首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
Abstract In mid‐Middle Cambrian time, shallow‐water sedimentation along the Cordilleran passive margin was abruptly interrupted by the development of the deep‐water House Range embayment across Nevada and Utah. The Marjum Formation (330 m) in the central House Range represents deposition in the deepest part of the embayment and is composed of five deep‐water facies: limestone–argillaceous limestone rhythmites; shale; thin carbonate mud mounds; bioturbated limestone; and cross‐bedded limestone. These facies are cyclically arranged into 1·5 to 30 m thick parasequences that include rhythmite–mound, rhythmite–shale, rhythmite–bioturbated limestone and rhythmite–cross‐bedded limestone parasequences. Using biostratigraphically constrained sediment accumulation rates, the parasequences range in duration from ≈14 to 270 kyr. The mud mounds are thin (<2 m), closely spaced, laterally linked, symmetrical domes composed of massive, fenestral, peloidal to clotted microspar with sparse unoriented, poorly sorted skeletal material, calcitized bacterial(?) filaments/tubes and abundant fenestrae and stroma‐ tactoid structures. These petrographic and sedimentological features suggest that the microspar, peloids/clots and syndepositional micritic cement were precipitated in situ from the activity of benthic microbial communities. Concentrated growth of the microbial communities occurred during periods of decreased input of fine detrital carbonate transported offshore from the adjacent shallow‐water carbonate platform. In the neighbouring Wah Wah Range and throughout the southern Great Basin, coeval mid‐Middle Cambrian shallow‐water carbonates are composed of abundant metre‐scale, upward‐shallowing parasequences that record high‐frequency (104?105 years) eustatic sea‐level changes. Given this regional stratigraphic relationship, the Marjum Formation parasequences probably formed in response to high‐frequency sea‐level fluctuations that controlled the amount of detrital carbonate input into the deeper water embayment. During high‐frequency sea‐level rise and early highstand, detrital carbonate input into the embayment decreased as a result of carbonate factory retrogradation, resulting in the deposition of shale (base of rhythmite–shale parasequences) or thin nodular rhythmites, followed by in situ precipitated mud mounds (lower portion of rhythmite–mound parasequences). During the ensuing high‐frequency sea‐level fall/lowstand, detrital carbonate influx into the embayment increased on account of carbonate factory pro‐ gradation towards the embayment, resulting in deposition of rhythmites (upper part of rhythmite–mound parasequences), reworking of rhythmites by a lowered storm wave base (cross‐bedded limestone deposition) or bioturbation of rhythmites by a weakened/lowered O2‐minimum zone (bioturbated lime‐ stone deposition). This interpreted sea‐level control on offshore carbonate sedimentation patterns is unique to Palaeozoic and earliest Mesozoic deep‐water sediments. After the evolution of calcareous plankton in the Jurassic, the presence or absence of deeper water carbonates was influenced by a variety of chemical and physical oceanographic factors, rather than just physical transport of carbonate muds.  相似文献   

2.
Many pre‐Mesozoic records of Earth history are derived from shallow water carbonates deposited on continental shelves. While these carbonates contain geochemical proxy records of climate change, it is the stratal architecture of layered carbonate units that often is used to build age models based on the idea that periodic astronomical forcing of sea‐level controls the layering. Reliable age models are crucial to any interpretation of rates and durations of environmental change, but the physical processes that actually control this stratal architecture in shallow water carbonates are controversial. In particular, are upward‐shallowing stacks of carbonate beds bounded by flooding surfaces (‘parasequences’) truly a record of relative sea‐level change? The purpose of this study is to examine a tidal flat that is actively accumulating carbonate stratigraphy, and to determine the relative importance of tidal channel migration (poorly known, but investigated here) and Holocene sea‐level rise (well‐known) in controlling post‐glacial parasequence architecture. This work represents a field study of peritidal carbonate accumulation at Triple Goose Creek, north‐west Andros Island. By integrating surface facies maps with differential global positioning system topographic surveys, a quantitative relationship between facies and elevation is derived. Sedimentary facies are sensitive to elevation changes as small as 5 cm, and are responding to both internal (distance to nearest tidal channel) and external (sea‐level rise) controls. The surface maps also are integrated with 187 sediment cores that each span the entire Holocene succession. While flooding of the Triple Goose Creek area should have occurred by ca 4500 years ago, preservation of Holocene sediment did not begin until 1200 years ago. The tidal channels are shown to be stationary, or to migrate sluggishly at up to 6 cm per year. Therefore, while the location of tidal channels is responsible for the modern mosaic of surface facies, these facies and the channels that control them have not migrated substantially during the ca 1200 years of sediment accumulation at Triple Goose Creek. Once the region was channellized, vertical and lateral shifts in facies, such as the landward retreating shoreline, expanding mangrove ponds and seaward advancing inland algal marsh, are driven by changes in relative sea‐level and sediment supply, not migrating channels. While stratigraphic columns look different depending on the distance to the nearest tidal channel, the overall parasequence architecture everywhere at Triple Goose Creek records an upward‐shallowing trend controlled by the infilling of accommodation space generated by post‐glacial sea‐level rise.  相似文献   

3.
章雨旭  彭阳 《地质论评》1997,43(2):148-154
北京西山寒武系-奥陶系出露良好,根据岩性组合特征,结合沉积结构,生物,地球化学等指杆标志,可区分出的副层序类型主要有6种,它们形成于不同的环境,其厚度一般几米,少数几十厘米或十几米,每类副层序中岩性可达4-6种,但单个副层序可仅由两种岩性构成,每一副层序反映的水叫是自下而上持续变浅,而在每两个副层序之间总是由浅水到深水的相跳跃。根据这些副层序的特征,可以推断在每两个副层序之间有一次海水突然加深过程  相似文献   

4.
Abstract Physical stratigraphy within shoreface‐shelf parasequences contains a detailed, but virtually unstudied, record of shallow‐marine processes over a range of historical and geological timescales. Using high‐quality outcrop data sets, it is possible to reconstruct ancient shoreface‐shelf morphology from clinoform surfaces, and to track the evolving morphology of the ancient shoreface‐shelf. Our results suggest that shoreface‐shelf morphology varied considerably in response to processes that operate over a range of timescales. (1) Individual clinoform surfaces form as a result of enhanced wave scour and/or sediment starvation, which may be driven by minor fluctuations in relative sea level, sediment supply and/or wave climate over short timescales (101?103 years). These external controls cannot be distinguished in vertical facies successions, but may potentially be differentiated by the resulting clinoform geometries. (2) Clinoform geometry and distribution changes systematically within a single parasequence, reflecting the cycle in sea level and/or sediment supply that produced the parasequence (102?105 years). These changes record steepening of the shoreface‐shelf profile during early progradation and maintenance of a relatively uniform profile during late progradation. Modern shorefaces are not representative of this stratigraphic variability. (3) Clinoform geometries vary greatly between different parasequences as a result of variations in parasequence stacking pattern and relict shelf morphology during shoreface progradation (105?108 years). These controls determine the external dimensions of the parasequence.  相似文献   

5.
Regionally extensive parasequences in the upper McMurray Formation, Grouse Paleovalley, north‐east Alberta, Canada, preserve a shift in depositional processes in a paralic environment from tide domination, with notable fluvial influence, through to wave domination. Three stacked parasequences form the upper McMurray Formation and are separated by allogenic flooding surfaces. Sediments within the three parasequences are grouped into three facies associations: wave‐dominated/storm‐dominated deltas, storm‐affected shorefaces to sheltered bay‐margin and fluvio‐tidal brackish‐water channels. The two oldest parasequences comprise dominantly tide‐dominated, wave‐influenced/fluvial‐influenced, shoreface to bay‐margin deposits bisected by penecontemporaneous brackish‐water channels. Brackish‐water channels trend approximately north‐west/south‐east, which is perpendicular to the interpreted shoreline trend; this implies that the basinward and progradational direction was towards the north‐west during deposition of the upper McMurray Formation in Grouse Paleovalley. The youngest parasequence is interpreted as amalgamated wave‐dominated/storm‐dominated delta lobes. The transition from tide‐dominated deposition in the oldest two parasequences to wave‐dominated deposition in the youngest is attributed mainly to drowning of carbonate highlands to the north and north‐west of the study area, and potentially to relative changes in accommodation space and deposition rate. The sedimentological, ichnological and regional distribution of the three facies associations within each parasequence are compared to modern and Holocene analogues that have experienced similar shifts in process dominance. Through this comparison it is possible to consider how shifts in depositional processes are expressed in the rock record. In particular, this study provides one of few ancient examples of preservation of depositional process shifts and showcases how topography impacts the character and architecture of marginal‐marine systems.  相似文献   

6.
Although modern wave‐dominated shorelines exhibit complex geomorphologies, their ancient counterparts are typically described in terms of shoreface‐shelf parasequences with a simple internal architecture. This discrepancy can lead to poor discrimination between, and incorrect identification of, different types of wave‐dominated shoreline in the stratigraphic record. Documented in this paper are the variability in facies characteristics, high‐resolution stratigraphic architecture and interpreted palaeo‐geomorphology within a single parasequence that is interpreted to record the advance of an ancient asymmetrical wave‐dominated delta. The Standardville (Ab1) parasequence of the Aberdeen Member, Blackhawk Formation is exposed in the Book Cliffs of central Utah, USA. This parasequence, and four others in the Aberdeen Member, record the eastward progradation of north/south‐trending, wave‐dominated shorelines. Within the Standardville (Ab1) parasequence, distal wave‐dominated shoreface‐shelf deposits in the eastern part of the study area are overlain across a downlap surface by southward prograding fluvial‐dominated delta‐front deposits, which have previously been assigned to a separate ‘stranded lowstand parasequence’ formed by a significant, allogenic change in relative sea‐level. High‐resolution stratigraphic analysis of these deposits reveals that they are instead more likely to record a single episode of shoreline progradation characterized by alternating periods of normal regressive and forced regressive shoreline trajectory because of minor cyclical fluctuations in relative sea‐level. Interpreted normal regressive shoreline trajectories within the wave‐dominated shoreface‐shelf deposits are marked by aggradational stacking of bedsets bounded by non‐depositional discontinuity surfaces. Interpreted forced regressive shoreline trajectories in the same deposits are characterized by shallow incision of fluvial distributary channels and strongly progradational stacking of bedsets bounded by erosional discontinuity surfaces that record enhanced wave‐base scour. Fluvial‐dominated delta‐front deposits most probably record the regression of a lobate delta parallel to the regional shoreline into an embayment that was sheltered from wave influence. Wave‐dominated shoreface‐shelf and fluvial‐dominated delta‐front deposits occur within the same parasequence, and their interpretation as the respective updrift and downdrift flanks of a single asymmetrical wave‐dominated delta that periodically shifted its position provides the most straightforward explanation of the distribution and relative orientation of these two deposit types.  相似文献   

7.
Well‐exposed Mesozoic sections of the Bahama‐like Adriatic Platform along the Dalmatian coast (southern Croatia) reveal the detailed stacking patterns of cyclic facies within the rapidly subsiding Late Jurassic (Tithonian) shallow platform‐interior (over 750 m thick, ca 5–6 Myr duration). Facies within parasequences include dasyclad‐oncoid mudstone‐wackestone‐floatstone and skeletal‐peloid wackestone‐packstone (shallow lagoon), intraclast‐peloid packstone and grainstone (shoal), radial‐ooid grainstone (hypersaline shallow subtidal/intertidal shoals and ponds), lime mudstone (restricted lagoon), fenestral carbonates and microbial laminites (tidal flat). Parasequences in the overall transgressive Lower Tithonian sections are 1–4·5 m thick, and dominated by subtidal facies, some of which are capped by very shallow‐water grainstone‐packstone or restricted lime mudstone; laminated tidal caps become common only towards the interior of the platform. Parasequences in the regressive Upper Tithonian are dominated by peritidal facies with distinctive basal oolite units and well‐developed laminate caps. Maximum water depths of facies within parasequences (estimated from stratigraphic distance of the facies to the base of the tidal flat units capping parasequences) were generally <4 m, and facies show strongly overlapping depth ranges suggesting facies mosaics. Parasequences were formed by precessional (20 kyr) orbital forcing and form parasequence sets of 100 and 400 kyr eccentricity bundles. Parasequences are arranged in third‐order sequences that lack significant bounding disconformities, and are evident on accommodation (Fischer) plots of cumulative departure from average cycle thickness plotted against cycle number or stratigraphic position. Modelling suggests that precessional sea‐level changes were small (several metres) as were eccentricity sea‐level changes (or precessional sea‐level changes modulated by eccentricity), supporting a global, hot greenhouse climate for the Late Jurassic (Tithonian) within the overall ‘cool’ mode of the Middle Jurassic to Early Cretaceous.  相似文献   

8.
Cenomanian–Turonian strata of the south‐central Pyrenees in northern Spain contain three prograding carbonate sequences that record interactions among tectonics, sea level, environment and sediment fabric in controlling sequence development. Sequence UK‐1 (Lower to Upper Cenomanian) contains distinct lagoonal, back‐margin, margin, slope and basin facies, and was deposited on a broad, flat shelf adjacent to a deep basin. The lack of reef‐constructing organisms resulted in a gently dipping ramp morphology for the margin and slope. Sequence UK‐2 (Upper Cenomanian) contains similar shallow‐water facies belts, but syndepositional tectonic modification of the margin resulted in a steep slope and deposition of carbonate megabreccias. Sequence UK‐3 (Lower to Middle Turonian) records a shift from benthic to pelagic deposition, as the shallow platform was drowned in response to a eustatic sea‐level rise, coupled with increased organic productivity. Sequences UK‐1 to UK‐3 are subdivided into lowstand, transgressive and highstand systems tracts based on stratal geometries and facies distribution patterns. The same lithologies (e.g. megabreccias) commonly occur in more than one systems tract, indicating that: (1) the depositional system responded to more than just sea‐level fluctuations; and (2) similar processes occurred during different times throughout sequence development. These sequences illustrate the complexity of carbonate platform dynamics that influence sequence architecture. Rift tectonics and flexural subsidence played a major role in controlling the location of the platform margin, maintaining a steep slope gradient through syndepositional faulting, enhancing slope instability and erosion, and influencing depositional processes, stratal relationships and lithofacies distribution on the slope. Sea‐level variations (eustatic and relative) strongly influenced the timing of sequence and parasequence boundary formation, controlled changes in accommodation and promoted platform drowning (in conjunction with other factors). Physico‐chemical and climatic conditions were responsible for reducing carbonate production rates and inducing platform drowning. Finally, a mud‐rich sediment fabric affected platform morphology, growth geometries (aggradation vs. progradation) and facies distribution patterns.  相似文献   

9.
The Neoproterozoic Sete Lagoas Formation (ca 610 Ma) of the São Francisco Basin, Brazil, is a succession of siltstone, limestone and phosphorite. Phosphorite forms part of a previously unrecognized 150 to 200 m thick, unconformity bounded depositional sequence. Lithofacies stacking patterns indicate that deposition was punctuated by higher order fluctuations in base level that produced aggradational parasequences. These shallowing‐upward cycles record the progradation of phosphate‐rich intertidal flats over shallow subtidal deposits as accommodation filled. The presence of mudcracks, authigenic chert nodules, lack of coarse terrigenous clastics and the abundance of silt with fine, abraded quartz grains suggests accumulation along an arid coastline with significant aeolian input. Delivery of phosphorus adsorbed on aeolian Fe‐(oxyhydr)oxide and clay is interpreted as having stimulated phosphogenesis in peritidal environments. Lithofacies associations indicate that windblown phosphorus promoted the establishment of cyanobacterial communities along the coast, which produced photosynthetic oxygen and the suboxic conditions necessary for the precipitation of authigenic carbonate fluorapatite. As in other Precambrian phosphatic systems, nearshore oxygen oases were a prerequisite for phosphorite accumulation because redox sensitive phosphogenic processes were pushed into the sediment to concentrate phosphorus. In more distal, anoxic environments phosphorite could not form because these biotic and abiotic processes were suspended in the water column, which cycled phosphorus in sea water rather than at the sediment–water interface. Such shallow‐water phosphorite is unlike larger, younger Neoproterozoic–Phanerozoic phosphatic deposits inferred to have formed in deeper‐upwelling related environments. The increasing size of phosphatic deposits through the latest Precambrian is interpreted as reflecting the progressive ventilation of the oceans during the Neoproterozoic Oxygenation Event, and resultant expansion of phosphogenic environments into distal settings. The widespread cycling of bioavailable phosphorus at the sea floor not only produced the first true phosphorite giants, but may have also been an important precondition for the evolution of multicellular animals.  相似文献   

10.
鄂西利川见天坝长兴组生物礁内部构成及成礁模式   总被引:4,自引:0,他引:4  
鄂西利川见天坝位于川东碳酸盐岩台地与鄂西海槽之间的台地边缘相带,晚二叠世长兴期该区水体逐渐由深变浅,发育了一套规模巨大的加积—进积型台地边缘生物礁沉积。通过野外露头剖面精细地质写实研究,对该区生物礁内部构成特征进行了深入解剖,探讨了该区生物礁发育模式。研究表明利川见天坝生物礁礁体位于长兴组层序1的高位体系域,其内部由4...  相似文献   

11.
A mathematical model of carbonate platform evolution is presented in which depth‐dependent carbonate growth rates determine platform‐top accumulation patterns in response to rising relative sea‐level. This model predicts that carbonate platform evolution is controlled primarily by the water depth and sediment accumulation rate conditions at the onset of relative sea‐level rise. The long‐standing ‘paradox of a drowned platform’ arose from the observation that maximum growth rate potentials of healthy platforms are faster than those of relative sea‐level rise. The model presented here demonstrates that a carbonate platform could be drowned during a constant relative sea‐level rise whose rate remains less than the maximum carbonate production potential. This scenario does not require environmental changes, such as increases in nutrient supply or siliciclastic sedimentation, to have taken place. A rate of relative sea‐level rise that is higher than the carbonate accumulation rate at the initial water depth is the only necessary condition to cause continuous negative feedbacks to the sediment accumulation rates. Under these conditions, the top of the carbonate platform gradually deepens until it is below the active photic zone and drowns despite the strong maximum growth potential of the carbonate production factory. This result effectively resolves the paradox of a drowned carbonate platform. Test modelling runs conducted with 2·5 m and 15 m initial sea water depths at bracketed rates of relative sea‐level rise have determined how fast the system catches up and maintains the ‘keep‐up’ phase. This is the measure of time necessary for the basin to respond fully to external forcing mechanisms. The duration of the ‘catch‐up’ phase of platform response (termed ‘carbonate response time’) scales with the initial sea water depth and the platform‐top aggradation rate. The catch‐up duration can be significantly elongated with an increase in the rate of relative sea‐level rise. The transition from the catch‐up to the keep‐up phases can also be delayed by a time interval associated with ecological re‐establishment after platform flooding. The carbonate model here employs a logistical equation to model the colonization of carbonate‐producing marine organisms and captures the initial time interval for full ecological re‐establishment. This mechanism prevents the full extent of carbonate production to be achieved at the incipient stage of relative sea‐level rise. The increase in delay time due to the carbonate response time and self‐organized processes associated with biological colonization increase the chances for platform drowning due to deepening of water depth (> ca 10 m). Furthermore this implies a greater likelihood for an autogenic origin for high‐frequency cyclic strata than has been estimated previously.  相似文献   

12.
In the Concarena‐Pizzo Camino Massif (Lombardy Basin, Southern Alps, Italy) the lateral transition from Ladinian‐Carnian carbonate platforms to coeval intraplatform basins is preserved. The succession records the sedimentological evidence of a sea‐level fall on a flat‐topped platform with a narrow marginal reef rim and its effects in the adjacent deeper‐water basin. Repeated high‐frequency exposures of the platform top are recorded by a peritidal–supratidal succession that overlies subtidal inner platform facies of the former highstand system tract (HST). On the slope and in the basin, the sea‐level fall is recorded by a few metre thick succession of bioclastic packstones. These facies directly lie on coarse clinostratified breccia bodies (slope facies of the former HST) or on resedimented, well‐bedded, dark laminated limestones (basinal facies of the HST). This facies distribution indicates that during the sea‐level fall carbonate production on the platform top decreased rapidly and that sedimentation in the basin was mainly represented by condensed facies. Microfacies record an enrichment, during low stand, in pelagic biota (packstones with radiolarians and spiculae), whereas the occurrence of platform‐derived, shallow‐water materials is limited to thin lenses of reworked and micritized Fe‐rich oolites and bioclasts (mainly pelecypods and echinoderms). The facies association in the Concarena‐Pizzo Camino Massif demonstrates that a highly‐productive carbonate factory was almost completely turned off during the emergence of the platform top at a sequence boundary, leading to low‐stand starvation in the basin. The reconstruction of the stratigraphic evolution of the Concarena‐Pizzo Camino carbonate platform therefore represents a significant case history for the study of the behaviour of ancient carbonate systems during a fall in sea‐level, independent of its origin (eustatic or tectonic).  相似文献   

13.
To understand the depositional processes and environmental changes during the initial flooding of the North China Platform, this study focuses on the Lower to Middle Cambrian Zhushadong and Mantou formations in Shandong Province, China. The succession in the Jinan and Laiwu areas comprises mixed carbonate and siliciclastic deposits composed of limestone, dolostone, stromatolite, thrombolite, purple and grey mudstone, and sandstone. A detailed sedimentary facies analysis of seven well‐exposed sections suggests that five facies associations are the result of an intercalation of carbonate and siliciclastic depositional environments, including local alluvial fans, shallowing‐upward carbonate–siliciclastic peritidal cycles, oolite dominant shoals, shoreface and lagoonal environments. These facies associations successively show a transition from an initially inundated tide‐dominated carbonate platform to a wave‐dominated shallow marine environment. In particular, the peritidal sediments were deposited during a large number of depositional cycles. These sediments consist of lime mudstone, dolomite, stromatolite and purple and grey mudstones. These shallowing‐upward cycles generally resulted from carbonate production in response to an increase of accommodation during rising sea‐level. The carbonate production was, however, interrupted by frequent siliciclastic input from the adjacent emergent archipelago. The depositional cycles thus formed under the influence of both autogenetic changes, including sediment supply from the archipelago, and allogenic control of relative sea‐level rise in the carbonate factory. A low‐relief archipelago with an active tidal regime allowed the development of tide‐dominated siliciclastic and carbonate environments on the vast platform. Siliciclastic input to these tidal environments terminated when most of the archipelago became submerged due to a rapid rise in sea‐level. This study provides insights on how a vast Cambrian carbonate platform maintained synchronous sedimentation under a tidal regime, forming distinct cycles of mixed carbonates and siliciclastics as the system kept up with rising relative sea‐level during the early stage of basin development in the North China Platform.  相似文献   

14.
华北石炭-二叠纪层序地层格架及其特征   总被引:18,自引:3,他引:15  
华北石炭二叠纪沉积建造由两部分组成,下部为碳酸盐岩与硅质碎屑岩构成的含煤建造,上部为硅质碎屑岩红色建造。根据不整合面及其它识别层序界面的标志,该沉积建造可划分为5个沉积层序。DS、DS、DS层序属陆表海型层序,其底界面为Ⅰ型层序界面,层序内仅发育海侵体系域和高位体系域;DS层序为过渡型层序,由低位体系域、海侵体系域和高位体系域构成;DS层序为湖泊型层序,包括低水位体系域、水进体系域和高位体系域。盆地充填超层序(DS-DS)的发育受控于全球二级相对海平面变化,而沉积层序的发育则与区域性造山作用引起的三级海平面变化有关。  相似文献   

15.
Abstract Cangrejo and Bulkhead Shoals are areally extensive, Holocene biodetrital mud‐mounds in northern Belize. They encompass areas of 20 km2 and 35 km2 in distal and proximal positions, respectively, on a wide and shallow‐water, microtidal carbonate shelf where storms are the major process affecting sediment dynamics. Sediments at each mound are primarily biodetrital and comprise part of a eustatically forced, dominantly subtidal cycle with a recognizable deepening‐upward transgressive systems tract, condensed section and shallowing‐upward highstand systems tract. Antecedent topographic relief on Pleistocene limestone bedrock also provided marine accommodation space for deposition of sediments that are a maximum of 7·6 m thick at Cangrejo and 4·5 m thick at Bulkhead. Despite differences in energy levels and location, facies and internal sedimentological architectures of the mud‐mounds are similar. On top of Pleistocene limestone or buried soil developed on it are mangrove peat and overlying to laterally correlative shelly gravels. Deposition of these basal transgressive, premound facies tracked the rapid rate of sea‐level rise from about 6400–6500 years BP to 4500 years BP, and the thin basal sedimentation unit of the overlying mound‐core appears to be a condensed section. Following this, the thick and complex facies mosaic comprising mound‐cores represents highstand systems tract sediments deposited in the last ≈ 4500 years during slow and decelerating sea‐level rise. Within these sections, there is an early phase of progradationally offlapping catch‐up deposition and a later (and current) phase of aggradational keep‐up deposition. The mound‐cores comprise stacked storm‐deposited autogenic sedimentation units, the upper bounding surfaces of which are mostly eroded former sediment–water interfaces below which depositional textures have largely been overprinted by biogenic processes associated with Thalassia‐colonized surfaces. Vertical stacking of these units imparts a quasi‐cyclic architecture to the section that superficially mimics metre‐scale parasequences in ancient rocks. The locations of the mud‐mounds and the tidal channels transecting them have apparently been stable over the last 50 years. Characteristics that might distinguish these mud‐mounds and those mudbanks deposited in more restricted settings such as Florida Bay are their broad areal extent, high proportion of sand‐size sediment fractions and relatively abundant biotic particles derived from adjoining open shelf areas.  相似文献   

16.
The Palaeoproterozoic Frere Formation (ca 1.89 Gyr old) of the Earaheedy Basin, Western Australia, is a ca 600 m thick succession of iron formation and fine‐grained, clastic sedimentary rocks that accumulated on an unrimmed continental margin with oceanic upwelling. Lithofacies stacking patterns suggest that deposition occurred during a marine transgression punctuated by higher frequency relative sea‐level fluctuations that produced five parasequences. Decametre‐scale parasequences are defined by flooding surfaces overlain by either laminated magnetite or magnetite‐bearing, hummocky cross‐stratified sandstone that grades upward into interbedded hematite‐rich mudstone and trough cross‐stratified granular iron formation. Each aggradational cycle is interpreted to record progradation of intertidal and tidal channel sediments over shallow subtidal and storm‐generated deposits of the middle shelf. The presence of aeolian deposits, mud cracks and absence of coarse clastics indicate deposition along an arid coastline with significant wind‐blown sediment input. Iron formation in the Frere Formation, in contrast to most other Palaeoproterozoic examples, was deposited almost exclusively in peritidal environments. These other continental margin iron formations also reflect upwelling of anoxic, Fe‐rich sea water, but accumulated in the full spectrum of shelf environments. Dilution by fine‐grained, windblown terrigenous clastic sediment probably prevented the Frere iron formation from forming in deeper settings. Lithofacies associations and interpreted paragenetic pathways of Fe‐rich lithofacies further suggest precipitation in sea water with a prominent oxygen chemocline. Although essentially unmetamorphosed, the complex diagenetic history of the Frere Formation demonstrates that understanding the alteration of iron formation is a prerequisite for any investigation seeking to interpret ocean‐atmosphere evolution. Unlike studies that focus exclusively on their chemistry, an approach that also considers palaeoenvironment and oceanography, as well the effects of post‐depositional fluid flow and alteration, mitigates the potential for incorrectly interpreting geochemical data.  相似文献   

17.
Bulk magnetic susceptibility measurements on sedimentological samples from all geological periods have been used widely in the last two decades for correlations and as a proxy for sea‐level variations. This paper explores the link between magnetic susceptibility, depositional setting and environmental parameters. These environmental parameters include distal–proximal transects, microfacies successions and fourth‐order trends on different carbonate platform types (platform, ramp, carbonate mound or atoll) during different Devonian stages (Eifelian, Givetian and Frasnian). Average magnetic susceptibility values over a distal–proximal‐trending facies succession vary markedly with depositional setting. On carbonate platforms, average magnetic susceptibility generally increases towards the top of shallowing‐upward sequences. On a distal–proximal transect, average magnetic susceptibility is intermediate for the deepest facies, decreases for the reef belts and increases to a maximum in the back‐reef zone. In ramps and atolls, magnetic susceptibility trends clearly differ; average magnetic susceptibility generally decreases towards the top of shallowing‐upward sequences and is highest in the deepest facies. The strong relationship between magnetic susceptibility, facies and sequences implies a strong environmental influence. However, the different responses in the different platform types suggest that sea‐level changes leading to variation in detrital input is not the only parameter controlling average magnetic susceptibility values. Other primary or secondary processes also probably influenced magnetic mineral distribution. Primary processes such as carbonate production and water agitation during deposition are probably key factors. When carbonate production is high, the proportion of magnetic minerals is diluted and the magnetic susceptibility signal decreases. High water agitation during deposition will also selectively remove magnetic minerals and will lead to low average magnetic susceptibility values. These parameters explain the lowest values observed on the reef platform, inner ramp and atoll crown, which are all in areas characterized by higher carbonate production and greater water agitation during deposition. The lowest values observed in the lagoon inside the atoll crown can be related to detrital isolation by the atoll crown. However, other parameters such as biogenic magnetite production or diagenesis can also influence the magnetic signal. Diagenesis can change magnetism by creating or destroying magnetic minerals. However, the influence of diagenesis probably is linked strongly to the primary facies (permeability, amount of clay or organic matter) and probably enhanced the primary signal. The complexity of the signal gives rise to correlation problems between different depositional settings. Thus, while magnetic susceptibility has the potential to be an important correlation tool, the results of this investigation indicate that it cannot be used without consideration of sedimentary processes and depositional environments and without strong biostratigraphical control.  相似文献   

18.
The Late Cenomanian–Mid Turonian succession in central Spain is composed of siliciclastic and carbonate rocks deposited in a variety of coastal and marine shelf environments (alluvial plain–estuarine, lagoon, shoreface, offshore‐hemipelagic and carbonate ramp). Three depositional sequences (third order) are recognized: the Atienza, Patones and El Molar sequences. The Patones sequence contains five fourth‐order parasequence sets, while a single parasequence set is recognized in the Atienza and El Molar sequences. Systems tracts can be recognized both in the sequences and parasequence sets. The lowstand systems tracts (only recognized for Atienza and Patones sequences) are related to erosion and sequence boundary formation. Transgressive systems tracts are related to marine transgression and shoreface retreat. The highstand systems tracts are related to shoreface extension and progradation, and to carbonate production and ramp progradation. Sequences are bounded by erosion or emergence surfaces, whose locations are supported by mineralogical analyses and suggest source area reactivation probably due to a fall in relative sea‐level. Transgressive surfaces are subordinate erosion and/or omission surfaces with a landward facies shift, interpreted as parasequence set boundaries. The co‐existence of siliciclastic and carbonate sediments and environments occurred as facies mixing or as distinct facies belts along the basin. Mixed facies of coastal areas are composed of detrital quartz and clays derived from the hinterland, and dolomite probably derived from bioclastic material. Siliciclastic flux to coastal areas is highly variable, the maximum flux postdates relative sea‐level falls. Carbonate production in these areas may be constant, but the final content is a function of changing inputs in terrigenous sediments and carbonate content diminishes through a dilution effect. Carbonate ramps were detached from the coastal system and separated by a fringe of offshore, fine‐grained muds and silts as distinct facies belts. The growth of carbonate ramp deposits was related to the highstand systems tracts of the fourth‐order parasequence sets. During the growth of these ramps, some sediment starvation occurred basinwards. Progradation and retrogradation of the different belts occur simultaneously, suggesting a sea‐level control on sedimentation. In the study area, the co‐existence of carbonate and siliciclastic facies belts depended on the superimposition of different orders of relative sea‐level cycles, and occurred mainly when the second‐order, third‐order and fourth‐order cycles showed highstand conditions.  相似文献   

19.
高分辨露头层序地层学的研究基础──准层序的识别   总被引:10,自引:2,他引:10  
以塔里木盆地西南缘下石炭统和什拉甫组为例,将微相分析及古生态分析应用于准层序研究之中。在此基础之上,分析沉积层序及其内部各体系域、各种界面的沉积特征。同时,根据准层序垂直叠加的特征来寻找沉积层序内部更高级次的旋回,以达到提高沉积层序的分辨率之目的,恢复该地区维宪期多级次古海平面变化特征。强调准层序分析是高分辨露头层序地层学的研究基础。  相似文献   

20.
The Murray Supergroup records temperate‐water carbonate deposition within a shallow, mesotrophic, Oligo‐Miocene inland sea protected from high‐energy waves and swells of the open ocean by a granitic archipelago at its southern margin. Rocks are very well preserved and exposed in nearly continuous outcrop along the River Murray in South Australia. Most facies are rich in carbonate silt, contain a background assemblage of gastropods (especially turritellids) and infaunal bivalves, and are packaged on a decimetre‐scale defined by firmground and hardground omission surfaces. Bioturbation is pervasive and overprinted, resulting in rare preservation of physical sedimentary structures. Facies are grouped into four associations (large foraminiferan–bryozoan, echinoid–bryozoan, mollusc and clay facies) interpreted to represent shallow‐water (<50 m) deposition under progressively higher trophic resource levels (from low mesotrophy to eutrophy), and restricted marine conditions from relatively offshore to nearshore regions. A large‐scale shift from high‐ to low‐mesotrophic conditions within lower Miocene strata reflects a change in climate from wet to seasonally dry conditions and highlights the influence terrestrially derived nutrients had upon this shallow, land‐locked sea. Overall, low trophic resource levels during periods of seasonally dry climate resulted in a deepening of the euphotic zone, a widespread proliferation of foraminiferan photozoan fauna and a relatively high carbonate productivity. Inshore, heterozoan facies became progressively muddier and restricted towards the shoreline. In contrast, periods of wet climate led to rising trophic resource levels, resulting in a shallowing of the euphotic zone, a decrease in epifaunal and seagrass cover and widespread development of a mostly heterozoan biota dominated by infaunal echinoids. Rates of carbonate production and accumulation were relatively low. The Murray Basin is best described as an epeiric ramp. Wide facies belts developed in a shallow sea on a low‐angled slope reaching many hundreds of kilometres in length. Grainy shoal and back‐barrier facies were absent. Internally generated waves impinged the sea floor in offshore regions and, because of friction along a wide and shallow sea floor, created a low‐energy expanse of waters across the proximal ramp. Storms were the dominating depositional process capable of disrupting the entire sea floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号