Modeling results of volcanic plumes on Jupiter’s moon Io are presented. Two types of low density axisymmetric SO2 plume flows are modeled using the direct simulation Monte Carlo (DSMC) method. Thermal radiation from all three vibrational bands and overall rotational lines of SO2 molecules is modeled. A high resolution computation of the flow in the vicinity of the vent was obtained by multidomain sequential calculation to improve the modeling of the radiation signature. The radiation features are examined both by calculating infrared emission spectra along different lines-of-sight through the plume and with the DSMC modeled emission images of the whole flow field. It is found that most of the radiation originates in the vicinity of the vent, and non-LTE (non-local-thermodynamic equilibrium) cooling by SO2 rotation lines exceeds cooling in the v2 vibrational band at high altitude.In addition to the general shape of the plumes, the calculated average SO2 column density (∼1016 cm−2) over a Pele-type plume and the related frost-deposition ring structure (at R ∼ 500 km from the vent) are in agreement with observations. These comparisons partially validate the modeling. It is suggested that an observation with spatial resolution of less than 30 km is needed to measure the large spatial variation of SO2 near a Pele-type plume center. It is also found that an influx of 1.1 × 1029 SO2 s−1 (or 1.1 × 104 kg s−1) is sufficient to reproduce the observed SO2 column density at Pele. The simulation results also show some interesting features such as a multiple bounce shock structure around Prometheus-type plumes and the frost depletion by plume-induced erosion on the sunlit side of Io. The model predicts the existence of a canopy shock, a ballistic region inside the Pele-type plume, and the negligible effect of surface heating by plume emission.  相似文献   

10.
The thermal conductivity of meteorites: New measurements and analysis   总被引:1,自引:0,他引:1  
C.P. Opeil  D.T. Britt 《Icarus》2010,208(1):449-6159
We have measured the thermal conductivity at low temperatures (5-300 K) of six meteorites representing a range of compositions, including the ordinary chondrites Cronstad (H5) and Lumpkin (L6), the enstatite chondrite Abee (E4), the carbonaceous chondrites NWA 5515 (CK4 find) and Cold Bokkeveld (CM2), and the iron meteorite Campo del Cielo (IAB find). All measurements were made using a Quantum Design Physical Properties Measurement System, Thermal Transport Option (TTO) on samples cut into regular parallelepipeds of ∼2-6 mm dimension. The iron meteorite conductivity increases roughly linearly from 15 W m−1 K−1 at 100 K to 27 W m−1 K−1 at 300 K, comparable to typical values for metallic iron. By contrast, the conductivities of all the stony samples except Abee appear to be controlled by the inhomogeneous nature of the meteorite fabric, resulting in values that are much lower than those of pure minerals and which vary only slightly with temperature above 100 K. The L and CK sample conductivities above 100 K are both about 1.5 W m−1 K−1, that of the H is 1.9 W m−1 K−1, and that of the CM sample is 0.5 W m−1 K−1; by contrast the literature value at 300 K for serpentine is 2.5 W m−1 K−1 and those of enstatite and olivine range from 4.5 to 5 W m−1 K−1 (which is comparable to the Abee value). These measurements are among the first direct measurements of thermal conductivity for meteorites. The results compare well with previous estimates for meteorites, where conductivity was derived from diffusivity measurements and modeled heat capacities; our new values are of a higher precision and cover a wider range of temperatures and meteorite types. If the rocky material that makes up asteroids and provides the dust to comets, Kuiper Belt objects, and icy satellites has the same low thermal conductivities as the ordinary and carbonaceous chondrites measured here, this would significantly change models of their thermal evolution. These values would also lower their thermal inertia, thus affecting the Yarkovsky and YORP evolution of orbits and spin for solid objects; however, in this case the effect would not be as great, as thermal inertia only varies as the square root of the conductivity and, for most asteroids, is controlled by the dusty nature of asteroidal surfaces rather than the conductivity of the material itself.  相似文献   

11.
Surface changes on Io during the Galileo mission   总被引:1,自引:0,他引:1  
A careful survey of Galileo SSI global monitoring images revealed more than 80 apparent surface changes that took place on Io during the 5 year period of observation, ranging from giant plume deposits to subtle changes in the color or albedo of patera surfaces. Explosive volcanic activity was discovered at four previously unrecognized centers: an unnamed patera to the south of Karei that produced a Pele-sized red ring, a patera to the west of Zal that produced a small circular bright deposit, a large orange ring detected near the north pole of Io, and a small bright ring near Io's south pole. Only a handful of Io's many active volcanoes produced large scale explosive eruptions, and several of these erupted repeatedly, leaving at least 83% of Io's surface unaltered throughout the Galileo mission. Most of the hot spots detected from SSI, NIMS and ground-based thermal observations caused no noticeable surface changes greater than 10 km in extent over the five year period. Surface changes were found at every location where active plumes were identified, including Acala which was never seen in sunlight and was only detected through auroral emissions during eclipse. Two types of plumes are distinguished on the basis of the size and color of their deposits, confirming post-Voyager suggestions by McEwen and Soderblom [Icarus 55 (1983) 191]. Smaller plumes produce near-circular rings typically 150-200 km in radius that are white or yellow in color unless contaminated with silicates, and frequently coat their surroundings with frosts of fine-grained SO2. The larger plumes are much less numerous, limited to a half dozen examples, and produce oval, orange or red, sulfur-rich rings with maximum radii in the north-south direction that are typically in the range from 500 to 550 km. Both types of plumes can be either episodic or quasi-continuous over a five year period. Repeated eruptions of the smaller SO2-rich plumes likely contribute significantly to Io's resurfacing rate, whereas dust ejection is likely dominated by the tenuous giant plumes. Both types of plume deposits fade on time-scales of months to years through burial and alteration. Episodic seepages of SO2 at Haemus Montes, Zal Montes, Dorian Montes, and the plateau to the north of Pillan Patera may have been triggered by activity at nearby volcanic centers.  相似文献   

12.
Jupiter’s atmosphere presents limited regions of relatively thin cloud coverage (the so-called ‘hot spots’), which allow thermal radiation by warmer, deeper atmospheric layers to be transmitted directly to space. Hot spots therefore represent a means for probing physical conditions (namely chemical composition) below the main aerosol deck.Forthcoming missions to the Jovian system - Juno and EJSM spacecrafts - will host as payload components spectro-imagers operating in the infrared. Their coverage of 5 μm CH4 transparency windows make them particularly suitable for the investigation of hot spots. This study is an assessment of their retrieval capabilities on the evaluation of gaseous mixing ratios from nighttime observations, on the basis of Bayesian theory.The retrieval performance is evaluated for the JIRAM instrument, a confirmed payload component of Juno. Its data will provide effective constraints on the mixing ratios of water vapor between 40 and 70 km below the reference 1 bar pressure level (between 3.5 and 7 bars). Assuming an a priori correlation length equal to half the scale height, we achieve a minimum retrieval uncertainty of 0.17, once the mixing ratio is given in terms of log10(α), with α being the adimensional mixing ratio (vs. altitude) relative to a given reference profile. The JIRAM-Juno dataset will further allow determination of the ammonia mixing ratio, with a minimum relative retrieval uncertainty of 0.32 in the same altitude range, and of the phosphine mixing ratio, with comparable uncertainty up to the reference altitude.The retrieval performance is evaluated for a second instrument VIRHIS, which is a proposed payload component of Jupiter Ganymede Orbiter (JGO), one of the two spacecrafts of Europa-Jupiter System Mission (EJSM). This instrument has the benefit of higher spectral resolution and extended spectral range, when compared to JIRAM-Juno. Evaluation of the water vapor retrieval shows the uncertainty would be reduced to 0.08 with VIRHIS. The ammonia retrieval range would be expanded up to 10 km (0.66 bar), with a minimum uncertainty value of 0.10.Both instruments will place these measurements in a spatial context due to their simultaneous imaging capabilities, enabling therefore a number of studies covering chemical and dynamical aspects of atmospheric evolution.  相似文献   

13.
We have observed about 16 absorption lines of the ν2 SO2 vibrational band on Io, in disk-integrated 19-μm spectra taken with the TEXES high spectral resolution mid-infrared spectrograph at the NASA Infrared Telescope Facility in November 2001, December 2002, and January 2004. These are the first ground-based infrared observations of Io's sunlit atmosphere, and provide a new window on the atmosphere that allows better longitudinal and temporal monitoring than previous techniques. Dramatic variations in band strength with longitude are seen that are stable over at least a 2 year period. The depth of the strongest feature, a blend of lines centered at 530.42 cm−1, varies from about 7% near longitude 180° to about 1% near longitude 315° W, as measured at a spectral resolution of 57,000. Interpretation of the spectra requires modeling of surface temperatures and atmospheric density across Io's disk, and the variation in non-LTE ν2 vibrational temperature with altitude, and depends on the assumed atmospheric and surface temperature structure. About half of Io's 19-μm radiation comes from the Sun-heated surface, and half from volcanic hot spots with temperatures primarily between 150 and 200 K, which occupy about 8% of the surface. The observations are thus weighted towards the atmosphere over these low-temperature hot spots. If we assume that the atmosphere over the hot spots is representative of the atmosphere elsewhere, and that the atmospheric density is a function of latitude, the most plausible interpretation of the data is that the equatorial atmospheric column density varies from about 1.5×1017 cm−2 near longitude 180° W to about 1.5×1016 cm−2 near longitude 300° W, roughly consistent with HST UV spectroscopy and Lyman-α imaging. The inferred atmospheric kinetic temperature is less than about 150 K, at least on the anti-Jupiter hemisphere where the bands are strongest, somewhat colder than inferred from HST UV spectroscopy and millimeter-wavelength spectroscopy. This longitudinal variability in atmospheric density correlates with the longitudinal variability in the abundance of optically thick, near-UV bright SO2 frost. However it is not clear whether the correlation results from volcanic control (regions of large frost abundance result from greater condensation of atmospheric gases supported by more vigorous volcanic activity in these regions) or sublimation control (regions of large frost abundance produce a more extensive atmosphere due to more extensive sublimation). Comparison of data taken in 2001, 2002, and 2004 shows that with the possible exception of longitudes near 180° W between 2001 and 2002, Io's atmospheric density does not appear to decrease as Io recedes from the Sun, as would be expected if the atmosphere were supported by the sublimation of surface frost, suggesting that the atmosphere is dominantly supported by direct volcanic supply rather than by frost sublimation. However, other evidence such as the smooth variation in atmospheric abundance with latitude, and atmospheric changes during eclipse, suggest that sublimation support is more important than volcanic support, leaving the question of the dominant atmospheric support mechanism still unresolved.  相似文献   

14.
The Pele region of Io has been the site of vigorous volcanic activity from the time of the first Voyager I observations in 1979 up through the final Galileo ones in 2001. There is high-temperature thermal emission from a visibly dark area that is thought to be a rapidly overturning lava lake, and is also the source of a large sulfur-rich plume. We present a new analysis of Voyager I visible wavelength images, and Galileo Solid State Imager (SSI) and Near Infrared Mapping Spectrometer (NIMS) thermal emission observations which better define the morphology of the region and the intensity of the emission. The observations show remarkable correlations between the locations of the emission and the features seen in the Voyager images, which provide insight into eruption mechanisms and constrain the longevity of the activity. We also analyze an additional wavelength channel of NIMS data (1.87 μm) which paradoxically, because of reduced sensitivity, allows us to estimate temperatures at the peak locations of emission. Measurements of eruption temperatures on Io are crucial because they provide our best clues to the composition of the magma. High color temperatures indicative of ultramafic composition have been reported for the Pillan hot spot and possibly for Pele, although recent work has called into question the requirement for magma temperatures above those expected for ordinary basalts. Our new analysis of the Pele emission near the peak of the hot spot shows color temperatures near the upper end of the basalt range during the I27 and I32 encounters. In order to analyze the observed color temperatures we also present an analytical model for the thermal emission from fire-fountains, which should prove generally useful for analyzing similar data. This is a modification of the lava flow emission model presented in Howell (Howell, R.R. [1997]. Icarus 127, 394-407), adapted to the fire-fountain cooling curves first discussed in Keszthelyi et al. (Keszthelyi, L., Jaeger, W., Milazzo, M., Radebaugh, J., Davies, A.G., Mitchell, K.L. [2007]. Icarus 192, 491-502). When applied to the I32 observations we obtain a fire-fountain mass eruption rate of 5.1 × 105 kg s−1 for the main vent area and 1.4 × 104 kg s−1 for each of two smaller vent regions to the west. These fire-fountain rates suggest a solution to the puzzling lack of extensive lava flows in the Pele region. Much of the erupted lava may be ejected at high speed into the fire-fountains and plumes, creating dispersed pyroclastic deposits rather than flows. We compare gas and silicate mass eruption rates and discuss briefly the dynamics of this ejection model and the observational evidence.  相似文献   

15.
I. Pat-El 《Icarus》2009,201(1):406-411
From recent close encounters with Comets Wild-2 and Tempel 1 we learned that their surfaces are very rugged and no simple uniform layers model can be applied to them. Rather, a glaciological approach should be applied for describing their surface features and behavior. Such intrinsically rugged surface is formed in our large scale experiments, where an agglomerate of ∼200 μm gas-laden amorphous ice particles is accumulated to form a 20 cm diameter and few cm high ice sample. The density, tensile strength and thermal inertia of our ice sample were found to be very close to those found by Deep Impact for Comet Tempel 1: density 250-300 kg m−3 vs DI 350-400 kg m−3; tensile strength 2-4 kPa vs DI 1-10 kPa; thermal inertia 80 W K−1 m−2 s1/2 vs <100 W K−1 m−2 s1/2 and <50 W K−1 m−2 s1/2. From the close agreement between the thermal inertias measured in our ice sample, which had no dust coverage and that of Comet Tempel 1, we deduce that the low thermal inertia is an intrinsic property of the fluffy structure of the ice as a result of its low density, with an addition by the broken terrain and not due to the formation of a dust layer. Upon warming up of the ice, water vapor migrates both outward into the coma and inward. Reaching cooler layers, the water vapor condenses, forming a denser ice crust, as we show experimentally. We also demonstrate the inward and outward flow of water vapor in the outer ice layers through the exchange between layers of D2O ice and H2O ice, to form HDO.  相似文献   

16.
R.J Sault  Chermelle Engel 《Icarus》2004,168(2):336-343
We present a technique for creating a longitude-resolved image of Jupiter's thermal radio emission. The technique has been applied to VLA data taken on 25 January 1996 at a wavelength of 2 cm. A comparison with infrared data shows a good correlation between radio hot spots and the 5 μm hot spots seen on IRTF images. The brightest spot on the radio image is most likely the hot spot through which the Galileo probe entered Jupiter's atmosphere. We derived the ammonia abundance (= volume mixing ratio) in the hot spot, which is ∼3×10−5, about half that seen in longitude-averaged images of the NEB, or less than 1/3 of the longitude-averaged ammonia abundance in the EZ. This low ammonia abundance probably extends down to at least the 4 bar level.  相似文献   

17.
We present an analysis of 19 μm spectra of Io’s SO2 atmosphere from the TEXES mid-infrared high spectral resolution spectrograph on NASA’s Infrared Telescope Facility, incorporating new data taken between January 2005 and June 2010 and a re-analysis of earlier data taken from November 2001 to January 2004. This is the longest set of contiguous observations of Io’s atmosphere using the same instrument and technique thus far. We have fitted all 16 detected blended absorption lines of the ν2 SO2 vibrational band to retrieve the subsolar values of SO2 column abundance and the gas kinetic temperature. By incorporating an existing model of Io’s surface temperatures and atmosphere, we retrieve sub-solar column densities from the disk-integrated data. Spectra from all years are best fit by atmospheric temperatures <150 K. Best-fit gas kinetic temperatures on the anti-Jupiter hemisphere, where SO2 gas abundance is highest, are low and stable, with a mean of 108 (±18) K. The sub-solar SO2 column density between longitudes of 90–220° varies from a low of 0.61 (±0.145) × 10?17 cm?2, near aphelion in 2004, to a high of 1.51 (±0.215) × 1017 cm?2 in 2010 when Jupiter was approaching its early 2011 perihelion. No correlation in the gas temperature was seen with the increasing SO2 column densities outside the errors.Assuming that any volcanic component of the atmosphere is constant with time, the correlation of increasing SO2 abundance with decreasing heliocentric distance provides good evidence that the atmosphere is at least partially supported by frost sublimation. The SO2 frost thermal inertias and albedos that fit the variation in atmospheric density best are between 150–1250 W m?2 s?1/2 K?1 and 0.613–0.425 respectively. Photometric evidence favors albedos near the upper end of this range, corresponding to thermal inertias near the lower end. This relatively low frost thermal inertia produces larger amplitude seasonal variations than are observed, which in turn implies a substantial additional volcanic atmospheric component to moderate the amplitude of the seasonal variations of the total atmosphere on the anti-Jupiter hemisphere. The seasonal thermal inertia we measure is unique both because it refers exclusively to the SO2 frost surface component, and also because it refers to relatively deep subsurface layers (few meters) due to the timescales of many years, while previous studies have determined thermal inertias at shallower levels (few centimeters), relevant for timescales of ~2 h (eclipse) or ~2 days (diurnal curves).  相似文献   

18.
Mid- and far-infrared spectra from the Composite InfraRed Spectrometer (CIRS) have been used to determine volume mixing ratios of nitriles in Titan's atmosphere. HCN, HC3N, C2H2, and temperature were derived from 2.5 cm−1 spectral resolution mid-IR mapping sequences taken during three flybys, which provide almost complete global coverage of Titan for latitudes south of 60° N. Three 0.5 cm−1 spectral resolution far-IR observations were used to retrieve C2N2 and act as a check on the mid-IR results for HCN. Contribution functions peak at around 0.5-5 mbar for temperature and 0.1-10 mbar for the chemical species, well into the stratosphere. The retrieved mixing ratios of HCN, HC3N, and C2N2 show a marked increase in abundance towards the north, whereas C2H2 remains relatively constant. Variations with longitude were much smaller and are consistent with high zonal wind speeds. For 90°-20° S the retrieved HCN abundance is fairly constant with a volume mixing ratio of around 1 × 10−7 at 3 mbar. More northerly latitudes indicate a steady increase, reaching around 4 × 10−7 at 60° N, where the data coverage stops. This variation is consistent with previous measurements and suggests subsidence over the northern (winter) pole at approximately 2 × 10−4 m s−1. HC3N displays a very sharp increase towards the north pole, where it has a mixing ratio of around 4 × 10−8 at 60° N at the 0.1-mbar level. The difference in gradient for the HCN and HC3N latitude variations can be explained by HC3N's much shorter photochemical lifetime, which prevents it from mixing with air at lower latitude. It is also consistent with a polar vortex which inhibits mixing of volatile rich air inside the vortex with that at lower latitudes. Only one observation was far enough north to detect significant amounts of C2N2, giving a value of around 9 × 10−10 at 50° N at the 3-mbar level.  相似文献   

19.
A post-Galileo view of Io's interior   总被引:2,自引:0,他引:2  
We present a self-consistent model for the interior of Io, taking the recent Galileo data into account. In this model, Io has a completely molten core, substantially molten mantle, and a very cold lithosphere. Heat from magmatic activity can mobilize volatile compounds such as SO2 in the lithosphere, and the movement of such cryogenic fluids may be important in the formation of surface features including sapping scarps and paterae.  相似文献   

20.
Experiments to investigate the effect of impacts on side-walls of dust detectors such as the present NASA/ESA Galileo/Ulysses instrument are reported. Side walls constitute 27% of the internal area of these instruments, and increase field of view from 140° to 180°. Impact of cosmic dust particles onto Galileo/Ulysses Al side walls was simulated by firing Fe particles, 0.5-5 μm diameter, 2-50 km s−1, onto an Al plate, simulating the targets of Galileo and Ulysses dust instruments. Since side wall impacts affect the rise time of the target ionization signal, the degree to which particle fluxes are overestimated varies with velocity. Side-wall impacts at particle velocities of 2-20 km s−1 yield rise times 10-30% longer than for direct impacts, so that derived impact velocity is reduced by a factor of ∼2. Impacts on side wall at 20-50 km s−1 reduced rise times by a factor of ∼10 relative to direct impact data. This would result in serious overestimates of flux of particles intersecting the dust instrument at velocities of 20-50 km s−1. Taking into account differences in laboratory calibration geometry we obtain the following percentages for previous overestimates of incident particle number density values from the Galileo instrument [Grün et al., 1992. The Galileo dust detector. Space Sci. Rev. 60, 317-340]: 55% for 2 km s−1 impacts, 27% at 10 km s−1 and 400% at 70 km s−1. We predict that individual particle masses are overestimated by ∼10-90% when side-wall impacts occur at 2-20 km s−1, and underestimated by ∼10-102 at 20-50 km s−1. We predict that wall impacts at 20-50 km s−1 can be identified in Galileo instrument data on account of their unusually short target rise times. The side-wall calibration is used to obtain new revised values [Krüger et al., 2000. A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids. Planet. Space Sci. 48, 1457-1471; 2003. Impact-generated dust clouds surrounding the Galilean moons. Icarus 164, 170-187] of the Galilean satellite dust number densities of 9.4×10−5, 9.9×10−5, 4.1×10−5, and 6.8×10−5 m−3 at 1 satellite radius from Io, Europa, Ganymede, and Callisto, respectively. Additionally, interplanetary particle number densities detected by the Galileo mission are found to be 1.6×10−4, 7.9×10−4, 3.2×10−5, 3.2×10−5, and 7.9×10−4 m−3 at heliocentric distances of 0.7, 1, 2, 3, and 5 AU, respectively. Work by Burchell et al. [1999b. Acceleration of conducting polymer-coated latex particles as projectiles in hypervelocity impact experiments. J. Phys. D: Appl. Phys. 32, 1719-1728] suggests that low-density “fluffy” particles encountered by Ulysses will not significantly affect our results—further calibration would be useful to confirm this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号