首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ting WANG  Ke WEI  Jiao MA 《大气科学进展》2021,38(12):2137-2152
Atmospheric rivers (ARs) are long, narrow, and transient filaments of strong horizontal water vapor transport that can lead to extreme precipitation. To investigate the relationship between ARs and mei-yu rainfall in China, the mei-yu season of 2020 in the Yangtze-Huaihe River basin is taken as an example. An adjusted AR-detection algorithm is applied on integrated water vapor transport (IVT) of the ERA5 reanalysis. The JRA-55 reanalysis and the data from Integrated Multi-satellite Retrievals for GPM (IMERG) are also utilized to study the impacts of ARs on mei-yu rainfall in 2020. The results reveal that ARs in East Asia have an average length of 5400 km, a width of 600 km, a length/width ratio of 9.3, and a northeastward orientation of 30°. ARs are modulated by the western North Pacific subtropical high. The IVT core is located at the south side of low pressure systems, moving eastward with a speed of 10° d?1. For the cross sections of ARs in the Yangtze-Huaihe River basin, 75% of the total flux is concentrated below 4 km with low-level jets near AR cores. Moreover, ARs occur mainly in the mei-yu period with a frequency of 20%–60%. The intensity of AR-related precipitation is 6–12 times that of AR-unrelated precipitation, and AR-related precipitation contributes about 50%–80% to total mei-yu precipitation. As shown in this case study of summer 2020, ARs are an essential part of the mei-yu system and have great impacts on mei-yu rainfall. Thus, ARs should receive more attention in research and weather forecast practices.  相似文献   

2.
利用1979-2016 年ERA-Interim 再分析资料,分析了ENSO 对冬季北太平洋地区水汽输送特征的影响,包括整层水汽含量、整层水汽输送及其散度和大气河频率.结果表明,在El Ni?o年冬季,东北太平洋地区的气旋式环流异常增强了自副热带太平洋向北美西海岸的水汽输送,导致区域性的水汽辐合与辐散异常;La Ni?...  相似文献   

3.
张楠  陈宏  杨晓君  韩婷婷 《气象科学》2023,43(6):820-828
利用欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)再分析资料,基于大气扰动分解技术,对2012年7月华北东部两次副高边缘大暴雨事件进行扰动分析。结果表明:边界层及对流层低层扰动辐合中心与副高边缘大暴雨中心有较好地对应关系;扰动锋区和扰动比湿大值区(4 g·kg-1)叠加的区域与大暴雨落区相对应,与切变线类暴雨不同,副高边缘暴雨中心并不是出现在冷暖空气対峙扰动(0 ℃线)的位置,而是发生在扰动锋区内的暖区一侧(扰动温度0 ℃以南);两次过程均存在自南向北的水汽通道,且水汽在输送过程中不断得到抬升,大暴雨落区对应的扰动水汽通量散度中心分别达到-6.8×10-8g·cm-2·hPa-1·s-1和-11.9×10-8g·cm-2·hPa-1·s-1,为大暴雨的形成提供了较好地水汽条件。  相似文献   

4.
《Atmospheric Research》2007,83(3-4):514-522
We present a parameterization for numbers of water and ammonia molecules in an equilibrium droplet with fixed number of sulfuric acid molecules at known relative humidity, ammonia mixing ratio and temperature. The radius of the droplet is also parameterized. The parameterizations are based on macroscopic model of solution droplets and up-to-date thermodynamics. The binary parameterizations are valid for temperatures 190–330 K and relative humidities 1–99%. The ternary parameterization can be used at temperatures 240–300 K, relative humidities 5–95%, and ammonia mixing ratios 10 4–100 ppt. In both cases the parameterizations are valid for droplets containing up to 1011 sulfuric acid molecules. The droplet composition is always between the limits of pure ammonium bisulfate and pure ammonium sulfate.  相似文献   

5.
Lagrangian particle tracking is implemented for the Lofoten Basin of the Norwegian Sea. The ocean dynamic fields are obtained from the GLORYS 12V1 reanalysis available by the Copernicus Marine Environment Monitoring Service. Spatial distributions of the Lagrangian particles during May-November 2014 are analyzed for two depth layers: the sea-surface (0.5 m) and 266 m. The results show a significant impact of the Norwegian Coastal Current (NCC) on the thermohaline structure of the upper Lofoten Basin, underestimated previously. The NCC penetrates deep into the central Lofoten basin as far as the longitude 0°. In the subsurface layer, the area over which the NCC influences water structure is comparable to the area of the Norwegian Atlantic Slope Current (NASC), as well as to that of the Norwegian Atlantic Frontal Current (NAFC). The NCC maximum influence on the surface water of the Basin is reached in August. The inflow of the NCC is associated with relatively fresh water intrusions (0.5–2‰ fresher than the surrounding waters) moving from the coast to the central part of the Basin. The NASC and NAFC form two main sources of the Atlantic Water in the Lofoten Basin. At 266 m level, the NASC and NAFC waters dominate water structure in the basin. Herewith the NASC influence prevails over that of the NAFC, the latter being limited to the western periphery of the Basin. At this level, the NCC is observed only along a narrow band following the eastern coast. During summer, the core of the Lofoten Vortex (LV) at 266 m is mainly composed of the NAFC water. This fact contradicts the previous point of view of the dominance of the NASC in the LV core at all depth levels. Using two types of Lagrangian maps, we highlighted the summer and the autumn periods in the LV annual lifecycle. The summer LV is characterized by high orbital velocities, which are several times higher than those of the currents along the basin boundaries. The monthly mean orbital velocities in the LV reach 35 сm s−1. To the end of autumn, the LV weakens with the monthly mean orbital velocities below 10 cm s−1.  相似文献   

6.
夏季亚洲季风区是对流层向平流层物质输送的主要通道,其对平流层水汽的变化有重要贡献。以往的研究表明亚洲季风区向平流层的水汽传输主要在青藏高原及周边地区。本文利用多年平均的逐日ERAi、MERRA再分析数据和微波临边观测仪(Microwave Limb Sounder,MLS)数据,首先对比分析夏季青藏高原周边上空水汽的分布特征,再利用再分析资料分析了对流层—平流层水汽传输的特征。结果表明:青藏高原周边特定的等熵面和对流层顶结构分布有利于水汽向平流层的绝热输送;在南亚高压的东北侧,从青藏高原到中太平洋地区,340~360 K层次存在最为显著的水汽向平流层的纬向等熵绝热输送通道,7~8月平均输送强度可达约7×103 kg s-1。此外,在伊朗高原及南亚高压的西部,350~360 K层次也存在一支水汽向平流层的经向等熵绝热输送通道,但强度相对较弱(约2.5×103 kg s-1)。在青藏高原南侧370~380 K层次存在强的水汽向平流层的非绝热输送,主要由深对流和大尺度上升运动引起,7~8月平均输送强度约0.4×103 kg s-1。落基山以东到大西洋西部,350~360 K层次存在水汽向平流层的纬向等熵绝热输送通道,但强度也弱得多(约2.5×103 kg s-1)。  相似文献   

7.
马梁臣  李倩  于月明  霍也  朱丹  王宁 《气象科学》2023,43(3):316-325
利用ERA5 0.25°×0.25°高分辨率再分析资料、实况融合降水资料、台风最佳路径数据集、HYSPLIT(Hybrid Single-Particle Lagrangian Integrated Trajectory model)后向轨迹追踪模型等资料,对2019年13号台风"玲玲"和2012年15号台风"布拉万"引发东北地区暴雨的水汽特征进行分析。研究表明:两次台风最大湿层厚度达200 hPa附近,700 hPa以下比湿大于10 g·kg-1,高比湿主要集中在850 hPa以下的低层,台风的水汽分布具有明显的非对称结构特征。整层积分水汽通量散度与暴雨落区有一定的对应关系,尤其和降水强度对应。东北地区周边海域的水汽对东北暴雨的水汽供应很关键,源在日本群岛东部的西北太平洋的东南水汽通道是最重要的水汽通道。西南太平洋或阿拉伯海,包括欧拉方法研究发现的孟加拉湾较远距离的水汽输送存在,但是并非是东北台风暴雨的主要贡献者。  相似文献   

8.
Land–sea breeze (LSB) is an atmospheric mesoscale circulation that occurs in the vicinity of the coast and is caused by uneven heating resulting from the difference in specific heat capacity between the sea and land surfaces. The circulation structure of LSB was quantitatively investigated with a Doppler wind lidar Windcube100s on the west coast of the Yellow Sea for the first time. The time of observation was 31 August to 28 September 2018. It was found that the height of LSB development was 700 m to 1300 m. The duration of conversion of LSB was between 6 h and 8 h. The biggest average horizontal sea-breeze wind speed at 425 m was 5.6 m s−1, and at 375 m it was 4.5 m s−1. During the conversion process from sea breeze to land breeze, the maximum wind shear exponent was 2.84 at 1300 m altitude. During the conversion process from land breeze to sea breeze, the maximum wind shear exponent was 1.28 at 700 m altitude. The differences in wind shear exponents between sea-breeze and land-breeze systems were between 0.2 and 3.6 at the same altitude. The maximum value of the wind shear exponent can reflect the height of LSB development.摘要陆海风是由于海陆表面之间的比热容不同而导致的昼夜热量分布差异, 从而在海岸附近引发的大气中尺度循环系统.本文利用多普勒风激光雷达Windcube100s首次对黄海西海岸的海陆风的循环结构进行了观测研究.在2018年8月31日至9月28日观测期间发现, 海陆风发展高度一般在700 m至1300 m.海陆风转化持续的时间为6小时至8小时.在425m高度, 海风水平风速出现最大值, 平均为 5.6 m s−1.陆风最大水平风速出现在370 m, 约为4.5 m s−1.最大风切变指数在1300m处, 为2.84;在陆风向海风转换过程中, 最大风切变指数在700m处, 为1.28.在同一高度上, 风切变指数在海风盛行和陆风盛行时的差值范围为0.2–3.6, 风切变能反映出海陆风的发展高度.  相似文献   

9.
Trends and variability in column-integrated atmospheric water vapor   总被引:4,自引:0,他引:4  
An analysis and evaluation has been performed of global datasets on column-integrated water vapor (precipitable water). For years before 1996, the Ross and Elliott radiosonde dataset is used for validation of European Centre for Medium-range Weather Forecasts (ECMWF) reanalyses ERA-40. Only the special sensor microwave imager (SSM/I) dataset from remote sensing systems (RSS) has credible means, variability and trends for the oceans, but it is available only for the post-1988 period. Major problems are found in the means, variability and trends from 1988 to 2001 for both reanalyses from National Centers for Environmental Prediction (NCEP) and the ERA-40 reanalysis over the oceans, and for the NASA water vapor project (NVAP) dataset more generally. NCEP and ERA-40 values are reasonable over land where constrained by radiosondes. Accordingly, users of these data should take great care in accepting results as real. The problems highlight the need for reprocessing of data, as has been done by RSS, and reanalyses that adequately take account of the changing observing system. Precipitable water variability for 1988–2001 is dominated by the evolution of ENSO and especially the structures that occurred during and following the 1997–98 El Niño event. The evidence from SSM/I for the global ocean suggests that recent trends in precipitable water are generally positive and, for 1988 through 2003, average 0.40±0.09 mm per decade or 1.3±0.3% per decade for the ocean as a whole, where the error bars are 95% confidence intervals. Over the oceans, the precipitable water variability relates very strongly to changes in SSTs, both in terms of spatial structure of trends and temporal variability (with a regression coefficient for 30°N–30°S of 7.8% K?1) and is consistent with the assumption of fairly constant relative humidity. In the tropics, the trends are also influenced by changes in rainfall which, in turn, are closely associated with the mean flow and convergence of moisture by the trade winds. The main region where positive trends are not very evident is over Europe, in spite of large and positive trends over the North Atlantic since 1988. A much longer time series is probably required to obtain stable patterns of trends over the oceans, although the main variability could probably be deduced from past SST and associated precipitation variations.  相似文献   

10.
Belmadani  Ali  Dalphinet  Alice  Chauvin  Fabrice  Pilon  Romain  Palany  Philippe 《Climate Dynamics》2021,56(11):3687-3708

Tropical cyclones are a major hazard for numerous countries surrounding the tropical-to-subtropical North Atlantic sub-basin including the Caribbean Sea and Gulf of Mexico. Their intense winds, which can exceed 300 km h−1, can cause serious damage, particularly along coastlines where the combined action of waves, currents and low atmospheric pressure leads to storm surge and coastal flooding. This work presents future projections of North Atlantic tropical cyclone-related wave climate. A new configuration of the ARPEGE-Climat global atmospheric model on a stretched grid reaching ~ 14 km resolution to the north-east of the eastern Caribbean is able to reproduce the distribution of tropical cyclone winds, including Category 5 hurricanes. Historical (1984–2013, 5 members) and future (2051–2080, 5 members) simulations with the IPCC RCP8.5 scenario are used to drive the MFWAM (Météo-France Wave Action Model) spectral wave model over the Atlantic basin during the hurricane season. An intermediate 50-km resolution grid is used to propagate mid-latitude swells into a higher 10-km resolution grid over the tropical cyclone main development region. Wave model performance is evaluated over the historical period with the ERA5 reanalysis and satellite altimetry data. Future projections exhibit a modest but widespread reduction in seasonal mean wave heights in response to weakening subtropical anticyclone, yet marked increases in tropical cyclone-related wind sea and extreme wave heights within a large region extending from the African coasts to the North American continent.

  相似文献   

11.

The present study comprehensively reports the simultaneous measurement of wet deposition of total inorganic nitrogen (TIN; which is the sum of the NH4+-N and NO3?-N) at three different sites in Nr emission hotspot of Indo-Gangetic plain (IGP) over a year-long temporal scale from October 2017 to September 2018. At rural Meetli (MTL) site, urban Baraut (BRT) site and industrial Loni (LNI) site, the annual wet deposition of NH4+-N was estimated as 21.87, 19.48 and 7.43 kg N ha?1 yr?1, respectively; the annual wet deposition NO3?-N was estimated as 12.96, 12.17 and 4.44 kg N ha?1 yr?1, respectively; and the annual wet deposition of TIN was estimated as 34.83, 31.64 and 11.87 kg N ha?1 yr?1, respectively. NH4+-N was dominantly contributing species in annual, monsoon and non-monsoon-time wet deposition of TIN at all sites. The spatial gradient (variability) in percent contribution of NH4+ to total annual volume-weighted mean (VWM) concentration of all analyte ions was observed as MTL (43.23%)?>?BRT (37.90%)?>?LNI (30%). On the other hand, the spatial gradient in percent contribution of NO3? to total annual VWM concentration of all analyte ions was observed as MTL (7.45%)?>?BRT (6.89%)?>?LNI (5.32%). The extremely narrow range of NH4+-N/NO3?-N ratios (ranging from 1.60 at BRT site to 1.69 at LNI site) showed the approximately equal relative abundance of oxidized and reduced nitrogen (N) deposition across all sites. Inferences from enrichment factor analysis, principal component analysis and Pearson’s correlation coefficient analysis suggested that across all sites, virtually all NH4+-N and NO3?-N depositions were originated anthropogenically. The annual wet deposition of TIN measured in this study showed?≥?6865%,?≥?6228% and?≥?2274% increment than the natural N deposition rate at MTL, BRT and LNI site, respectively. These empirically measured annual wet depositions of TIN also emanated theoretical transgression of critical N load threshold across all sites therefore signifying probable undermining of long-term elastic stability and resilience of ecosystems against stressor in the study domain.

  相似文献   

12.
Concentrations and flux densities of methane were determined during a Lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L−1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100–350 m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 μmol m−2 d−1 to a maximum of 22.6 μmol m−2 d−1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange.  相似文献   

13.
Greenland ice cores offer seasonal to annual records of δ18O, a proxy for precipitation-weighted temperature, over the last few centuries to millennia. Here, we investigate the regional footprints of the North Atlantic weather regimes on Greenland isotope and climate variability, using a compilation of 22 different shallow ice-cores and the atmospheric pressure conditions from the twentieth century reanalysis (20CR). As a first step we have verified that the leading modes of winter and annual δ18O are well correlated with oceanic (Atlantic multidecadal oscillation) and atmospheric [North Atlantic oscillation (NAO)] indices respectively, and also marginally with external forcings, thus confirming earlier studies. The link between weather regimes and Greenland precipitation, precipitation-weighted temperature and δ18O is further explored by using an isotope simulation from the LMDZ-iso model, where the 3-dimensional wind fields are nudged to those of 20CR. In winter, the NAO+ and NAO? regimes in LMDZ-iso produce the largest isotopic changes over the entire Greenland region, with maximum anomalies in the South. Likewise, the Scandinavian blocking and the Atlantic ridge also show remarkable imprints on isotopic composition over the region. To assess the robustness and model dependency of our findings, a second isotope simulation from the isotopic model is also explored. The percentage of Greenland δ18O variance explained by the ensemble of weather regimes is increased by a factor near two in both LMDZ-iso and IsoGSM when compared to the contribution of the NAO index only. Similarly, weather regimes provide a net gain in the δ18O variance explained of similar magnitude for the whole set of ice core records. Greenland δ18O also appears to be locally affected by the low-frequency variations in the centres of action of the weather regimes, with clearer imprints in the LMDZ-iso simulation. This study opens the possibility for reconstructing past changes in the frequencies of occurrence of the weather regimes, which would rely on the sensitive regions identified here, and the use of additional proxies over the North Atlantic region.  相似文献   

14.
利用1983~2011年降水量、环流和海温的再分析资料,探讨了东亚北部地区夏季水汽输送的年代际变化特征,并分析了前冬北大西洋海温对东亚北部地区夏季水汽输送与大气环流的可能影响。研究结果表明,20世纪90年代末期东亚北部地区夏季整层水汽与降水年代际的变化特征相一致,整层水汽通量的年代际变化主要是由于纬向水汽输送异常作用的结果。东亚北部地区(35°~55°N,90°~145°E)西边界的水汽输送通量由多变少,东边界的水汽输送通量由少变多特征则直接导致了该地区降水由偏多转为偏少的年代际变化。就外强迫海温角度来说,前冬北大西洋海温跟东亚北部地区夏季500 hPa高度场、850 hPa风场和850 hPa比湿均显著相关。同时,在20世纪90年代中后期前冬北大西洋海温也表现出由偏低向偏高转变的年代际变化特征,且由于海温自身的记忆性前冬的海温异常一直延续到夏季。并在夏季激发出横跨北大西洋和欧亚大陆中高纬度地区的大西洋-欧亚(AEA)遥相关结构,并进一步影响东亚北部地区夏季水汽输送。  相似文献   

15.
 The Younger Dryas (YD, dated between 12.7–11.6 ky BP in the GRIP ice core, Central Greenland) is a distinct cold period in the North Atlantic region during the last deglaciation. A popular, but controversial hypothesis to explain the cooling is a reduction of the Atlantic thermohaline circulation (THC) and associated northward heat flux as triggered by glacial meltwater. Recently, a CH4-based synchronization of GRIP δ18O and Byrd CO2 records (West Antarctica) indicated that the concentration of atmospheric CO2 (COatm 2) rose steadily during the YD, suggesting a minor influence of the THC on COatm 2 at that time. Here we show that the COatm 2 change in a zonally averaged, circulation-biogeochemistry ocean model when THC is collapsed by freshwater flux anomaly is consistent with the Byrd record. Cooling in the North Atlantic has a small effect on COatm 2 in this model, because it is spatially limited and compensated by far-field changes such as a warming in the Southern Ocean. The modelled Southern Ocean warming is in agreement with the anti-phase evolution of isotopic temperature records from GRIP (Northern Hemisphere) and from Byrd and Vostok (East Antarctica) during the YD. δ13C depletion and PO4 enrichment are predicted at depth in the North Atlantic, but not in the Southern Ocean. This could explain a part of the controversy about the intensity of the THC during the YD. Potential weaknesses in our interpretation of the Byrd CO2 record in terms of THC changes are discussed. Received: 27 May 1998 / Accepted: 5 November 1998  相似文献   

16.
Analyses of cloud condensation nuclei (CCN) number concentrations (cm− 3) measured at the Mace Head Atmospheric Research Station, near Carna, County Galway, Ireland, using a DH Associates Model M1 static thermal diffusion cloud chamber over the period from March 1994 to September 2002 are presented in this work. Air masses are defined as being ‘marine’ if they originate from a wind direction of 180–300° and ‘continental’ air masses are defined as originating from a wind direction of 45–135°. Air masses without such filtering were classified as ‘undefined’ air masses. Air masses were found to be dominated by marine sector air, re-affirming Mace Head as a baseline atmospheric research station. CCN levels for specific air masses at Mace Head were found to be comparable with earlier studies both at Mace Head and elsewhere. Monthly averaged clean marine (wind direction of 180–300° and black carbon absorption coefficient < 1.425 Mm− 1) CCN and marine CCN varied between 15–247 cm− 3 and 54–670 cm− 3, respectively. As expected, significant increases in number concentration were found in continentally sourced CCN over that of marine CCN and were found to follow a log-normal distribution significantly tighter than that of clean marine air masses. No significant trend was found for CCN over the 9-year period. While polluted continental air masses showed a slight increase in CCN concentrations over the winter months, most likely due to increased fuel usage and a lower mixed boundary layer, the dominance of marine sector air arriving at Mace Head, which generally consists of background CCN concentrations, reduced seasonal differences for polluted air. Marine air showed a distinct seasonal pattern, with elevated values occurring over the spring and summer seasons. This is thought to be due to enhanced biogenic aerosol production as a result of phytoplankton bloom activity in the North Atlantic.  相似文献   

17.
A time series of microwave radiometric profiles over Arctic Canada’s Cape Bathurst (70°N, 124.5°W) flaw lead polynya region from 1 January to 30 June, 2008 was examined to determine the general characteristics of the atmospheric boundary layer in winter and spring. A surface based or elevated inversion was present on 97% of winter (January–March) days, and on 77% of spring (April–June) days. The inversion was the deepest in the first week of March (≈1100 m), and the shallowest in June (≈250 m). The mean temperature and absolute humidity from the surface to the top of the inversion averaged 250.1 K (−23.1°C), and 0.56 × 10−3 kg m−3 in winter, and in spring averaged 267.5 K (−5.6°C), and 2.77 × 10−3 kg m−3. The median winter atmospheric boundary-layer (ABL) potential temperature profile provided evidence of a shallow, weakly stable internal boundary layer (surface to 350 m) topped by an inversion (350–1,000 m). The median spring profile showed a shallow, near-neutral internal boundary layer (surface to 350 m) under an elevated inversion (600–800 m). The median ABL absolute humidity profiles were weakly positive in winter and negative in spring. Estimates of the convergence of sensible heat and water vapour from the surface that could have produced the turbulent internal boundary layers of the median profiles were 0.67 MJ m−2 and 13.1 × 10−3 kg m−2 for the winter season, and 0.66 MJ m−2 and 33.4 × 10−3 kg m−2 for the spring season. With fetches of 10–100 km, these accumulations may have resulted from a surface sensible heat flux of 15–185 W m−2, plus a surface moisture flux of 0.001–0.013 mm h−1 (or a latent heat flux of 0.7–8.8 W m−2) in winter, and 0.003–0.033 mm h−1 (or a latent heat flux of 2–22 W m−2) in spring.  相似文献   

18.
Below-cloud aerosol scavenging is generally estimated from field measurements using advanced instruments that measure changes in aerosol distributions with respect to rainfall. In this study, we discuss various scavenging mechanisms and scavenging coefficients from past laboratory and field measurements. Scavenging coefficients derived from field measurements (representing natural aerosols scavenging) are two orders higher than that of theoretical ones for smaller particles (Dp < 2 μm). Measured size-resolved scavenging coefficients can be served as a better option to the default scavenging coefficient (e.g. a constant of 10?4 s?1 for all size of aerosols, as used in the CALPUFF model) for representing below-cloud aerosol scavenging. We propose scavenging correction parameter (CR) as an exponential function of size-resolved scavenging coefficients, winds and width in the downwind of the source–receptor system. For a wind speed of 3 m s?1, CR decrease with the width in the downwind for particles of diameters Dp < 0.1 μm but CR does not vary much for particles in the accumulation mode (0.1 < Dp < 2 μm). For a typical urban aerosol distribution, assuming 3 m s?1 air-flow in the source–receptor system, 10 km downwind width, 2.84 mm h?1 of rainfall and using aerosol size dependent scavenging coefficients in the CR, scavenging of aerosols is found to be 16% in number and 24% in volume of total aerosols. Using the default scavenging coefficient (10?4 s?1) in the CALPUFF model, it is found to be 64% in both number and volume of total aerosols.  相似文献   

19.
Wang  Yuwei  Huang  Yi 《Climate Dynamics》2020,55(9-10):2343-2350

Whether the stratospheric radiative feedback amplifies the global warming remains under debate. The stratospheric water vapor (SWV), one of the primary feedbacks in the stratosphere, is argued to be an important contributor to the global warming. On the other hand, the overall stratospheric feedback, which consists of both the SWV feedback and the stratospheric temperature (ST) feedback, does not amount to a significant value. The key to reconciling these seemingly contradictory arguments is to understand the ST change. Here, we develop a method to decompose the ST change and to quantify the decomposed feedbacks. We find that the SWV feedback, which consists of a 0.04 W m−2 K−1 direct impact on the top-of-the-atmosphere radiation and 0.11 W m−2 K−1 indirect impact via ST cooling, is offset by a negative ST feedback of − 0.13 W m−2 K−1 that is radiatively driven by the tropospheric warming. This compensation results in an insignificant overall stratospheric feedback.

  相似文献   

20.
Summary A spatiotemporal trend analysis of different magnitudes related to the number and length of the dry spells in Catalonia (NE Spain) has been conducted based on daily rainfall records taken from 40 rain gauges during the second half of the 20th century. Dry spells have been computed for threshold levels of 0.1, 1, 5 and 10 mm/day at annual and semi-annual scales. The winter half-year is defined from October to March and the summer half-year from April to September. The magnitudes considered are the number, the maximum length and the mean length of the dry spells for every year and half-year. The spatial patterns of the average values of these magnitudes at the annual scale show a greater similarity with those of the summer half-year than with those of the winter half-year. A S–N or SW–NE gradient of the number of dry spells appears during the summer half-year for every threshold level. Trends of the analysed magnitudes are derived from linear regression and local statistical significances at the 95% confidence level are established using the Mann-Kendall test. Field significant trends are investigated by means of Monte Carlo simulations. The most relevant finding is that the number of dry spells per year depicts significant trends for the annual and winter-half series, with an overall decreasing trend for 5 and 10 mm/day thresholds. These observed trends are in agreement with changes in North Atlantic cyclone tracks and in Mediterranean Low dynamics, due to increasing greenhouse gas concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号