首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
青藏高原新生代以来的隆升过程及特征长期以来广存争议.岩体中不同单矿物所记录的中低温热年代学信息适用于揭示较新年代地质体的隆升过程,可以为之提供有效制约.在青藏高原部分岩浆岩与变质岩露头区原位采集15块样品,利用锆石与磷灰石裂变径迹等热年代学结果为青藏高原中生代末期以来的隆升过程提供约束.其中,所获10块样品的锆石裂变径迹数据年龄范围为182~33 Ma,分别记录了渐新世之前青藏高原内不同块体间相互碰撞及高原内不同地区的构造热事件.特别是沿雅鲁藏布江缝合带分布的3个样品,锆石裂变径迹年龄结果一致显示始新世末期-渐新世早期该带存在一期显著的构造热事件.该构造热事件暗示在约36~33 Ma沿雅江缝合带发生过强烈的陆-陆硬碰撞.所获14块样品的磷灰石裂变径迹年龄范围为70.4~5.0 Ma,综合热史反演结果显示青藏高原南部中新世中晚期以来存在整体性隆升,特别是从上新世开始隆升速率显著加快.磷灰石裂变径迹年龄在空间分布上具有向高原东南部变年轻的趋势,表明青藏高原东南部在上新世以来的构造隆升较其他地区要强烈,暗示印度-亚洲板块碰撞驱动机制对该时期的高原隆升具有控制作用.此外,青藏高原中部在白垩纪末期-始新世可能即已隆升至相当高度,此后至今保持了相当低的剥蚀速率.   相似文献   

2.
New fission‐track ages on zircon and apatite (ZFT and AFT) from the south‐western internal Alps document a diachronous cooling history from east to west, with cooling rates of 15–19 °C Ma−1. In the Monviso unit, the ZFT ages are 19.6 Ma and the AFT ages are 8.6 Ma. In the eastern Queyras, ZFT ages range from 27.0 to 21.7 Ma and AFT ages from 14.2 to 9.4 Ma. In the western Queyras, ZFT ages are between 94.7 and 63.1 Ma and AFT ages are between 22.2 and 22.6 Ma. The Chenaillet ophiolite yields ages of 118.1 Ma on ZFT and 67.9 Ma on AFT. The combination of these new FT data with the available petrological and geochronological data emphasize an earlier exhumation in subduction context before 30 Ma, then in collision associated with westward tilting of the Piedmont zone.  相似文献   

3.
A combination of four thermochronometers [zircon fission track (ZFT), zircon (U–Th)/He (ZHe), apatite fission track (AFT) and apatite (U–Th–[Sm])/He (AHe) dating methods] applied to a valley to ridge transect is used to resolve the issues of metamorphic, exhumation and topographic evolution of the Nízke Tatry Mts. in the Western Carpathians. The ZFT ages of 132.1 ± 8.3, 155.1 ± 12.9, 146.8 ± 8.6 and 144.9 ± 11.0 Ma show that Variscan crystalline basement of the Nízke Tatry Mts. was heated to temperatures >210°C during the Mesozoic and experienced a low-grade Alpine metamorphic overprint. ZHe and AFT ages, clustering at ~55–40 and ~45–40 Ma, respectively, revealed a rapid Eocene cooling event, documenting erosional and/or tectonic exhumation related to the collapse of the Carpathian orogenic wedge. This is the first evidence that exhumation of crystalline cores in the Western Carpathians took place in the Eocene and not in the Cretaceous as traditionally believed. Bimodal AFT length distributions, Early Miocene AHe ages and thermal modelling results suggest that the samples were heated to temperatures of ~55–90°C during Oligocene–Miocene times. This thermal event may be related either to the Oligocene/Miocene sedimentary burial, or Miocene magmatic activity and increased heat flow. This finding supports the concept of thermal instability of the Carpathian crystalline bodies during the post-Eocene period.  相似文献   

4.
Zircon (ZFT) and apatite (AFT) fission-track low-temperature thermochronology was applied at the Brazilian passive continental margin in order to understand and reconstruct the post-rift evolution since the breakup of southwestern Gondwana. The thermochronological data obtained from samples of both the Precambrian basement and the Paleogene to Neogene sedimentary rocks from the continental rift of southeastern Brazil provided ZFT ages between 148 (15) and 64 (6) Ma, and AFT ages of 81 (8)–29 (3) Ma. These data clearly indicate syn- and post-rift reactivations during the Early Cretaceous, with great emphasis on Paleogene to Neogene times. Integrating the results of older thermochronological studies, the reactivation of the southeastern Brazilian margin can be described in three main phases related to the rift to post-rift evolution of SE Brazil. In general, ZFT and AFT data yield spread values that become younger as samples are closer to the reactivated Neoproterozoic shear zones and might reflect source area exhumation. The analysis of ZFT and AFT data allowed interpretations regarding the main phases that occurred in the study area related to the thermotectonic and tectono-stratigraphic evolution in southeastern Brazil.  相似文献   

5.
Detrital zircon and apatite fission track (ZFT and AFT) data of the sandstones collected from the Liaoxi basins served as a significant probe to study the Meso-Cenozoic thermo-tectonic reactivation events in the northern margin of the North China Craton. All sandstones show wide ZFT and AFT age spectrum and most of ZFT and AFT ages are younger than depositional age of respective host rocks, which suggest widespread track resetting of the host rocks in the Liaoxi basins after deposition. This hot geothermal status in the Liaoxi basins deduced from ZFT and AFT data is temporal consistent with the lithospheric evolution of the North China Craton, which implies that the lithosphere under the northern margin of the North China Craton underwent similar thermo-tectonic destruction process as the intracratonic Bohai Sea. The young ZFT peak age, which ranges from ∼50 Ma to 20 Ma, to some extend, provides a temporal constraint on the time that lithosphere significantly thinned and following reverse of the Liaoxi basins and uplift of the eastern part of the Yan-Liao Orogenic Belt. Exhumation of 1.5–2 km can be estimated in the eastern part of the Yan-Liao Orogenic Belt since ∼30 Ma to 10 Ma.  相似文献   

6.
班公湖- 怒江缝合带为青藏高原内部分隔羌塘和拉萨两地块的构造边界,是研究青藏高原构造演化的重要窗口之一。该缝合带自西向东分为西段(班公湖至改则)、中段(安多至东巧)和东段(丁青至怒江),其中东段的研究程度较低。本次以东段八宿县郭庆乡一条花岗岩高程剖面为研究对象,采用激光剥蚀电感耦合等离子体质谱仪(LA- ICPMS)法对锆石和磷灰石开展裂变径迹测试。花岗岩锆石U- Pb年龄为~180 Ma,指示其结晶时代为早侏罗世。锆石和磷灰石裂变径迹年龄分别为180~130 Ma、86~61 Ma,对应的年龄- 海拔曲线分别为负斜率和正斜率。QTQt模拟显示花岗岩高程剖面顶部在130~60 Ma时剥蚀冷却速率快,中部在130~40 Ma时剥蚀冷却速率居中,而底部在~130 Ma之后一直保持最低的剥蚀冷却速率。这种差异性隆升源自班公湖- 怒江缝合带东段的南向俯冲板片断离早于北向俯冲板片断离。  相似文献   

7.
龙门山冲断隆升及其走向差异的裂变径迹证据   总被引:4,自引:1,他引:3  
大量的低温年代学研究用来讨论龙门山晚新生代的隆升,但很少涉及其走向差异和中生代隆升。本文分别沿龙门山北、中、南段3条剖面进行了锆石和磷灰石裂变径迹测试,结合已有的热年代学数据,以期揭示整个中-新生代期间龙门山隆升历史及其时空变化。中生代以来,龙门山主要有印支期(约200 Ma)、早白垩世末(约100 Ma)、早新生代(65~30 Ma)以及晚中新世(15~9 Ma)等或快或慢的冷却事件,总体上经历了中生代至早新生代的缓慢冷却和晚新生代快速冷却2个阶段,快速剥露开始于15~9 Ma,剥蚀速率由早期的0.1 mm/a增加到0.15~0.3 mm/a左右,局部可达0.9 mm/a左右。走向上,龙门山北段相对偏小的锆石裂变径迹年龄和相对偏大的磷灰石裂变径迹年龄反映其在中生代较中、南段隆升更快,而裂变径迹年龄总体上从北段向中、南段减小,表明中、南段在新生代发生了更快的隆升。倾向上,多种热年代学数据显示新生代期间在北川断裂和彭灌断裂两侧存在明显的差异剥露,这种差异在中、南段表现比北段更为突出。龙门山晚新生代快速隆升和剥露是青藏高原区域隆升背景上叠加的冲断活动所致,而非下地壳流动驱动。  相似文献   

8.
为揭示东喜马拉雅构造结那木拉断裂带上新世以来强烈活动特征,对采集自那木拉断裂带的三件基岩样品进行黑云母40Ar/39Ar、磷灰石裂变径迹两种热年代学方法测年;并利用"Pecube"软件对测得年龄数据及断裂带两侧已发表年龄数据进行定量模拟计算。测试结果显示黑云母40Ar/39Ar年龄范围为4.44±0.71 Ma~3.45±0.24 Ma,磷灰石裂变径迹年龄范围为3.7±0.4 Ma~1.8±0.2 Ma。年龄数据及其模拟计算结果表明,约3 Ma以前那木拉断裂带南侧地壳隆升最快,隆升速率约2.5 km/Ma,断裂带以正断层运动特征为主;约3 Ma以来那木拉断裂带北侧地壳隆升最快,约为1.3 km/Ma,断裂带以逆断层运动特征为主。那木拉断裂带运动特征变化可能与约8 Ma以来东喜马拉雅构造结快速地壳隆升剥露区域由南向北逐渐迁移有关。   相似文献   

9.
The thermal evolution of the only known Alpine (Cretaceous) granite in the Western Carpathians (Rochovce granite) is studied by low-temperature thermochronological methods. Our apatite fission track and apatite (U-Th)/He ages range from 17.5 ± 1.1 to 12.9 ± 0.9 Ma, and 12.9 ± 1.8 to 11.3 ± 0.8 Ma, respectively. The data thus show that the Rochovce granite records a thermal event in the Middle to early Late Miocene, which was likely related to mantle upwelling, volcanic activity, and increased heat flow. During the thermal maximum between ~17 and 8 Ma, the granite was heated to temperatures ? 60 °C. Increase of cooling rates at ~12 Ma recorded by the apatic fission track and (U-Th)/He data is primarily related to the cessation of the heating event and relaxation of the isotherms associated with the termination of the Neogene volcanic activity. This contradicts the accepted concept, which stipulates that the internal parts of the Western Carpathians were not thermally affected during the Cenozoic period. The Miocene thermal event was not restricted to the investigated part of the Western Carpathians, but had regional character and affected several basement areas in the Western Carpathians, the Pannonian basin and the margin of the Eastern Alps.  相似文献   

10.
The Longmen Shan (LMS), which constitutes the eastern border of the Tibetan Plateau, is about 400 km in length and characterized by a steep topographic transition from the Sichuan Basin to the plateau. The 2008 Mw7.9 Wenchuan earthquake and 2013 Mw6.6 Lushan earthquake were associated with the central to northern segments and southern segment of the LMS fault belt, respectively. In this paper, zircon and apatite fission track (ZFT and AFT, respectively) dating in combination with previously published low temperature thermochronology studies are used to constrain both the exhumation history and fault activity along the LMS, with a special focus on the southern segment. In the southern segment of the LMS, the ZFT ages in the hanging wall of the Wulong-Yanjing fault 10–14 Ma, increasing to ca. 30 Ma to the northwest of the faults and to 100–200 Ma in the plateau region. The AFT ages are 3–5 Ma at the mountain front and increase to 8–26 Ma in the plateau. We show that these age distributions are controlled by fault geometry. Two stages of rapid exhumation were identified using apatite fission track length modeling and the age distributions in the southern segment of the LMS. The first stage is from ca. 30 Ma and the second stage is from 3–5 Ma to present. In contrast with the middle segment of the LMS, the Cenozoic exhumation rate is higher in the southern segment of the LMS, which may be due to the influence of the collision between the India and Eurasia plates and/or different faulting mechanisms in the different segments.  相似文献   

11.
Movement within the Earth’s upper crust is commonly accommodated by faults or shear zones, ranging in scale from micro-displacements to regional tectonic lineaments. Since faults are active on different time scales and can be repeatedly reactivated, their displacement chronology is difficult to reconstruct. This study represents a multi-geochronological approach to unravel the evolution of an intracontinental fault zone locality along the Danube Fault, central Europe. At the investigated fault locality, ancient motion has produced a cataclastic deformation zone in which the cataclastic material was subjected to hydrothermal alteration and K-feldspar was almost completely replaced by illite and other phyllosilicates. Five different geochronological techniques (zircon Pb-evaporation, K–Ar and Rb–Sr illite, apatite fission track and fluorite (U-Th)/He) have been applied to explore the temporal fault activity. The upper time limit for initiation of faulting is constrained by the crystallization age of the primary rock type (known as “Kristallgranit”) at 325 ± 7 Ma, whereas the K–Ar and Rb–Sr ages of two illite fractions <2 μm (266–255 Ma) are interpreted to date fluid infiltration events during the final stage of the cataclastic deformation period. During this time, the “Kristallgranit” was already at or near the Earth’s surface as indicated by the sedimentary record and thermal modelling results of apatite fission track data. (U–Th)/He thermochronology of two single fluorite grains from a fluorite–quartz vein within the fault zone yield Cretaceous ages that clearly postdate their Late-Variscan mineralization age. We propose that later reactivation of the fault caused loss of helium in the fluorites. This assertion is supported by geological evidence, i.e. offsets of Jurassic and Cretaceous sediments along the fault and apatite fission track thermal modelling results are consistent with the prevalence of elevated temperatures (50–80°C) in the fault zone during the Cretaceous.  相似文献   

12.
The tectonic inversion of the Songliao Basin during the Oligo–Miocene may have played an important role in controlling the development of sandstone-type uranium deposits (SUDs). Here we investigate drill holes along a southeast to northwest section in this basin based on apatite fission-track (AFT) and zircon fission-track (ZFT) techniques. We present 50 data from 15 deep boreholes at different depths between 665 and 3956 m and different structural units including grabens and horsts formed in the Early Cretaceous beneath the basin. The results of the effective AFT ages are 100 ± 11 to 2.3 ± 0.4 Ma (P(x2) > 5%) and ZFT ages are 97.5–20.4 Ma (including binomial peak ages). These results reveal that the basin underwent two distinct stages of rapid cooling after Late Cretaceous. In the first stage, during the Late Cretaceous–Early Paleogene (~80–50 Ma), tectonic uplift occurred in all of the structural units including grabens and horsts, which was marked by an unconformity between the latest Cretaceous Mingshui and the Eocene Yi'an formations. In the second stage, during the Oligo–Miocene (~40–10 Ma), tectonic uplift occurred mainly in the grabens but not in the horsts, corresponding with a few sediments of the Neogene Da'an and Taikang formations. We propose that the folds and the thrust faults mostly characterize in the second stage indicating a major tectonic inversion in the basin. The shifting of the two stages was probably in response to differences in the subduction angles and directions of motion of the Paleo-Pacific Plate from the southeast. Combined with previous information, it was demonstrated that most of the U mineralization ages are younger than 40 Ma, with a peak in the Miocene or later (<20 Ma). We thus propose that the SUDs have been redistributed and redeposited locally in successive stages during and after the Oligo–Miocene tectonic inversion.  相似文献   

13.
《地学前缘(英文版)》2019,10(6):2153-2166
The Junggar Alatau forms the northern extent of the Tian Shan within the Central Asian Orogenic Belt(CAOB) at the border of SE Kazakhstan and NW China.This study presents the Palaeozoic-Mesozoic post-collisional thermo-tectonic history of this frontier locality using an integrated approach based on three apatite geo-/thermochronometers:apatite U-Pb,fission track and(U-Th)/He.The apatite U-Pb dates record Carboniferous-Permian post-magmatic cooling ages for the sampled granitoids,reflecting the progressive closure of the Palaeo-Asian Ocean.The apatite fission track(AFT) data record(partial)preservation of the late Palaeozoic cooling ages,supplemented by limited evidence for Late Triassic(~230-210 Ma) cooling and a more prominent record of(late) Early Cretaceous(~150-110 Ma) cooling.The apatite(U-Th)/He age results are consistent with the(late) Early Cretaceous AFT data,revealing a period of fast cooling at that time in resulting thermal history models.This Cretaceous rapid cooling signal is only observed for samples taken along the major NW-SE orientated shear zone that dissects the study area(the Central Kazakhstan Fault Zone),while Permian and Triassic cooling signals are preserved in low-relief areas,distal to this structure.This distinct geographical trend with respect to the shear zone,suggests that fault reactivation triggered the Cretaceous rapid cooling,which can be linked to a phase of slab-rollback and associated extension in the distant Tethys Ocean.Similar conclusions were drawn for thermochronology studies along other major NW-SE orientated shear zones in the Central Asian Orogenic Belt,suggesting a regional phase of Cretaceous exhumation in response to fault reactivation at that time.  相似文献   

14.
Gangdese batholith in the southern Lhasa block is a key location for exploring the Tibetan Plateau uplift and exhumation history. We present the new low-temperature thermochronological data from two north–south traverses in the central Gangdese batholith to reveal their cooling histories and corresponding controls. Zircon fission track ages show prominent clusters ranging from 23.7 to 51.6 Ma, apatite fission track ages from 9.4 to 36.9 Ma, apatite (U–Th)/He ages between 9.5 and 12.3 Ma, and one zircon (U–Th)/He age around 77.8 Ma. These new data and thermal modeling, in combination with the regional geological data, suggest that the distinct parts of Gangdese batholith underwent different cooling histories resulted from various dynamic mechanisms. The Late Eocene–Early Oligocene exhumation of northern Gangdese batholith, coeval with the magmatic gap, might be triggered by crust thickening followed by the breakoff of Neotethyan slab, while this stage of exhumation in southern Gangdese batholith cannot be clearly elucidated probably because the most of plutonic rocks with the information of this cooling event were eroded away. Since then, the northern Gangdese batholith experienced a slow and stable exhumation, while the southern Gangdese batholith underwent two more stages of exhumation. The Late Oligocene–Early Miocene rapid cooling might be a response to denudation caused by the Gangdese Thrust or related to the regional uplift and exhumation in extensional background. By the early Miocene, the rapid exhumation was associated with localized river incision or intensification of Asian monsoon, or north–south normal fault.  相似文献   

15.
在新藏公路奇台达坂东约10krn、海拔5600m的晚三叠世花岗岩之上发现厚约10m的玄武岩和粗面英安岩.地球化学数据显示,该火山岩高碱,富集大离子亲石元素和轻稀土元素,亏损重稀土元素,Eu中等负异常,高Sr,低Nd,属钾玄岩系列,可能源于壳幔混合层.测定全岩~(40)Ar-~(39)Ar坪年龄为8.27Ma±0.32Ma(900~1400℃,~(39)Ar累积释放量为66%),与受火山岩烘烤后花岗岩的磷灰石裂变径迹年龄(7.9Ma±1.0Ma)在误差范围内一致,表明该火山岩喷发于约8Ma的晚中新世,与相邻的大红柳滩火山岩的时代(7.97Ma±0.14Ma)相近.新藏公路奇台达坂晚中新世火山岩的发现丰富了青藏高原西北缘晚新生代岩浆活动的资料,表明在晚中新世-上新世康西瓦-泉水沟一带火山活动非常频繁,并显示火山活动与大型断裂带运动的关系非常密切.  相似文献   

16.
The northern Tibetan Plateau has evolved a unique basin-range structure characterized by alternating elongated mountain ranges and basins over a history of multiple tectonic and fault activities. The Subei basin recorded evolution of this basin-range structure. In this study, detailed detrital apatite fission track (AFT) thermochronological studies in conjunction with previously documented data reveal provenance of the Subei basin, important information about the Indo-Eurasia collision, and two Miocene uplift and exhumation events of the northern Tibetan Plateau. Detrital AFT analyses combined with sedimentary evidences demonstrate that the Danghenanshan Mountains is the major provenance of the Subei basin. In addition, very old age peaks indicate that part sediments in the Subei basin are recycling sediments. Age peak populations of 70–44 Ma and 61–45 Ma from the lower and upper Baiyanghe formations record the tectono-thermal response to the Indo-Eurasia collision. Combined detrital AFT thermochronology, magnetostratigraphy and petrography results demonstrate the middle Miocene uplift and exhumation event initiated 14–12 Ma in the Subei basin, which may resulted from the Miocene east-west extension of the Tibetan Plateau. Another stronger uplift and exhumation event occurred in the late Miocene resulted from strengthened tectonic movement and climate. A much younger AFT grain age, breccia of diluvial facies and boulders of root fan subfacies record the late Miocene unroofing in the Danghenanshan Mountains.  相似文献   

17.
刘江  张进江  郭磊  戚国伟 《岩石学报》2014,30(7):1899-1908
晚中生代,内蒙古大青山依次经历晚侏罗世盘羊山逆冲推覆、早白垩世呼和浩特变质核杂岩伸展、早白垩世大青山逆冲推覆断层及早白垩世以来高角度正断层复杂构造演化。其中,呼和浩特变质核杂岩韧性剪切带的冷却时间和抬升机制的制约尚不明确。本文在野外考察和显微构造分析基础上,采用逐步加热40Ar-39Ar定年法对韧性剪切带内不同单矿物的冷却年龄进行了测定。角闪石、白云母、黑云母和钾长石单矿物40Ar-39Ar冷却年龄处于120~116Ma之间。结合已有年龄数据及单矿物封闭温度,构建了韧性剪切带的冷却曲线。结果表明,韧性剪切带在122~115Ma期间存在一个明显的快速冷却过程。这一阶段快速冷却是与变质核杂岩拆离断层相关核部杂岩拆离折返作为大青山逆冲推覆断层上盘抬升的结果。  相似文献   

18.
The accuracy and validation of geo- and thermochronological dating hinges on the availability of well-characterised age reference materials. The Mesoproterozoic gabbroic anorthosite FC1 from the Duluth Complex, Minnesota is a reference material for zircon U-Pb and a suggested reference material for apatite fission-track dating. We evaluate FC1 as (U-Th)/He reference material, and determine its apatite U-Pb, and zircon and apatite (U-Th)/He age. Our dating results constrain the thermal history of FC1, showing that fast cooling occurred between ~ 1099 and 1040 Ma from ≥ 600 °C to ~ 200 °C. The zircon (U-Th)/He data from air-abraded grains give a robust isochron age of 1037 ± 25 Ma (2s) without overdispersion. The within-grain homogeneity of U and Th, the availability of FC1 zircon, and the absence of radiation-damage effects on the (U-Th)/He age support its use as reference material. Unabraded zircon grains give lower and more dispersed ages, highlighting the usefulness of air abrasion to control for α-ejection in (U-Th)/He dating. Our apatite (U-Th-Sm)/He single-grain ages vary between 180 and 300 Ma. Their wide dispersion argues against the use of FC1 apatite as (U-Th-Sm)/He reference material and makes the interpretation of their low-temperature thermal history complicated.  相似文献   

19.
Borehole and surface samples from the Archean Tanzania Craton were analysed for apatite fission track(AFT) and(U-Th)/He data with the aim of deciphering cooling histories of the basement rocks. Fission track dates from borehole and outcrop samples are Carboniferous-Permian(345± 33.3 Ma to271±31.7 Ma) whereas(U-Th)/He dates are Carboniferous-Triassic(336±45.8 Ma to 213±29 Ma) for outcrop grains and are consistently younger than corresponding AFT dates. Single grain(U-Th)/He dates from the borehole are likely to be flawed by excessive helium implantation due to their very low effective uranium contents, radiation damage and grain sizes. All AFT and(U-Th)/He dates are significantly younger than the stratigraphic ages of their host rocks, implying that the samples have experienced Phanerozoic elevated paleo-temperatures. Considerations of the data indicate removal of up to 9 km overburden since the Palaeozoic.Thermal modelling reveals a protracted rapid cooling event commencing during the early Carboniferous(ca. 350 Ma) at rates of 46 m/Ma ending in the Triassic(ca. 220 Ma). The model also suggests minor cooling during the Cretaceous of the samples to surface temperatures. The suggested later cooling event remains to be tested. The major cooling phase during the Carboniferous is interpreted to be associated with compressional tectonics during the Variscan Orogeny sensu far field induced stresses. Coeval sedimentation in the Karoo basins in the region suggests that most of the cooling of cratonic rocks during the Carboniferous was associated with denudation.  相似文献   

20.
This study provides new low-temperature thermochronometric data, mainly apatite fission track data on the basement rocks in and adjacent to the Talas-Fergana Fault, in the Kyrgyz Tien Shan in the first place.In the second place, we also present new detrital apatite fission track data on the Meso-Cenozoic sediments from fault related basins and surrounding intramontane basins. Our results confirm multistaged Meso-Cenozoic tectonic activity, possibly induced by the accretion of the so-called Cimmerian blocks to the Eurasian margin. New evidence for this multi-staged thermo-tectonic activity is found in the data of both basement and Meso-Cenozoic sediment samples in or close to the Talas-Fergana Fault.Zircon(U-Th)/He and apatite fission track data constrain rapid Late TriassiceE arly Jurassic and Late JurassiceE arly Cretaceous basement cooling in the Kyrgyz Tien Shan around 200 Ma and 130 -100 Ma respectively. Detrital apatite fission track results indicate a different burial history on both sides of the Talas-Fergana Fault. The apatite fission track system of the Jurassic sediments in the Middle Tien Shan unit east of the Talas-Fergana Fault is not reset, while the Jurassic sediments in the Fergana Basin and Yarkand-Fergana Basin, west of the fault zone, are partially and in some cases even totally reset. The totally reset samples exhibit Oligocene and Miocene ages and evidence the Cenozoic reactivation of the western Kyrgyz Tien Shan as a consequence of the India-Eurasia convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号