首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
应用ISCCP云资料反演青藏高原地面总辐射场   总被引:4,自引:2,他引:4  
利用ISCCP云资料和青藏高原日射资料,讨论并提出了该地区地表总辐射的气候反演方法,据此计算出71.25~103.75°E,28.75~41.25°N间2.5°×2.5°经纬度网格点及高原70个站的各月平均总辐射通量密度,绘制出其在高原的分布图,进一步揭示和证实了高原总辐射场的基本特征。  相似文献   

2.
青藏高原云的气候学特征   总被引:31,自引:12,他引:31  
魏丽  钟强 《高原气象》1997,16(1):10-15
利用国际卫星云气候计划(ISCCP)获取的1983年7月~1990年6月2.5°×2.5°分辨率的云气候资料以及Hahn等整理的1971~1981年5°×5°分辨率地面观测云气候资料,综合分析了青藏高原地区冬季和夏季云的水平和垂直分布特征,从而为检验大气环境或气候模式的云模拟能力及进一步研究青藏高原地区云辐射相互作用对气候的影响提供背景依据。  相似文献   

3.
用ECMWF提供的1982年7月1-31日逐日2.5°×2.5°网格资料,分析了江淮梅雨过程高低层流函数与势函数场的演变及其相互作用,并讨论了梅雨前后东亚季风的变化。  相似文献   

4.
该文利用TOGA-COARE强化观测期(IOP)所获得的辐射观测资料(1992年11月10日—1993年2月18日),对考察点(2°15′S,158°00′E)的辐射分量进行了分析,其中包括总辐射、直接辐射、散射辐射、海表长波辐射、大气逆辐射、海表反射辐射及其反照率、净辐射及有效辐射。结果表明:和其它地区(如高原)比较,观测点的总辐射、直接辐射均很强;反射率小,晴天平均为0.04—0.05,阴天为0.06—0.08;海表长波辐射大而日变化小,大气逆辐射强而日变化大;有效辐射小而净辐射大。  相似文献   

5.
马柱国  姚兰昌 《高原气象》1996,15(2):186-194
该利用TOGA-COARE强化观测期(IOP)所获得的辐射观测资料(1992年11月10日-1993年2月18日),对考察点(2°15′S,158°00′)的辐射分量进行了分析,其中包括总辐射、直接辐射、散射辐射、海表长波辐射、大气逆辐射、海表反射辐射春反照率、净辐射及有效辐射。  相似文献   

6.
试用GMS卫星多通道资料反演海表温度   总被引:1,自引:1,他引:1       下载免费PDF全文
刘文 《气象》1997,23(11):27-31
从S-VISSR图像定位和数据定标出发,参考极轨气象卫星多窗区MCSST技术,对25°-45°N、117.5°-140°E区域GMS-5卫星海表SST反演作了尝试,探讨了静止气象卫星多通道资料反演SST的方法。  相似文献   

7.
根据ERBE和ISCCP资料讨论了公气系统短波吸收辐射及其年较差在全国的分布,分析了其与总云量、行星和地表反射卒以及地面吸收辐射的相互关系。发现在冬季地-气系统短波吸收辐射分布主要呈南高北低型,夏季分布形势为一不对称的大鞍形场,大致与行星反射率分布反向对应。公气短波吸收辐射与总云量呈负相关,高相关区在我国东部。各站地-气短波吸收辐射与地面吸收辐射的相关系数普遍高达0.900以上。此一特,或为从气候上利用地-气吸收辐射反演地面吸收辐射提供初步可能。  相似文献   

8.
西太平洋暖池区的海气通量及整体交换系数   总被引:3,自引:1,他引:2  
根据西太平洋海域弱风、高温、潮湿的大气状态特征,提出了在光滑面存在粘性副层气流中的廓线的层结订正方案。用此模式对西太平洋暖池区TOGACOAREIOP期间,在向阳红5号船(2°S,154°E)获取的海面风、温、湿梯度资料进行了处理。计算结果显示西太平洋暖池区贴水层气流中不稳定层结占50%-80%,其中很不稳定的占10.3%;该海区海气通量和整体交换系数受层结影响远大于受风速的影响;海气通量和整体交换系数随不稳定程度增加而增大,在相同风速下量值可相差4倍以上;其变化范围为0.3×10-3—3.2×10-3。由此可见,层结的影响使它们的变化大于其它海区的结果。在u10=0-10m/s范围内,中性化整体交换系数平均为CDN=1.2×10-3,CHN=1.14×10-3,CEN=1.19×10-3,与Large和Pond(1981,1982)不稳定条件的研究结果相差无几。  相似文献   

9.
利用卫星资料试作青藏高原地表净辐射场的气候反演   总被引:3,自引:1,他引:3  
翁笃鸣  高歌 《气象科学》2001,21(2):162-168
利用 ERBE和 ISCCP卫星辐射及总云量资料 ,结合已提出的地表短波吸收辐射 ,大气逆辐射以及地表长波辐射的气候反演方法 ,计算出 2 5°~ 4 0°N,75°~ 95°E间 2 .5°× 2 .5°经纬度网络点及高原 63个站点的各月平均地表净辐射 ,绘制出其在高原的分布图 ,揭示其时空分布特征。  相似文献   

10.
1991—1992年ENSO事件的特征   总被引:1,自引:0,他引:1       下载免费PDF全文
根据美国国家海洋大气局气候分析中心(CAC)和中国气象局气候监测公报所提供的海-气资料,综合分析了1991-1992年ENSO事件的形成、发展过程。这次ENSO事件的主要特点是:①在ENSO事件爆发前一年内热带太平洋海气特性频频呈现异常,暖水堆积在赤道中太平洋(5°N-5°S,160°E-160°W)约12个月,然后自西向东传输,爆发1991-1992年ENSO事件。②对ENSO事件作出响应的西太  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

19.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号