首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sergi Formation (Upper Jurassic) represents the main hydrocarbon reservoir of the Recôncavo Basin, Brazil. The basal vertical facies succession of the Sergi Formation comprises reservoirs formed by a complex fluvio–aeolian–lacustrine interaction. Facies architecture and detailed petrophysical analysis of these reservoirs have enhanced the understanding of heterogeneity at a variety of scales and has allowed the development of predictive models that describes the range of styles of mixed fluvial–aeolian reservoirs. At megascopic scale, the reservoirs are predominantly composed of sand bodies deposited by fluvial channel and aeolian facies associations. Regional flooding surfaces and sequence boundaries are their main flow barriers. The regional flooding surfaces are composed of fine-grained sediments deposited by lacustrine facies associations and the sequence boundaries act as flow barriers due to mechanically infiltrated clays. Based on its geometrical relations, reservoirs linked to fluvial–aeolian–lacustrine interaction formed two types of reservoirs at macroscopic scale: (i) with good lateral continuity of aeolian packages and relatively simple stratigraphic correlation and (ii) of highly compartmentalized aeolian packages with complex stratigraphic correlation and truncation by fluvial deposits. Mesoscopic heterogeneity reflects lithofacies, sedimentary structures, and lamina-scale variability within aeolian and fluvial facies associations.  相似文献   

2.
Delta-front sand bodies with large remaining hydrocarbon reserves are widespread in the Upper Cretaceous Yaojia Formation in the Longxi area of the Western Slope, Songliao Basin, China. High-resolution sequence stratigraphy and sedimentology are performed based on core observations, well logs, and seismic profile interpretations. An evaluation of the reservoir quality of the Yaojia Formation is critical for further petroleum exploration and development. The Yaojia Formation is interpreted as a third-order sequence, comprising a transgressive systems tract (TST) and a regressive systems tract (RST), which spans 4.5 Myr during the Late Cretaceous. Within this third-order sequence, nine fourth-order sequences (FS9–FS1) are recognized. The average duration of a fourth-order sequence is approximately 0.5 Myr. The TST (FS9–FS5) mostly comprises subaqueous distributary channel fills, mouth bars, and distal bars, which pass upward into shallow-lake facies of the TST top (FS5). The RST (FS4–FS1) mainly contains subaqueous distributary-channel and interdistributary-bay deposits. Based on thin-sections, X-ray diffraction (XRD), scanning electron microscope (SEM) and high-pressure mercury-intrusion (HPMI) analyses, a petrographic study is conducted to explore the impact of the sedimentary cyclicity and facies changes on reservoir quality. The Yaojia sandstones are mainly composed of lithic arkoses and feldspathic litharenites. The sandstone cements mostly include calcite, illite, chlorite, and secondary quartz, occurring as grain coating or filling pores. The Yaojia sandstones have average core plug porosity of 18.55% and permeability of 100.77 × 10−3 μm2, which results from abundant intergranular pores and dissolved pores with good connectivity. Due to the relatively coarser sediments and abundant dissolved pores in the feldspars, the FS4–FS1 sandstones have better reservoir quality than the FS9–FS5 sandstones, developing relatively higher porosity and permeability, especially the FS1 and FS2 sandstones. The source–reservoir–cap-rock assemblages were formed with the adjoining semi-deep lake mudstones that were developed in the Nenjiang and Qingshankou Formations. This study reveals the deposition and distribution of the delta-front sand bodies of the Yaojia Formation within a sequence stratigraphic framework as well as the factors controlling the Yaojia sandstones reservoir quality. The research is of great significance for the further exploration of the Yaojia Formation in the Longxi area, as well as in other similar lacustrine contexts.  相似文献   

3.
The Kaimiro Formation is an early to middle Eocene, NE-SW trending reservoir fairway in Taranaki Basin, and comprises a range of coastal plain through to shallow marine facies. A time of regional transgression is observed across the Paleocene–Eocene transition, which is linked to a general global warming trend and to regional thermal relaxation-related subsidence in New Zealand. The earliest Eocene transgressive deposits pass upwards into a series of cyclically stacked packages, interpreted as 3rd and 4th order sequences. Maximum regression occurred within the early Eocene and was followed by punctuated retrogradational stacking patterns associated with shoreline retreat and subsequent regional transgression in the middle Eocene.The Kaimiro Formation is considered a good reservoir target along most of the reservoir fairway, which can largely be attributed to a consistently quartz-rich, lithic-poor composition and reasonably coarse sand grain size. Correlations demonstrate that within the early Eocene the main reservoir facies are channel-fill sandstones overlying candidate sequence boundaries in paleoenvironmentally landward (proximal) settings, and upper shoreface/shoreline sandstones in relatively basinward (distal) settings. Middle Eocene reservoir facies are not represented in distal wells due to overall transgression at this time, yet they form a significant target in more proximal well locations, particularly on the Taranaki Peninsula.Depositional facies is one of the principal controls on sandstone reservoir quality. However, while reservoir facies have been proven along the length of the reservoir fairway, it is evident that diagenesis has significantly impacted sandstone quality. Relatively poor reservoir properties are predicted for deeply buried parts of the basin (maximum burial >4.5 km) due to severe compaction and relatively abundant authigenic quartz and illite. In contrast, good reservoir properties are locally represented in reservoir facies where present-day burial depths are <4 km due to less severe compaction, cementation and illitisation. Within these beds (<4 km) the presence of locally occurring authigenic grain-coating chlorite (shallow marine facies) and/or well-developed secondary porosity are both favourable to reservoir quality, while pervasive kaolinite and/or carbonate are both detrimental to reservoir quality.These results illustrate how an interdisciplinary approach to regional reservoir characterisation are used to help reduce risk during prospect evaluation. Assessment of both reservoir distribution and quality is necessary and can be undertaken through integrated studies of facies, sequence stratigraphy, burial modelling and petrography.  相似文献   

4.
如何综合利用钻井、地质、测井、地震资料进行碳酸盐岩风化壳储层评价是鄂尔多斯盆地下古生界天然气勘探中亟须解决的问题。利用测井资料采用选代拟合的方法进行岩石物性分析,用正反演模型、合成记录及特征相关法在“三高”和波阻抗反演剖面上进行精细的层位标定;根据对碳酸盐岩风化壳沉积特征分析,提出了求取风化壳泥质含量的方法并应用此结果在BCI剖面上消除了风化壳泥质合量的变化对速度、波阻抗的影响,实现风化壳储层空间展布和厚度的准确预测;采用AVO岩性反演、波形特征分类和人工神经网络模式识别方法进行了储层特征的综合评价,提出了下一步的勘探目标。  相似文献   

5.
Bitumen reservoirs dominated by inclined heterolithic stratification (IHS) formed in large point bars of the Aptian (Lower Cretaceous) McMurray Formation in the northwestern part of the Corner oil sand lease (Alberta, Canada) were investigated to establish their value. Hybrid production technologies were applied to thin pay, typified by homogeneous reservoir sand units thicker than 5 m at the base overlain by IHS (so-called ‘thin pay’), as well as IHS-dominated reservoirs in which the IHS extends down to the base of the reservoir. High-resolution seismic data and well data (core, dipmeter, HMI) were used to map four facies associations, comprising a total of 16 sedimentary facies, as well as various fluid contacts to assist in reservoir characterization and risk assessment. The conceptual depositional model was based on the analysis of the migration and re-orientation history of the IHS-dominated point bars reflecting lateral accretion, downstream migration, rotation and relocation of the bars. Multiple reactivation events, which control the heterolithic nature and reservoir quality of the deposits, create developable “pools”.Seven electrofacies (with generally increasing mud content) were defined and used as input to construct vertical proportion curves that relate the electrofacies distribution to geomodel statistics in the main reservoir zone. At the electrofacies scale, numerical effective porosity-permeability models were created using micromodeling and minimodeling concepts. The geometrical shape of the electrofacies in the geomodel was investigated using non-stationary Truncated Gaussian (TG) facies simulation to enforce the stacking patterns. Each geomodel area was characterized using one variogram to efficiently compute the horizontal and vertical variogram ranges and average azimuths. Sequential Gaussian simulation (SGS) was used to map the distribution of key petrophysical parameters such as effective porosity, effective water saturation and Vshale. Empirically derived saturation versus elevation profiles for each electrofacies were included in the modeling. The distributions from the micro- and mini-modeling were introduced using probability field (P-field) simulation. To investigate the amount of connected resources (the degree of connectivity of good sand as well as IHS) were extractable flow simulation studies were performed at the pad scale. In preparation for reservoir simulation, connectivity calculations within the local pool geomodel realizations were tailored for the reservoir heterogeneities (i.e., IHS) that are expected to have a major impact on the specific thermal and gravity drainage extraction processes. The geomodel realizations were ranked by expected pseudo-dynamic behaviour with connected exploitable pay as a critical parameter.  相似文献   

6.
7.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   

8.
Reservoir characterization based on geostatistics method requires well constraints (e.g. seismic data with high quality) to predict inter-well reservoir quality that is conformed to geological laws. Nevertheless, the resolution of seismic data in multiple basins or reservoirs is not high enough to recognize the distribution of different types of sand bodies. In this paper, we propose a new method to improve the precision of reservoir characterization: reservoir modeling with the constrains of sedimentary process model and sedimentary microfacies. We employed stratigraphic forward modeling, a process-based method, to constrain the reservoir modeling in one oil-bearing interval of the third member of Eocene Shahejie Formation in J-Oilfield of Liaoxi Sag, Bohai Bay Basin.We divide reservoir modeling into two orders using different types of constrains. In the first order, we use the simulated shale model from stratigraphic forward model that is corrected by wells data as a 3D trend volume to constrain the reservoir sand-shale modeling. In the second order, different types of sedimentary microfacies in the sandy part of the model are further recognized and simulated within the constrains of sedimentary microfacies maps. Consequently, the porosity, permeability and oil saturation are modeled under the control of precise sedimentary microfacies model. The high-resolution reservoir model shows that the porosity, permeability and oil saturation of distributary channel is generally above 20%, 10md and 50%, respectively, which are much higher than that of other types of sedimentary microfacies. It can be concluded that comparing to other types of sedimentary facies, distributary channel has better physical properties and more oil accumulation in the fan-delta front and therefore is the most favorable zones for petroleum development in the research area.  相似文献   

9.
The Yuanba Gas Field is the second largest natural gas reservoir in the Sichuan Basin, southwest China. The vast majority of the natural gas reserve is from the Permian Changhsingian reef complexes and Lower Triassic Feixianguan oolitic shoal complexes. To better understand this reservoir system, this study characterizes geological and geophysical properties, spatial and temporal distribution of the oolitic shoal complexes and factors that control the oolitic shoals character for the Lower Triassic Feixianguan Formation in the Yuanba Gas Field. Facies analysis, well-seismic tie, well logs, seismic character, impedance inversion, and root mean square (RMS) seismic attributes distinguish two oolitic shoal complex facies – FA-A and FA-B that occur in the study area. FA-A, located in the middle of oolitic shoal complex, is composed of well-sorted ooids with rounded shape. This facies is interpreted to have been deposited in shallow water with relatively high energy. In contrast, FA-B is located in flanks of the oolitic shoal complex, and consists of poorly sorted grains with various shape (rounded, subrounded and subangular). The oolitic shoal complexes were mainly deposited along the platform margin. From the early Fei 2 Member period to the late Fei 2 Member period, the oolitic shoals complexes on the platform margin gradually migrated from the southwest to the northeast with an extent ranging from less than 100 km2–150 km2 in the Yuanba Gas Field. The migration of oolitic shoals coincided with the development of a series of progradational clinoforms, suggesting that progradational clinoforms caused by sea-level fall maybe are the main reason that lead to the migration of oolitic shoals. Finally, this study provide an integrated method for the researchers to characterize oolitic shoal complexes by using well cores, logs, seismic reflections, impedance inversion, and seismic attribute in other basins of the world.  相似文献   

10.
11.
12.
The complex burial and diagenetic histories of the Jurassic Fulmar and Triassic Skagerrak sandstones in the UK Central North Sea present significant challenges with regard to reservoir quality and rock property prediction. Commercial reservoir quality is retained despite deep burial and associated high temperatures and pressures. Shallow marine Fulmar sands are normally compacted (mean IGV = 26 ± 3%) yet have porosities of 21–33%. Porosity was preserved through inhibition of quartz cementation by clay and microquartz coatings, and enhanced by dissolution of framework grains (∼5%). Skagerrak fluvial sands are more compacted (mean IGV = 23 ± 2%), exhibit minor feldspar dissolution (<1%), and have porosities of 16–27%. Quartz cement averages only 2 ± 1.5% due to robust chlorite coats that cover 80% (±13%) of quartz surfaces.We modeled reservoir quality evolution using the forward diagenetic model Touchstone, which simulates porosity loss due to compaction and quartz cementation. Quantitative petrographic analyses and burial history data were used to calibrate Touchstone model parameters. The results were applied to deeper prospects for pre-drill prediction of porosity and permeability. In parallel, petrophysical data were used to characterize the elastic properties of the sandstones to provide a basis for quantitative seismic forward modeling. Experimental data and core-calibrated petrophysical results, reflecting variable in situ fluids and saturations, were used to build an elastic properties model. The model is robust and was used to generate fluid-filled sandstone properties, incorporating Touchstone results, for prospect-specific seismic attribute modeling. Well results from exploration wells are in good agreement with pre-drill Touchstone and elastic properties model predictions.  相似文献   

13.
Understanding diagenetic heterogeneity in tight sandstone reservoirs is vital for hydrocarbon exploration. As a typical tight sandstone reservoir, the seventh unit of the Upper Triassic Yanchang Formation in the Ordos Basin (Chang 7 unit), central China, is an important oil-producing interval. Results of helium porosity and permeability and petrographic assessment from thin sections, X-ray diffraction, scanning electron microscopy and cathodoluminescence analysis demonstrate that the sandstones have encountered various diagenetic processes encompassing mechanical and chemical compaction, cementation by carbonate, quartz, clay minerals, and dissolution of feldspar and lithic fragments. The sandstones comprise silt-to medium-grained lithic arkoses to feldspathic litharenites and litharenites, which have low porosity (0.5%–13.6%, with an average of 6.8%) and low permeability (0.009 × 10−3 μm2 to 1.818 × 10−3 μm2, with an average of 0.106 × 10−3 μm2).This study suggests that diagenetic facies identified from petrographic observations can be up-scaled by correlation with wire-line log responses, which can facilitate prediction of reservoir quality at a field-scale. Four diagenetic facies are determined based on petrographic features including intensity of compaction, cement types and amounts, and degree of dissolution. Unstable and labile components of sandstones can be identified by low bulk density and low gamma ray log values, and those sandstones show the highest reservoir quality. Tightly compacted sandstones/siltstones, which tend to have high gamma ray readings and relatively high bulk density values, show the poorest reservoir quality. A model based on principal component analysis (PCA) is built and show better prediction of diagenetic facies than biplots of well logs. The model is validated by blind testing log-predicted diagenetic facies against petrographic features from core samples of the Upper Triassic Yanchang Formation in the Ordos Basin, which indicates it is a helpful predictive model.  相似文献   

14.
The complex fluvial sandstones of the Triassic Skagerrak Formation are the host reservoir for a number of high-pressure, high-temperature (HPHT) fields in the Central Graben, North Sea. All the reservoir sandstones in this study comprise of fine-grained to medium-grained sub-arkosic to arkosic sandstones that have experienced broadly similar burial and diagenetic histories to their present-day maximum burial depths. Despite similar diagenetic histories, the fluvial reservoirs show major variations in reservoir quality and preserved porosity. Reservoir quality varies from excellent with anomalously high porosities of up to 35% at burial depth of >3500 m below seafloor to non-economic with porosities <10% at burial depth of 4300 m below seafloor.This study has combined detailed petrographic analyses, core analysis and pressure history modelling to assess the impact of differing vertical effective stresses (VES) and high pore fluid pressures (up to 80 MPa) on reservoir quality. It has been recognised that fluvial channel sandstones of the Skagerrak Formation in the UK sector have experienced significantly less mechanical compaction than their equivalents in the Norwegian sector. This difference in mechanical compaction has had a significant impact upon reservoir quality, even though the presence of chlorite grain coatings inhibited macroquartz cement overgrowths across all Skagerrak Formation reservoirs. The onset of overpressure started once the overlying Chalk seal was buried deeply enough to form a permeability barrier to fluid escape. It is the cumulative effect of varying amounts of overpressure and its effect on the VES history that is key to determining the reservoir quality of these channelised sandstone units. The results are consistent with a model where vertical effective stress affects both the compaction state and subsequent quartz cementation of the reservoirs.  相似文献   

15.
Reservoir in the Ormen Lange field, offshore Norway, is provided by Upper Cretaceous and Lower Paleocene turbidite sandstones deposited in a sand-rich submarine fan. Systematic vertical and down-fan changes in facies and section properties (thickness, percentage sand and percentage amalgamation) are documented. Bulk sediment accumulation rates are very low suggesting that the system was not directly delta-fed. Paucity of mud in the supply mix prevented the development of channel-overbank systems with strong segregation of sands in channel-fills and muds in overbank areas. The resultant architecture is externally tabular with internally varying degrees of erosional amalgamation between beds. A novel approach to 3D quantitative reservoir modelling has been taken. At a regional-scale (475×180×3 km3), 3D models integrate all well and structural information and provide a context for field-scale models. Nested within the regional models, high-resolution hierarchical reservoir models of the field have been generated. Models combine detailed sedimentological observations in core with petrophysical, pressure, seismic amplitude and structural data. Modelling rules are derived from partial analogues and a forward geometric model that addresses the nature of distal and lateral sandstone body terminations.  相似文献   

16.
The Bohai Bay Basin is a classic non-marine rift basin in eastern China. The Paleogene Dongying sequences are the main hydrocarbon-bearing stratigraphic unit in the basin. Using three-dimensional (3-D) seismic data and one well control in the BZ3-1 Block in the western slope of the Bozhong Sag, we analyzed 3-D facies architectures of the Dongying sequences. The Dongying Formation, a second-order sequence, can be subdivided into four third-order sequences (from base to top: SQ1, SQ2, SQ3, and SQ4). The facies architecture was analyzed by using the seismic sedimentology approach based on 3-D seismic data. Sediment of the Dongying sequences was derived from the northern Shijiutuo Uplift via four major configurations of incised valleys, namely “V”, “U”, “W”, and composite shaped incised valleys. Seismic stratal slices reveal branching and converging characteristics of the channels from upstream to downstream. On the basis of an integrated analysis of well log, core data, seismic facies based on multi-seismic attributes, three sedimentary facies (e.g., “delta”, “fan-delta”, and “shore” or “shallow lacustrine” facies) have been recognized. The four types of incised valleys and their evolution control the sedimentary systems in the sedimentation area. The numbers and sizes of the fans are controlled by the sedimentary systems at various scales. Incised valley-fill and deltaic sand bodies are excellent hydrocarbon reservoirs and potentially good exploration targets for the study area. The reservoir quality of sequences SQ1, SQ2, and SQ3 become better gradually from base to top. The proposed sediment dispersal patterns may aid in the prediction of potential reservoir distribution. This study also demonstrates that facies architecture analysis using sequence stratigraphy and seismic sedimentology may serve as an effective approach for constructing 3D facies models for petroleum exploration in areas lacking of well or outcrop data.  相似文献   

17.
泰国湾区域经历了前裂谷期、裂谷期、裂后期的构造演化阶段,形成了多个裂谷盆地。泰国湾区域东北部在渐新世经历了一次明显构造反转,较泰国湾区域大部分地区强烈。通过对比区内钻井,结合地震解释,对该区的沉积特征和构造演化进行了分析,认为这次反转构造导致了反转构造带上构造、沉积特征与邻区有较大的不同。由于这次反转构造,泰国湾东北部在新层系发育新类型的油气系统,即深部的始新统油气系统:烃源岩为中始新统湖相泥岩,储层为上始新统-渐新统三角洲相砂岩,盖层为下中新统三角洲前缘相泥岩和上中新统以上的海相泥岩。该油气成藏系统已被钻井钻遇油气显示,是本区有效油气成藏系统。  相似文献   

18.
Defining the 3D geometry and internal architecture of reservoirs is important for prediction of hydrocarbon volumes, petroleum production and storage potential. Many reservoirs contain thin shale layers that are below seismic resolution, which act as impermeable and semi-permeable layers within a reservoir. Predicting the storage volume of a reservoir with thin shale layers from conventional seismic data is an issue due to limited seismic resolution. Further, gas chimneys indicative of gas migration pathways through thin shale layers, are not easily defined by conventional seismic data. Additional information, such as borehole data, can be used to aid mapping of shale layers, but making lateral predictions from 1D borehole data has high uncertainty. This paper presents an integrated workflow for quantitative seismic interpretation of thin shale layers and gas chimneys in the Utsira Formation of the Sleipner reservoir. The workflow combines the use of attribute and spectral analysis to add resolution to conventional seismic amplitude data. Detailed interpretation of these analyses reveals the reservoirs internal thin shale architecture, and the presence of gas chimneys. The comprehensive interpretation of the reservoirs internal structure is used to calculate a new reservoir storage volume. This is done based on the distribution of sand and interpreted shale layers within the study area, for this active CO2 storage site.  相似文献   

19.
通王断裂带沙河街组油气成藏主控因素研究   总被引:1,自引:0,他引:1  
通王断裂带地区位于济阳坳陷东营凹陷南斜坡东部,沙河街组是本区的主要含油层系。通过烃源岩分析、储集层类型划分、孔隙流体动力场的描述、优质输导体系类型及断裂构造特征的研究,认为牛庄洼陷烃源岩主要为沙四上和沙三段深湖相一半深湖相暗色泥岩、油页岩,油气以生油洼陷为中心,呈环状或半环状分布;沙三段大型三角洲相储集砂体、沙四段中上部的滨浅湖近岸砂坝、远岸砂坝和席状砂岩储层是主要储集层类型;砂体一断层类输导体系是本区优质输导体系,牛庄洼陷北部发育的高压型复式温压系统,使油气顺着断层、砂体向南部通王断裂带常压常温和常压高温区运移。通王断裂带的油气藏主要是受断裂控制的构造油气藏,王家岗油田往西的中浅层是断层类油藏的有利地区,王家岗地区北部和陈官庄地区的西北部,是沙三段隐蔽油气藏以及断层-岩性复合型油气藏勘探的有利勘探地区。  相似文献   

20.
The deep lacustrine gravity-flow deposits are widely developed in the lower Triassic Yanchang Formation, southeast Ordos Basin, central China. Three lithofacies include massive fine-grained sandstone, banded sandstone, and massive oil shale and mudstone. The massive fine-grained sandstones have sharp upper contacts, mud clasts, boxed-shaped Gamma Ray (GR) log, but no grading and Bouma sequences. In contrast, the banded sandstones display different bedding characteristics, gradational upper contacts, and fine-upward. The massive, fine-grained sandstones recognized in this study are sandy debrites deposited by sandy debris flows, while the banded sandstones are turbidites deposited by turbidity currents not bottom currents. The sediment source for these deep gravity-flow sediments is a sand-rich delta system prograding at the basin margin. Fabric of the debrites in the sandy debris fields indicates initial formation from slope failure caused by the tectonic movement. As the sandy debris flows became diluted by water and clay, they became turbidity currents. The deep lacustrine depositional model is different from the traditional marine fan or turbidite fan models. There are no channels or wide lobate sand bodies. In the lower Triassic Yanchang Formation, layers within the sandy debrites have higher porosity (8–14%) and permeability (0.1–4 mD) than the turbidites with lower porosity (3–8%) and permeability (0.04–1 mD). Consequently, only the sandy debrites constitute potential petroleum reservoir intervals. Results of this study may serve as a model for hydrocarbon exploration and production for deep-lacustrine reservoirs from gravity-flow systems in similar lacustrine depositional environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号