首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A numerical model is developed for two-dimensional turbulent boundary-layer flow above gentle topography — defined as not giving rise to mean flow separation. Although the model is formulated in a framework of mixing length and turbulent energy equation models for the surface layer of the atmospheric boundary layer, it could be modified to include higher-order closure hypotheses and/or extended to model gentle topography for the planetary boundary layer or on the sea bed. Results are presented for flow above a specific shape of hill and the effects of surface roughness and hill height are investigated.  相似文献   

2.
Neutral surface layer flow over low hills and varying surface roughness is considered with emphasis on closure schemes in relation to the prediction of turbulence quantities. The equations are linearised, Fourier transformed in the two horizontal directions and solved by means of a finite difference method in the vertical. Three closure schemes are. employed, namely mixing length, E- and e-- closure where E, and indicate that differential equations are used for turbulent kinetic energy, dissipation rate and shear stress. Model calculations are compared with experimental data for the step in roughness problem and for the Askervein hill. The mean flow results turn out to be relatively insensitive to the closure scheme. The shear stress and the dimensionless shear, however, are much better predicted with the E- equations than with mixing length closure. In the outer layer of the hill problem, advection of shear stress becomes important. An equation for is needed here.  相似文献   

3.
Predictions of the surface drag in turbulent boundary-layer flow over two-dimensional sinusoidal topography from various numerical models are compared. For simple 2D terrain, the model results show that the drag increases associated with topography are essentially proportional to (slope)2 up to the steepness at which the flow separates. For the purposes of boundary-layer parameterisation within larger-scale models, we propose a representation of the effects of simple 2D topography via an effective roughness length, z 0 eff. The form of the varation of z 0 eff with terrain slope and topographic wavelength is established for small slopes from the model results and a semi-empirical formula is proposed.  相似文献   

4.
We study turbulent flow over two-dimensional hills. The Reynolds stresses are represented by a second-order closure model, where advection, diffusion, production and dissipation processes are all accounted for. We solve a full set of primitive non-hydrostatic dynamic equations for mean flow quantities using a finite-difference numerical method. The model predictions for the mean velocity and Reynolds stresses are compared with the measured data from a wind-tunnel experiment that simulates the atmospheric boundary layer. The agreement is good. The performance of the second-order closure model is also compared withthat of lower level turbulence models, including the eddy-viscositymodel and algebraic Reynolds stress models. It is concluded that thepresent closure is a considerable improvement over the other modelsin representing various physical effects in flow over hills. Thefeasibility of running a finite-difference numerical simulationincorporating a full second-order closure model on an IBM workstationis also demonstrated.  相似文献   

5.
This paper presents laboratory experiments of aerodynamically fully rough, neutral flow over a series of sinusoidal hills. Two sets of hills, with maximum gradients (slopes) of 0.2 (10°) and 0.4 (20°), were considered.The flow remained attached in the former case while separation occurredin the latter. Characteristics of the mean flow and turbulence statistics are discussed and compared with profiles over a flat surface covered with the same roughness as the hills. Comparisons are made with linear theory predictions for the flow in the inner region and aloft. Accurate measurements of the surface pressure were also made, enabling the comparison between the measured pressure drag and predictions from theoretical and computational work with different turbulent closure schemes. Organised secondary flow in the spanwise direction, observed previously in both experimental and computational studies, was also observed here over the small hills.  相似文献   

6.
We develop a parameterisation for the effective roughness length of terrain that consists of a repeating sequence of patches, in which each patch is composed of strips of two roughness types. A numerical model with second-order closure in the turbulent stress is developed and used to show that: (i) the normalised Reynolds stress develops as a self-similar profile; (ii) the mixing-length parameterisation is a good first-order approximation to the Reynolds stress. These findings are used to characterise the blending layer, where the stress adjusts smoothly from its local surface value to its effective value aloft. Previous studies have assumed that this adjustment occurs abruptly at a single level, often called the blending height. The blending layer is shown to be characterised by height scales that arise naturally in linear models of surface layer flow over roughness changes, and calculations with the numerical model show that these height scales remain appropriate in the nonlinear regime. This concept of the blending layer allows the development of a new parameterisation of the effective roughness length, which gives values for the effective roughness length that are shown to compare well with both atmospheric measurements and values determined from the second-order model.  相似文献   

7.
It is well known that in a neutrally-stratified turbulent flow in a deep constant-stress layer above a flat surface,the horizontal mean velocity varies logarithmically with height (the so-called `log-law-of-the-wall').More recently, the same logarithmic law has also been foundin the presence of non-flat surfaces, where it governs thedynamics of the areally-averagedvelocity and involves renormalized effective parameters.Here, we analyze wind profiles over two-dimensional sinusoidal hillsobtained both from numerical simulations performed with a primitiveequation model and from wind-tunnel measurements. We showthat also the local velocity profiles behave to a verygood approximation logarithmically, for a distance from the surface of the order of the maximum hill height almost to the top of the boundary layer. Such alocal log-law-of-the-wall involves effective parameters smoothly depending on theposition along the underlying topography.This dependence looks very similar to the topography itself.  相似文献   

8.
Water-flume experiments are conducted to study the structure of turbulent flow within and above a sparse model canopy consisting of two rigid canopies of different heights. This difference in height specifies a two-dimensional step change from a rough to a rougher surface, as opposed to a smooth-to-rough transition. Despite the fact that the flow is in transition from a rough to a rougher surface, the thickness of the internal boundary layer scales as x 4/5, consistent with smooth-to-rough boundary layer adjustment studies, where x is the downstream distance from the step change. However, the analogy with smooth-to-rough transitions no longer holds when the flow inside the canopy and near the canopy top is considered. Results show that the step change in surface roughness significantly increases turbulence intensities and shear stress. In particular, there is an adjustment of the mean horizontal velocity and shear stress as the flow passes over the rougher canopy, so that their vertical profiles adjust to give maximum values at the top of this canopy. We also observe that the magnitude and shape of the inflection in the mean horizontal velocity profile is significantly affected by the transition. The horizontal and vertical turbulence spectra compare well with Kolmogorov’s theory, although a small deviation at high frequencies is observed in the horizontal spectrum within the canopy. Here, for relatively low leaf area index, shear is found to be a more effective mechanism for momentum transfer through the canopy structure than vortex shedding.  相似文献   

9.
Specification of the eddy exchange coefficients is perhaps one of the most difficult problems in the numerical modeling of the planetary boundary layer. These coefficients have been computed from finite-difference analogs to analytical expressions associated with surface boundary-layer similarity theory, which is based on observations in an equilibrium surface layer. This procedure leads to erroneous results in the region above the surface layer and in a non-equilibrium surface layer. In addition, differencing problems arise in regions of small vertical wind shear. A new turbulence transport model has been obtained through the closure procedures for the transport equations of the Reynolds stress and the turbulent length scale. The new approach could be used to calculate Reynolds stresses and eddy exchange coefficients throughout a non-neutral planetary boundary layer under non-equilibrium conditions.  相似文献   

10.
Evaluation of Two Energy Balance Closure Parametrizations   总被引:1,自引:0,他引:1  
A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273–292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701–716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the “missing energy” between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios $\approx $ 1.  相似文献   

11.
A horizontal shear flow having a Rossby number, Ro, greater than unity on a rotating plane can become unstable when its shear value is less than −f, the Coriolis frequency. In this paper, this instability is investigated for an O(10 km) submesoscale, sinusoidal shear flow in a thin homogeneous fluid layer as in an oceanic mixed layer or a shallow sea. The most unstable mode is shown by a linear analysis to occur in a narrow localized region centered around the maximum anticyclonic current shear. However, nonlinear numerical calculations show that the instability can grow to encompass both unstable and stable regions of the current. A consequence of this finite-amplitude evolution is the formation of surface convergence/shear fronts. The possibility that inertial instability mechanism is a source of some surface convergence/shear features seen in remote sensing images of the sea surface is discussed. A comparison is made with the shear-flow instability that can occur concurrently in a sinusoidal shear current, and inertial instability is shown to be the dominant instability mechanism in the immediate range above Ro=2.  相似文献   

12.
In their Mixed Spectral Finite Difference (MSFD) model for flow over complex terrain, Beljaars et al. (1987) solve a set of coupled, second-order ordinary differential equations (ODEs) for the first-order perturbations to the logarithmic velocity profile caused by nonuniform surface roughness and topography. To solve this set of ODEs, they employ a Forward Euler Shooting Method. It is demonstrated here that the shooting method is computationally unstable for this problem. An absolutely stable finite-difference method based on a block tridiagonal LU factorization of the finite-difference matrix is presented. The advantages of the present algorithm over the method used by Beljaars et al. are demonstrated both by theoretical argument and numerical experiment.  相似文献   

13.
A two-layer, first-order closure model for the Planetary Boundary Layer (PBL) is developed with the objective of parameterizing the surface stress with respect to the synoptic scale. The model includes stability effects by considering stratification-dependent secondary flow in the outer layer and empirical corrections to the surface layer flow. It shows the compatibility of simple eddy viscosity closure solutions with similarity theory by producing the now well-known Rossby similarity equations. It allows further insight into the Rossby similarity parameters by relating them to a single similarity parameter which is the ratio of the characteristic scales of the PBL and the surface layer.The measured and derived values of the similarity parameters A and B are compared with AIDJEX data and other published values. The variation in these values in stably stratified conditions is predicted and two alternate similarity parameters are calculated, one a constant and the other with a small variation and decreasing influence on the drag coefficient in stable stratification. The result is an empirical resistance law for a geostrophic drag coefficient variation which parameterizes an observed order-of-magnitude change in surface stress with changes in roughness or PBL stratification. This variation is related to similarity parameters characteristic of the region and to measurable changes in the geostrophic departure angle.  相似文献   

14.
Modification of a turbulent flow upstream of a change in surface roughness has been studied by means of a stream function-vorticity model.A flow reduction is found upstream of a step change in surface roughness when a fluid flows from a smooth onto a rough surface. Above that layer and above the region of flow reduction downstream of a smooth-rough transition, a flow acceleration is observed. Similar flow modification can be seen at a rough-smooth transition with the exception that flow reduction and flow acceleration are reversed. Within a fetch of –500 < x/z 0< + 500 (z 0 is the maximum roughness length, the roughness transition is located at x/z 0 = 0), flow reduction (flow acceleration) upstream of a roughness transition is one order of magnitude smaller than the flow reduction (flow acceleration) downstream of a smooth-rough (rough-smooth) transition. The flow acceleration (flow reduction) above that layer is two orders of magnitude.The internal boundary layer (IBL) for horizontal mean velocity extends to roughly 300z 0 upstream of a roughness transition, whereas the IBL for turbulent shear stress as well as the distortion of flow equilibrium extend almost twice as far. For the friction velocity, an undershooting (overshooting) with respect to upstream equilibrium is predicted which precedes overshooting (undershooting) over new equilibrium just behind a roughness transition.The flow modification over a finite fetch of modified roughness is weaker than over a corresponding fetch downstream of a single step change in roughness and the flow stays closer to upstream equilibrium. Even in front of the first roughness change of a finite fetch of modified roughness, a distortion of flow equilibrium due to the second, downwind roughness change can be observed.  相似文献   

15.
Virtually all reviews dealing with aerosol-sized particle deposition onto forested ecosystems stress the significance of topographic variations, yet only a handful of studies considered the effects of these variations on the deposition velocity (V d ). Here, the interplay between the foliage collection mechanisms within a dense canopy for different particle sizes and the flow dynamics for a neutrally stratified boundary layer on a gentle and repeating cosine hill are considered. In particular, how topography alters the spatial structure of V d and its two constitutive components, particle fluxes and particle mean concentration within and immediately above the canopy, is examined in reference to a uniform flat-terrain case. A two-dimensional and particle-size resolving model based on first-order closure principles that explicitly accounts for (i) the flow dynamics, including the two advective terms, (ii) the spatial variation in turbulent viscosity, and (iii) the three foliage collection mechanisms that include Brownian diffusion, turbo-phoresis, and inertial impaction is developed and used. The model calculations suggest that, individually, the advective terms can be large just above the canopy and comparable to the canopy collection mechanisms in magnitude but tend to be opposite to each other in sign. Moreover, these two advective terms are not precisely out of phase with each other, and hence, do not readily cancel each other upon averaging across the hill wavelength. For the larger aerosol-sized particles, differences between flat-terrain and hill-averaged V d can be significant, especially in the layers just above the canopy. We also found that the hill-induced variations in turbulent shear stress, which are out-of-phase with the topography in the canopy sublayer, play a significant role in explaining variations in V d across the hill near the canopy top. Just after the hill summit, the model results suggest that V d fell to 30% of its flat terrain value for particle sizes in the range of 1–10 μm. This reduction appears consistent with maximum reductions reported in wind-tunnel experiments for similar sized particle deposition on ridges with no canopies.  相似文献   

16.
Several numerical experiments are conducted to examine the influence of mesoscale, bottom topography roughness on the inertial circulation of a wind-driven, mid-latitude ocean gyre. The ocean model is based on the quasi-geostrophic formulation, and is eddy-resolving as it features high vertical and horizontal resolutions (six layers and a 10 km grid). An antisymmetrical double-gyre wind stress curl forces the baroclinic modes and generates a strong surface jet. In the case of a flat bottom, inertia and inverse energy cascade force the barotropic mode, and the resulting circulation features strong, barotropic, inertial gyres. The sea-floor roughness inhibits the inertial circulation in the deep layers; the barotropic component of the flow is then forced by eddy-topography interactions, and its energy concentrates at the scales of the topography. As a result, the baroclinicity of the flow is intesified: the barotropic mode is reduced with regard to the baroclinic modes, and the bottom flow (constrained by the mesoscale sea-floor roughness) is decoupled from the surface flow (forced by the gyre-scale wind). Rectified, mesoscale bottom circulation induces an interfacial form stress at the thermocline, which enhances horizontal shear instability and opposes the eastward penetration of the jet. The mean jet is consequently shortened, but the instantaneous jet remains very turbulent, with meanders of large meridional extent. The sea-floor roughness modifies the energy pathways, and the eddies have an even more important role in the establishment of the mean circulation: below the thermocline, rectification processes are dominant, and eddies transfer energy toward permanent mesoscale circulations strongly correlated with topography, whereas above the thermocline mean flow and eddy generation are influenced by the mean bottom circulation through interfacial stress. The topography modifies the vorticity of the barotropic and highest baroclinic modes. Vorticity accumulates at the small topographic scales, and the vorticity content of the highest modes, which is very weak in the flat-bottom case, increases significantly. Few changes occur in surface-intensified modes. In the deep layers of the model, the inverse correlation between relative vorticity and topography at small scales ensures the homogenization of the potential vorticity, which mainly retains the largest scales of the bottom flow and the scale of β.  相似文献   

17.
A simple new model is proposed to predict the distribution of wind velocity and surface shear stress downwind of a rough-to-smooth surface transition. The wind velocity is estimated as a weighted average between two limiting logarithmic profiles: the first log law, which is recovered above the internal boundary-layer height, corresponds to the upwind velocity profile; the second log law is adjusted to the downwind aerodynamic roughness and local surface shear stress, and it is recovered near the surface, in the equilibrium sublayer. The proposed non-linear form of the weighting factor is equal to ln(z/z 01)/ln(δ i /z 01), where z, δ i and z 01 are the elevation of the prediction location, the internal boundary-layer height at that downwind distance, and the upwind surface roughness, respectively. Unlike other simple analytical models, the new model does not rely on the assumption of a constant or linear distribution for the turbulent shear stress within the internal boundary layer. The performance of the new model is tested with wind-tunnel measurements and also with the field data of Bradley. Compared with other existing analytical models, the proposed model shows improved predictions of both surface shear stress and velocity distributions at different positions downwind of the transition.  相似文献   

18.
Shear-stress partitioning is investigated for one type of flexible plant for very small values of the basal-to-frontal area ratio σ (0.001–0.007). The plant model is made of plastic with irregular structures, which are different from previously investigated rigid regular or flexible roughness elements with larger σ values. The distribution of the surface shear stress and the total shear stress at four plant densities with five plant heights are measured in a wind tunnel using Irwin-type sensors and a load cell, respectively. The wind-tunnel experiments prove that, for these flexible plants, the plant height and lateral cover usually decrease with increasing friction velocity, especially for taller plants, while the plant coverage generally increases. However, these characteristics may be inconsistent with flexible roughness elements with very large σ values (and usually very low aspect ratios) because these elements are less flexible. The present flexible plants generally result in lower shear-stress ratios compared with other roughness elements, which is also proven by the higher values of β (the ratio of the drag coefficient of an isolated roughness element to that of the bare surface) and a constant m (accounting for the difference between the average and peak surface shear stresses) from the present experiments (β?=?184–210 and m?=?0.68–0.79). The peak mean stress ratio of the present flexible plants is not a constant (1.07–1.54) because it is affected by the lateral cover, which is different from previous studies that consider the ratio to be constant without regard for the lateral cover.  相似文献   

19.
Flow in the urban boundary layer is strongly influenced by the surface roughness, which is composed principally of isolated buildings or groups of buildings. Previous research has shown that the flow regime depends on the characteristic height of these obstacles (H), and the spacing between them (W). In reality, the urban boundary layer contains roughness elements with a wide range of length scales; in many practical situations these can be classified into large-scale roughness—buildings, or groups of buildings—and small-scale roughness, such as street furniture and elements on the façades and roofs. It is important to understand how the small-scale roughness might modify mass and momentum transfer in the urban boundary layer, but relatively little information is available concerning the potential interaction between large- and small-scale roughness elements in the different flow regimes. This problem has been studied using wind-tunnel experiments, by measuring vertical velocity profiles over a two-dimensional obstacle array, adding small-scale roughness elements to the top of larger parallel square bars. The experiments were performed for different cavity aspect ratios: the results show that the small-scale roughness increases the turbulence intensities and the momentum transfer when the large-scale obstacles are closely packed (H/W > 1) but it has very little effect for more widely-spaced obstacles (H/W < 1).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号