首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
中国西北地区季节性积雪的性质与结构   总被引:17,自引:2,他引:17  
中国内陆地区积雪分布十分广泛。根据西北地区大陆性气候条件下形成的“干寒型”积雪的特征 ,对中国天山和阿尔泰山山区的季节性积雪进行了观测与分析。结果表明 ,该区最大积雪深度达 15 2cm(1997) ,积雪层一般由新雪 (或表层凝结霜 )、细粒雪、中粒雪、粗粒雪、松散深霜、聚合深霜层和薄融冻冰层组成。与“湿暖型”积雪相比 ,“干寒型”积雪的性质具有密度小 (新雪的最小密度为 0 .0 4 g/cm3 )、含水率少 (隆冬期 <1% )、温度梯度大(最大可达 - 0 .5 2℃ /cm)、深霜发育层厚等特点 ,并且变质作用以热量交换和雪层压力变质作用为主。据中国科学院天山积雪与雪崩研究站 (43°2 0N ,84°2 9E ,海拔 1776m)的观测资料 ,中国内陆干旱区冬季积雪期雪面太阳辐射通量以负平衡为主 ,新雪雪面反射率达 96 % ,短波辐射在干寒型积雪中的穿透厚度达 2 8cm。春季积雪消融期 ,深霜层厚度可占整个积雪层厚度的 80 %。随着气温的升高 ,雪粒间的键链首先融化 ,使积雪变得松散 ,内聚力、抗压、抗拉和抗剪强度降低 ,积雪含水率也随之增大 ,整个积雪层趋于接近 0℃的等温现象 ,因此 ,春季天山、阿尔泰山等山地全层性湿雪崩频繁发生  相似文献   

2.
根据位于巩乃斯河谷的天山积雪雪崩研究站近30年来的年最大雪深、月平均气温、月降水量观测记录,用平均差值法、最小二乘法、自回归滑动平均法检验了天山西部中山带积雪、冷季降水、冷季平均气温的变化趋势,结果表明,天山西部中山带积雪呈增加趋势,近30年来年平均增加1.43%,与青藏高原、南极大陆及格陵兰冰盖表面积雪积累增加相一致。天山西部中山带冷季气温和降水的变化趋势也是增加的,其中冷季降水平年平均增加0.12%,而冷季气温升高了0.8℃,积雪与冷季气温之间存在着弱的负相关关系,而与冷季降水呈显著的正相关关系。积雪的增加主要是因为气候变暖引起的冷季降水的增加对积雪增加的贡献大于由于冷季气温升高而造成积雪减少的贡献的结果。  相似文献   

3.
张丽旭  魏文寿 《山地学报》2001,19(5):403-407
根据位于巩乃斯河谷的天山积雪雪崩研究站近30a来的年最大雪深、月平均气温、月降水量观测记录,用平均差值法、最小二乘法、自回归滑动平均法检验了天山西部中山带积雪、冷季降水、冷季平均气温的变化趋势,结果表明,天山西部中山带积雪呈增加趋势,近30a来年平均增加1.43%,与青藏高原、南极大陆及格陵兰冰盖表面积雪积累增加相一致。天山西部中山带冷季气温和降水的变化趋势也是增加的,其中冷季降水平年平均增加0.12%,而冷季气温升高了0.8℃,积雪与冷季气温之间存在着弱的负相关关系,而与冷季降水呈显著的正相关关系。积雪的增加主要是因为气候变暖引起的冷季降水的增加对积雪增加的贡献大于由于冷季气温升高而造成积雪减少的贡献的结果。  相似文献   

4.
季节性积雪区不同遮挡条件下深霜发育比较   总被引:1,自引:0,他引:1  
以中国科学院天山积雪雪崩研究站为研究区,在2009~2010年冬季观测期利用体视显微镜(XTZ-E)及拍照设备和雪特性分析仪(Snow Fork),对3种遮挡条件的开阔地(0遮挡)、树缘(50%遮挡)和树下(90%遮挡)的积雪深霜进行连续观测,比较和分析西北季节性积雪区不同遮挡条件下的深霜发育特征。研究表明:1)深霜发育主要受温度制约,其次是温度梯度。由不同遮挡条件引起积雪累积和太阳辐射差异而导致雪深不同,从而形成的温度环境差异,是深霜发育差异的根本原因。2)深霜发育厚度与雪深呈正相关关系,有开阔地(0遮挡)>树缘(50%遮挡)>树下(90%遮挡),融雪期深霜的消减速率为树下>开阔地>树缘。3)深霜冰晶粒径呈先减小(稳定累积期-过渡期)再增大(-融雪期)的变化,积雪稳定累积期后,深霜粒径开阔地>树缘>树下。4)2009~2010年冬季雪深大,因而圆角深霜(DHxr)和圆角刻面冰晶(FCxr)在深霜中发育最多,二者共占70%~80%。开阔地易发育杯型深霜(DHcp),树缘和树下则易发育柱状条纹深霜(DHla)、棱柱状深霜(DHpr)和刻面冰晶(FCso)。深霜中胶结态冰晶约占10%~30%,其比例在开阔地深霜中递减,而在树缘和树下处递增。  相似文献   

5.
基于2001—2018年MOD10A2积雪产品和MOD11A2陆地表面温度数据,采用精细分区统计和相关性分析方法,研究了中国天山不同海拔高度上积雪垂直分布特征及其与地表温度(Land surface temperature,LST)的响应关系。结果表明:中国天山积雪覆盖率(Snow cover percentage,SCP)随海拔的变化呈现春、夏、秋、冬4种不同的季节变化模式。SCP在海拔4200 m以下呈秋冬季增加、春夏季减少态势,在海拔4200 m以上呈秋冬季减少、春夏季增加态势。除冬季外,春、夏、秋3个季节的SCP与LST均具有显著强负相关性。  相似文献   

6.
天山巩乃斯河谷融雪期积雪物质平衡初步研究   总被引:1,自引:1,他引:1  
本文利用1994年3月中,下旬在中间科学院天山积雪雪崩研究站(以下简称积雪站)野外观测到的部分资料,对融雪期季节性积雪的物质平衡进行初步分析,同时利用物质平衡方程对积雪日融出量进行计算。  相似文献   

7.
基于MODIS数据中国天山积雪面积时空变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于2011-2015年MOD10A2积雪产品和气象数据,通过几何校正、去云预处理,应用归一化差分积雪指数算法等获取中国境内天山山区积雪覆盖面积数据,分析了积雪面积的时空变化特征及与气温降水的关系。结果表明:(1)年内积雪面积呈单峰变化,9月开始积累,次年1月达峰值,3月气温回暖消融加速,至7月最小。春秋季波动较大但没有明显的增减趋势,夏季积雪面积最小,冬季最大且呈减小趋势。(2)2001-2015年积雪覆盖面积整体上呈减少趋势,积雪覆盖率最大值的波动比最小值的波动更加剧烈。(3)积雪覆盖率随着海拔升高而增大,海拔<1 500 m区域积雪覆盖率低于10%,海拔>4 500 m以上区域平均可达70%,为常年稳定积雪区。积雪覆盖率在西北坡最高,南坡最低。(4)年均气温升高是积雪覆盖面积减小的主因,年积雪覆盖面积变化与年降水量变化保持一致的下降趋势。  相似文献   

8.
近一千年来贺兰山积雪和气候变化   总被引:3,自引:2,他引:1  
通过对历史文献中关于贺兰山积雪变化记录的研究,以及其他反映贺兰山气候变化的环境信息的分析,确认贺兰山地区西夏、元明时期为冷凉气候,积雪特征反映的气候变化与中国西部气候变化相一致。通过贺兰山与天山、太白山、点苍山积雪变化的比较,发现其时间变化过程和演化规律具有一致性,进而对12世纪寒冷期永久积雪下限进行推测。根据对一千年来贺兰山年日最低气温≤0℃日数的计算,认为12世纪寒冷期年平均气温较现代约低1.52℃,推算当时贺兰山永久积雪下限为海拔34003500m;以17世纪中叶为代表的小冰期年平均气温较现代约低11.5℃,推算当时贺兰山永久积雪下限为海拔35003600m。  相似文献   

9.
准噶尔盆地积雪储量的遥感反演及变化特征分析   总被引:2,自引:0,他引:2  
利用被动微波遥感SSM/I亮温数据反演的积雪深度,采用积雪密度经验算法,计算了准噶尔盆地1987-2008年逐日雪储量及其分布状况。结果表明:(1)准噶尔盆地年最大雪储量22 a平均为4.53×109m3,最大年份为1994/1995年冬季,雪储量达7.13×109m3,最小年份为1995/1996年冬季,雪储量为2.74×109m3。(2)准噶尔盆地冬季雪储量空间分布不均匀,雪储量较大的区域分布在阿尔泰山南麓和天山北麓,且由盆地边缘向中心逐渐减少,两个明显的低值区分别位于盆地西部克拉玛依地区附近和盆地东部北沙窝附近。(3)季节内变化特征表现为:11月上旬至2月中旬为雪储量缓慢累积的过程,3月上旬雪储量达到峰值,持续时间很短(约15 d),3月中旬至4月下旬雪储量迅速消退,季节内变化主要受降雪和气温年内分配的影响。(4)1987-2008年准噶尔盆地雪储量的年际变化较大,65%的区域呈现线性增加趋势,但不显著。(5)冬季降水量和气温是影响雪储量变化的主要因素,雪储量与冬季降水量呈显著正相关,与气温呈显著负相关关系。  相似文献   

10.
南极长城站区稳定积雪期始于4月中至6月初,8月中至10月达最大深度。1988年沿海地带一般积雪深度为0.6~0.8m,低洼处及建筑物附近可达1.2~1.6m,甚至超过1.8m;潮汐带雪盖下部温度受海冰影响普遍偏低;11月底至来年1月初的消融过程中,积雪表层常常处于相变区,雪层底部温度比冰点低0.02℃,融水下渗形成雪盖下部潜流;积雪相态及其温度变化与大气-雪感热通量的变化过程相对应,大气-雪感热交换是积雪消融的重要因子之一。  相似文献   

11.
用1978─1987年多通过微波扫描辐射计(SMMR)所获取的地表微波亮温及亮温-雪深区域订正反演算式,计算了100°E以西中国境内年与季的平均雪量和雪盖率,以及它们的年际变化,阐明了积雪时空的变化。所取得的高原及高山低山积雪监测结果,为当地积雪资源的开发利用提供了可靠依据。  相似文献   

12.
积雪是冰冻圈中较为活跃的因子,对气候环境变化敏感,其变化影响着全球气候和水文的变化。积雪覆盖日数(SCD)、降雪开始时间(SCOD)和融雪开始时间(SCMD)是影响地表物质和能量平衡的主要因素。使用MODIS无云积雪产品提取了叶尔羌河流域2002年7月-2018年6月逐日积雪覆盖率(SCP),基于像元计算了SCD、SCOD和SCMD,系统地分析了其空间分布与变化特征,并探讨了其变化的原因及积雪面积的异常变化与ENSO的联系。结果表明:(1)研究时段内,流域的积雪覆盖面积呈微弱减少趋势,与气温呈显著负相关,与降水呈显著正相关;2002-2018年,SCP随海拔的升高呈明显的线性增加趋势(R2=0.92、P<0.01));各海拔高度带最大SCP出现的月份大致随海拔的上升往后推迟,最小SCP出现月份无显著变化(集中在8月),海拔4000 m以下,春季的SCP小于冬季,海拔4000 m以上,春季的SCP大于冬季。(2)SCD、SCOD和SCMD有明显的海拔梯度,在流域内,从东北至西南,呈现出SCD增加,SCOD提前,SCMD推迟的特征;变化趋势上,流域91.9%的区域SCD表现为减少,65.6%的区域SCOD有往后推迟的趋势,77.4%的区域SCMD表现出提前的趋势。(3)2006、2008年和2017年积雪覆盖面积异常偏大,而在2010年则异常偏小,其原因可能是ENSO影响了积雪的变化。(4)以喀喇昆仑为主的高海拔地区,包括帕米尔高原东部的部分地区,其SCD、SCOD和SCMD分别表现出增加、提前和推迟的趋势,这种变化与其春秋温度的持续走低以及降水量的增加有关。  相似文献   

13.
By using the observational snow data of more than 700 weather stations,the interannual temporal and spatial characteristics of seasonal snow cover in China were analyzed.The results show that northern Xinjiang,northeastern China-Inner Mongolia,and the southwestern and southern portions of Tibetan Plateau are three regions in China with high seasonal snow cover and also an interannual anomaly of snow cover.According to the trend of both the snow depth and snow cover days,there are three changing patterns for the seasonal snow cover:The first type is that both snow depth and snow cover days simultaneously increase or decrease;this includes northern Xinjiang,middle and eastern Inner Mongolia,and so on.The second is that snow depth increases but snow cover days decrease;this type mainly locates in the eastern parts of the northeastern plain of China and the upper reaches of the Yangtze River.The last type is that snow depth decreases but snow cover days increase at the same time such as that in middle parts of Tibetan Plateau.Snow cover in China appears to have been having a slow increasing trend during the last 40 years.On the decadal scale,snow depth and snow cover days slightly increased in the 1960s and then decreased in the 1970s;they again turn to increasing in the 1980s and persist into 1990s.  相似文献   

14.
The daily snow cover data from 232 meteorological stations to the west of 105°E in China for the period 1951–2004 were used to classify the snow cover and analyze decadal variations of snow cover types in western China, and comparison was made between the observational data and those retrieved from passive microwave remote sensing data (SMMR and SSM/I) in 1980–2004. The results show that stable snow-covered areas included northern Xinjiang, the Tianshan Mountains, and the eastern Tibetan Plateau with more than 60 snow cover days; no snow cover was found in the center of the southern Xinjiang Basin, the Sichuan Basin, and southern Yunnan. In addition to the above-mentioned, there were unstable snow-covered areas in western China. Furthermore, the snow cover types in northern Xinjiang, the Tianshan Mountains, the Hexi Corridor, and the vast areas from Chengdu to Kunming were unchanged. In the 1980s, the south-north dividing line between the major snow-covered area and snow-free area advanced to its most southern position. The snow cover days calculated from satellite remote sensing were generally longer than those from observational data in western China, mainly in the higher-altitude mountains, the Hexi Corridor, and the western Sichuan Plateau.  相似文献   

15.
积雪覆盖度对沙尘暴的影响分析   总被引:8,自引:2,他引:6  
李彰俊  郝璐  李兴华 《中国沙漠》2008,28(2):338-343
采用遥感监测内蒙古中西部地区积雪覆盖度数据以及地面气象观测站1961—2005年沙尘天气观测资料,以沙尘暴、扬沙发生日数为定量指标,分析了内蒙古中西部地区积雪覆盖度与沙尘暴、扬沙发生日数的关系。研究结果表明,在内蒙古中西部地区,积雪覆盖度与沙尘天气的发生有负相关关系,但地表积雪覆盖对沙尘暴的抑制作用要小于对扬沙的抑制作用,这种负相关关系在1—3月较11—12月更为显著。积雪覆盖度决定了积雪的影响范围,而积雪日数则决定了这种影响持续的时间,综合考虑这两种因素,构建了积雪指数用以反映积雪的这种空间和时间的共同作用。积雪指数能较好地反映积雪日数与积雪覆盖度对沙尘天气的综合作用。  相似文献   

16.
LiJuan M  DaHe Qin 《寒旱区科学》2012,4(5):0384-0393
Using observed snow cover data from Chinese meteorological stations, this study indicated that annual mean snow depth, Snow Water Equivalent (SWE), and snow density during 1957–2009 were 0.49 cm, 0.7 mm, and 0.14 g/cm3 over China as a whole, respectively. On average, they were all the smallest in the Qinghai-Tibetan Plateau (QTP), and were greater in northwestern China (NW). Spatially, the regions with greater annual mean snow depth and SWE were located in northeastern China including eastern Inner Mongolia (NE), northern Xinjiang municipality, and a small fraction of southwestern QTP. Annual mean snow density was below 0.14 g/cm3 in most of China, and was higher in the QTP, NE, and NW. The trend analyses revealed that both annual mean snow depth and SWE presented increasing trends in NE, NW, the QTP, and China as a whole during 1957–2009. Although the trend in China as a whole was not significant, the amplitude of variation became increasingly greater in the second half of the 20th century. Spatially, the statistically significant (95%-level) positive trends for annual mean snow depth were located in western and northern NE, northwestern Xinjiang municipality, and northeastern QTP. The distribution of positive and negative trends for annual mean SWE were similar to that of snow depth in position, but not in range. The range with positive trends of SWE was not as large as that of snow depth, but the range with negative trends was larger.  相似文献   

17.
青藏高原东南部海拔高,地形复杂,云量大,准确掌握该地区的积雪分布特征对于积雪灾害防治非常重要。论文以2013—2019年冬季积雪积累期云量符合要求的35景高分一号(GF-1)影像为基础,将全色影像和多光谱影像融合为2 m分辨率影像,通过目视解译获取了研究区积雪的空间分布特征,结合改进后的30 m分辨率SRTM DEM,探讨了地形对积雪分布的影响。结果表明:积雪像元在研究区范围内占比为33.1%。积雪的垂直分布特征明显:积雪在高程带4000~5000 m(高海拔)处分布较集中,积雪面积占比为18.1%;在高程带0~2000 m、2000~3000 m和6000~7000 m处积雪面积占比均不到0.1%。积雪在北坡、东北坡的分布比例较高,均为15%以上;在南坡、西坡、西南坡、东南坡分布比例较低,均为10%左右。将基于GF-1影像获取的积雪分布分别与同日获取的根据MODIS V6积雪产品计算的积雪比例(MODIS FSC)和积雪分布的对比表明,64.4%的MODIS FSC像元绝对误差不超过10%,MODIS积雪分布产品对含雪像元的漏分率和误分率平均为33.8%和32.7%,说明MODIS积雪产品在研究区的精度还具有较高的不确定性,其对低覆盖积雪反演的精度较差。这表明利用MODIS积雪产品研究青藏高原东南部积雪的时空变化特征时还需要对其积雪反演算法进行改进,同时亟需加强地面观测和基于多源遥感数据的积雪研究。研究结果可为青藏高原东南部雪冰灾害防治提供支撑。  相似文献   

18.
中国西部积雪变化特征   总被引:52,自引:3,他引:52  
李培基 《地理学报》1993,48(6):505-515
综合中国西部175个地面气象台站1957—1987年逐日积雪深度、密度和月积雪日数资料,1978年-1987年SMMR周积雪深度资料,1973—1987年NOAA周积雪面积资料,以及50余幅DMSP影像图,本文阐述中国西部积雪空间分布、季节变化及年际波动特征,并对中国西部积雪大尺度气候效应和青藏高原第四纪冰期问题作了初步讨论。  相似文献   

19.
欧亚春季雪盖对印度洋偶极子的影响   总被引:2,自引:2,他引:0  
文章研究了欧亚春季雪盖对印度洋偶极子的影响。研究发现,欧亚春季雪盖与印度洋偶极子关系密切,两者之间存在显著的反相关关系。欧亚春季雪盖异常导致夏季赤道印度洋垂直纬向环流以及印度洋和欧亚大陆之间的垂直经向环流发生异常,是欧亚春季雪盖与印度洋偶极子存在反相关关系的主要原因。欧亚春季雪盖异常可能是印度洋偶极子发生的一个重要的外在诱发因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号