首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
Multi-scale variability of subsurface temperature in the South China Sea   总被引:4,自引:0,他引:4  
Using Morlet wavelet transform and harmonic analysis the multi-scale variability of subsurface temperature in the South China Sea is studied by analyzing one-year (from April 1998 to April 1999) ATLAS mooring data. By wavelet transform, annual and semi-annual cycle as well as intrasea-sonal variations are found, with different dominance, in subsurface temperature. For annual harmonic cycle, both the downward net surface heat flux and thermocline vertical movement partially control the subsurface temperature variability. For semi-annual cycle and intraseasonal variability, the subsurface temperature variability is mainly linked to the vertical displacement of thermocline.  相似文献   

2.
The major feature,interannual variability and variation cause of the Mindanao Eddy and its impact on the thermohaline structure are analyzed based on the Argo profiling float data,the history observed data and the SODA data.The analysis results show that the Mindanao Eddy is a permanent cyclonic meso-scale eddy and spreads vertically from about 500 m depth upward do about 50 m depth.In addition to its strong seasonal variability,the Mindanao Eddy displays a remarkable interannual variability associated with ENSO.It strengthens and expands eastward during El Nin o while it weakens and retreats westward during La Nin a.The interannual variability in the Mindanao Eddy may be caused by the North Equatorial Counter Current,the North Equatorial Current,the Mindanao Current and the Indonesian Through Flow.The eddy variability can have a great influence on the thermohaline structure pattern in the local upper ocean.When the eddy is strong,the cold and low salinity water inside the eddy moves violently upward from deep layer,the thermocline depth greatly shoals,and the subsurface high salinity water largely decreases,with the upper mixed layer becoming thinner,and vice versa.  相似文献   

3.
The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution global HYCOM model, the total Luzon Strait Transport (LST) has remarkable subseasonal oscillations with a typical period of 90 to 120 days, and an average value of 1.9 Sv into SCS. Further spectrum analysis shows that the temporal variability of the LST at different depth is remarkable different. In the upper layer (0–300 m), westward inflow has significant seasonal and subseasonal variability. In the bottom layer (below 1 200 m), eastward outflow exhibits remarkable seasonal variability, while subseasonal variability is also clear. In the intermediate layer, the westward inflow is slightly bigger than the eastward outflow, and both of them have obvious seasonal and subseasonal variability. Because the seasonal variation of westward inflow and eastward outflow is opposite, the total transport of intermediate layer exhibits significant 50–150 days variation, without obvious seasonal signals. The westward Rossby waves with a period of 90 to 120 days in the Western Pacific have very clear correlationship with the Luzon Strait Transport, this indicates that the interaction between these westward Rossby waves and Kuroshio might be the possible mechanism of the subseasonal variation of the LST.  相似文献   

4.
The operational climate forecast system (CFS) of the US National Centers for Environmental Prediction provides climate predictions over the world, and CFS products are becoming an important source of information for regional climate predictions in many Asian countries where monsoon climate dominates. Recent studies have shown that, on monthly-to-seasonal time-scales, the CFS is highly skillful in simulating and predicting the variability of the Asian monsoon. The higher-frequency variability of the Asian summer monsoon in the CFS is analyzed, using output from a version with a spectral triangular truncation of 126 waves in horizontal and 64 sigma layers in vertical, focusing on synoptic, quasi-biweekly, and intraseasonal time-scales. The onset processes of different regional monsoon components were investigated within Asia. Although the CFS generally overestimates variability of monsoon on these time-scales, it successfully captures many major features of the variance patterns, especially for the synoptic timescale. The CFS also captures the timing of summer monsoon onsets over India and the Indo-China Peninsula. However, it encounters difficulties in simulating the onset of the South China Sea monsoon. The success and failure of the CFS in simulating the onset of monsoon precipitation can also be seen from the associated features of simulated atmospheric circulation processes. Overall, the CFS is capable of simulating the synoptic-to-intraseasonal variability of the Asian summer monsoon with skills. As for seasonal-tointerannual time-scales shown previously, the model is expected to possess a potential for skillful predictions of the high-frequency variability of the Asian monsoon.  相似文献   

5.
Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans. In this study, we examined the interannual variation of summertime phytoplankton biomass in the Marguerite Bay polynya(MBP)in the western Antarctic Peninsula area, and linked such variability to the Southern Annular Mode(SAM) that dominated the southern hemisphere extratropical climate variability. Com...  相似文献   

6.
Arctic sea ice extent has been declining in recent decades. There is ongoing debate on the contribution of natural internal variability to recent and future Arctic sea ice changes. In this study, we contrast the trends in the forced and unforced simulations of carefully selected global climate models with the extended observed Arctic sea ice records. The results suggest that the natural variability explains no more than 42.3% of the observed September sea ice extent trend during 35 a(1979–2013) satellite observations, which is comparable to the results of the observed sea ice record extended back to 1953(61 a, less than 48.5% natural variability). This reinforces the evidence that anthropogenic forcing plays a substantial role in the observed decline of September Arctic sea ice in recent decades. The magnitude of both positive and negative trends induced by the natural variability in the unforced simulations is slightly enlarged in the context of increasing greenhouse gases in the 21st century.However, the ratio between the realizations of positive and negative trends change has remained steady, which enforces the standpoint that external forcing will remain the principal determiner of the decreasing Arctic sea ice extent trend in the future.  相似文献   

7.
Seasonal and interannual variability of ocean bottom pressure(OBP) in the Southern Ocean was investigated using Gravity Recovery and Climate Experiment(GRACE) data and a Pressure Coordinate Ocean Model(PCOM)based on mass conservation. By comparing OBP, steric sea level, and sea level, it is found that at high latitudes the OBP variability dominates the sea level variability at seasonal-to-decadal time scales. The diagnostic OBP based on barotropic vorticity equation has a good correlation with t...  相似文献   

8.
On the basis of the analysis of the sea temperature data that are observed from the three automatic temperature line acquisition sysem mooring buoys deployed in the central South China Sea (SCS) during South China Sea monsoon experiment, vertical features of biweekly and synoptic variability are discussed. There are five vertical modes, that is, subsurface temperature variability is in phase with,out of phase with, leads to, lags the surface temperature variability, and at depths within the subsurface layer the upper and lower temperature variations are out of phase. The formation of these vertical modes is related to the property of low-level atmospheric forcing and to the background in atmosphere and ocean. Wind stress curl is the main driving factor in forming Modes 1 and 3, and wind stresses in forming Modes 2 and 4.  相似文献   

9.
This study compares the seasonal and interannual-to-decadal variability in the strength and position of the Kuroshio Extension front(KEF) using high-resolution satellite-derived sea surface temperature(SST) and sea surface height(SSH) data. Results show that the KEF strength has an obvious seasonal variation that is similar at different longitudes, with a stronger(weaker) KEF during the cold(warm) season. However, the seasonal variation in the KEF position is relatively weak and varies with longitude. In contrast, the low-frequency variation of the KEF position is more distinct than that of the KEF strength even though they are well correlated. On both seasonal and interannual-to-decadal time scales, the western part of the KEF(142°–144°E) has the greatest variability in strength, while the eastern part of the KEF(149°–155°E) has the greatest variability in position. In addition, the relationships between wind-forced Rossby waves and the low-frequency variability in the KEF strength and position are also discussed by using the statistical analysis methods and a wind-driven hindcast model. A positive(negative) North Pacific Oscillation(NPO)-like atmospheric forcing generates positive(negative) SSH anomalies over the central North Pacific. These oceanic signals then propagate westward as Rossby waves, reaching the KE region about three years later, favoring a strengthened(weakened) and northward(southward)-moving KEF.  相似文献   

10.
The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.  相似文献   

11.
基于日本海洋信息中心提供的东海黑潮PN断面CTD资料,本文采用动力高度法计算了1991-2011年间90个航次的断面流速,并对流场结构、最大流速、流幅和流量进行了统计分析。结果表明:东海黑潮PN断面流场存在单核、双核、多核3种结构;其中单核结构出现的概率为50%,双核结构为39%,多核结构为11%。东海黑潮的流结构存在显著的季节变化:秋季多核结构所占的比重为4个季节最大,平均流核数最多;冬季主要为单核结构,平均流核数最少;夏季和春季则没有明显的倾向性,单核、双核、多核3种结构出现概率相近,平均流核数介于秋季和冬季之间。其次东海黑潮的流量也存在显著的季节变化:冬季与夏季最强,秋季最小,春季居中。最后东海黑潮的最大流速和流幅也存在季节变化:夏季最大,秋季最小,春季和冬季居中。  相似文献   

12.
1992年东海黑潮的变异   总被引:10,自引:2,他引:8  
基于1992年4个航次的水文调查资料,运用改进逆方法计算了东海黑潮的流速、流量和热通量.计算结果表明:(1)PN断面黑潮在春季和秋季都有两个流核,冬季和夏季则只有一个流核.主核心皆位于坡折处.Vmax值春季最大,冬季和夏季次之,而秋季最小.黑潮以东及以下都存在逆流.(2)TK断面黑潮在冬季为两核,春、夏季为3核.海峡南端及海峡深处存在西向逆流.(3)通过A断面的对马暖流Vmax值在秋季最大,冬季最小.黄海暖流位于其西侧,相对较弱.(4)通过PN断面净北向流量夏季最大,秋季最小,而冬、春季介于上述二者之间,1992年四季平均值为28.0×106m3/s;TK断面的净东向流量也是在夏季最大;A断面净北向流量则在秋季最大.(5)PN断面4个航次的平均热通量为2.03×1015W.TK断面3个航次的平均热通量为2.00×1015W.(6)在计算海区,冬、春和秋季都是由海洋向大气放热;夏季则从大气吸热.冬季海面上热交换率最大,而夏季热交换率最小.关键词##4东海;;黑潮;;季节变化  相似文献   

13.
Variability of the Kuroshio in the East China Sea in 1992   总被引:3,自引:3,他引:0  
INTRODUCTIONMostofpreviousstudiesshowthatthedynamicmethodswereoftenusedtocomputethevelocityandVToftheKuroshiointheEastChinaSea(Guan,1988;Nishizawaetal.,1982;SunandKaneko,1993).Duringrecentyearsdifferentkindsofinversemethodshavebeentriedby*ThisprojectwassupportedbytheNationalNaturalScienceFoundationofChinaundercontractNo.49776287.1.Secondinstituteofoceanography,StateOceanicAdministration,Hangzhou310012,ChinaYuanetul(1988,1991,1992a,1992b,1993,1994,1995).Theircalculatedresultsshowt…  相似文献   

14.
1993和1994年东海黑潮的变异   总被引:4,自引:0,他引:4  
基于“长风丸”1993~1994年共8个航次的水文调查资料,采用改进逆方法计算了东海黑潮的流速、流量和热通量.计算结果表明:(1)PN断面黑潮流速在秋季时均呈双核结构;而在其他季节,有时为单核,有时为双核;黑潮主核心皆位于坡折处.黑潮以东及黑潮以下都存在南向逆流.(2)TK断面较复杂,可出现单、双或三核结构.在吐噶喇海峡中部、北部出现流核的机率较高.海峡南端及海峡深处都存在西向逆流,而且海峡南端的逆流在秋季较强.(3)在A断面,对马暖流核心位于陆坡上,但有时偏西或偏东.Vmax值的变动范围为26~46cm/s.黄海暖流位于其西侧,流速则相对减小.(4)东海黑潮流量在这两年中,在春季均出现最小值,在夏季出现最大或较大值.黑潮流量,以PN断面为例,每年四季平均流量值1994年与1993年几乎相同,但略小于1992年的平均流量值.8个航次中通过PN、TK断面的平均净流量分别为27.1×106和25.0×106m3/s.(5)8个航次中,通过PN、TK断面的热通量的平均值分别为1.99×1015和1.78×1015W.(6)在计算海域秋季和冬季均是由海洋向大气放热;夏季则均从大气吸热;春季则不确定.海面上热交换率在冬季最大,而春、夏季较小.  相似文献   

15.
Variability of the Kuroshio in the East China Sea in 1993 and 1994   总被引:11,自引:1,他引:10  
INTRODUCTIONTherearemanyworksabouttheKuroshioVTintheEastChinaSeaanditsseasonalvariabil*ThisprojectwassupportedbytheNationalNaturalScienceFoundationofChinaundercontractNo.49776287.1.SecondinstituteofOceanography,StateOceanicAdministration,Hangzhou310012,Chinaity(Guan,1988;Nishizawaetal.,1982;SunandKaneko,1993;Yuanetal.,1990,1993,1994,1995).Thecomputationmethodusedtobethedynamicmethod(Guan,1988;Nishizawaetal.,1982;SunandKaneko,1993),butrecentlytheinverseandthemodifiedinversemetho…  相似文献   

16.
基于日本“长风丸”调查船在2000年5个航次水文资料及同时期QuikSCAT风场资料,采用改进逆方法计算了东海黑潮的流速与流量等,获得了这5个航次期间的主要结果:(1)在东海海区风速1~2月比其他月份时大,风海流也最强.只在7月表层风海流为北向,加强了黑潮流速.(2)表层最低盐度值夏季时最小,1~2月时最大.这再次表明,夏季时长江冲淡水向东北方向扩散,冬季时基本上向南,其他季节在上述两者之间.(3)PN断面流速结构及其变化:黑潮流核在1~2,10和11月时有两个,在4和7月皆只有1个.黑潮主流核在1月位于计算点9,在4,7,10与11月都位于计算点8,即向陆架方向移动.(4)黑潮在TK断面出现多流核结构特性.11月主流核出现在TK断面中部,存在于水深大于1 200 m区域,其余月份主流核皆出现在TK断面北部,存在于深度400m以浅水层.(5)通过PN断面的净东北向流量在11月最大,为28.1×106m3/s,7月时其次,10月时最小,为24.6×106m3/s.通过PN断面的净东北向流量年平均值为26.4×106m3/s.(6)1~2,4,7与10月在PN断面以东都出现暖的、反气旋式涡,10月份时,反气旋式涡最强.只在11月时出现弱的、气旋式涡.黑潮以东反气旋涡加强时,黑潮流量似乎减小(例如10月);相反,当黑潮以东反气旋涡减弱(例如7月)或者代之出现气旋涡时(例如11月),黑潮流量似乎增大.10和11月在PN断面附近流态的比较,揭示了环流变化较大,这进一步表明,黑潮和其附近中尺度涡的相互作用是重要的.(7)通过TK断面的净东向流量,11月最大,7月其次,10与1~2月最小.通过TK断面净东向流量年平均值为21.9×106m3/s.(8)通过A断面的北向流量在1~2与4月较大,分别为3.5×106与3.1×106m3/s,7月最小.通过A断面的年平均北向流量约为2.7×106m3/s,这表明,在2000年1~2与4月通过对马暖流的流量最大,7月时最小.  相似文献   

17.
本文基于改进的特征线方法,利用1992~2012年间的高度计绝对动力地形数据提取了整个黑潮流区逐月的黑潮主轴和边界位置,并对黑潮沿轴速度、主流宽度、表层水体输运以及路径标准差等黑潮特征量进行了分析研究。结果表明黑潮整体的沿轴速度在夏秋季较大,最大值可达0.95m/s,而在冬季的速度较小;黑潮主流宽度在10、11月份达到最大值;黑潮表层水体输运在夏季最大,春秋两季次之,冬季最小。沿黑潮流路分区域对黑潮特征进行分析,结果表明,越往黑潮下游,黑潮的沿轴速度、主流宽度和表层水体输运越大,同时沿轴速度和表层水体输运量最大值出现的时间也越晚,黑潮主轴位置相对于其多年平均的偏离程度越大,且随时间波动也越强烈。  相似文献   

18.
Variability of the Kuroshio in the East China Sea in 1995   总被引:4,自引:0,他引:4  
INTRODUCTIONTherearemanyresearchworksabbottheKUrOShioVTanditSSeaSOnalvacationintheEastChinaho(GUan,1988;Nishizawaetal.,1982;TangandTaShiro,1993;SunandKaneko,1993;Yuanetal.,1990;Yuanetal.,1993;Yuanetal.,1994;Yuanetal.,1995;LiuandYuan,1997a,b).~previou...  相似文献   

19.
The temporal and spatial variability of the Kuroshio Current was analyzed. Current data were estimated from hydrographic data collected from areas within the central East China Sea (PN section) from 1955 to 2010 and the Tokara Strait (TK section) from 1987 to 2010. To reduce the bias caused by cruise-dependent spatial resolution among the data, grid-consistent temperature and salinity fields were reconstructed by use of a regression relationship to account for anomalies between observed stations and grid points. The mass imbalance problem between the PN and TK sections, which appears stochastically when viewed by use of the dynamic method, was solved by use of the inverse method. The estimated Kuroshio volume transport (KVT) was found to be closely consistent with that of current observations and had an uncertainty of 2.4 Sv. The KVT seemed to have neither a regime shift in approximately 1976 nor a sharply increasing trend. The KVT was dominated by 2–5 year modulating interannual variability with an amplitude of 2.8 Sv, followed by weak 20-year decadal variability with an amplitude of 0.33 Sv. Empirical orthogonal function analysis of the currents suggested that the temporal and spatial variability of the Kuroshio Current in the PN section was dominated by a transport mode, manifested by the high variability of current on the seaward side of current core with expansion or shrinkage of the core. In contrast, the temporal and spatial variability of the Kuroshio Current in the TK section was dominated by a meandering mode, as indicated by the migration of the Kuroshio axis in the south gap of the Tokara Strait.  相似文献   

20.
台湾东北部黑潮次表层水入侵的季节变化规律   总被引:5,自引:1,他引:4  
台湾东北部,黑潮次表层水常年入侵东海陆架。但是黑潮次表层水入侵的季节变化规律,尚存在很多不明之处。本文基于2009至2011年间东海4个航次的CTD实测数据,研究了黑潮次表层水入侵东海过程的季节变化规律,发现:黑潮次表层水入侵在春末夏初开始加强,夏季最强,秋季开始减弱,冬季最弱。入侵的黑潮次表层水起源深度也随季节变化有所不同。另外,结果还表明黑潮次表层水入侵存在明显的短期变动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号