首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The influence of surface heterogeneities extends vertically within the atmospheric surface layer to the so-called blending height, causing changes in the fluxes of momentum and scalars. Inside this region the turbulence structure cannot be treated as horizontally homogeneous; it is highly dependent on the local surface roughness, the buoyancy and the horizontal scale of heterogeneity. The present study analyzes the change in scalar flux induced by the presence of a large wind farm installed across a heterogeneously rough surface. The change in the internal atmospheric boundary-layer structure due to the large wind farm is decomposed and the change in the overall surface scalar flux is assessed. The equilibrium length scale characteristic of surface roughness transitions is found to be determined by the relative position of the smooth-to-rough transition and the wind turbines. It is shown that the change induced by large wind farms on the scalar flux is of the same order of magnitude as the adjustment they naturally undergo due to surface patchiness.  相似文献   

2.
Modification of a turbulent flow upstream of a change in surface roughness has been studied by means of a stream function-vorticity model.A flow reduction is found upstream of a step change in surface roughness when a fluid flows from a smooth onto a rough surface. Above that layer and above the region of flow reduction downstream of a smooth-rough transition, a flow acceleration is observed. Similar flow modification can be seen at a rough-smooth transition with the exception that flow reduction and flow acceleration are reversed. Within a fetch of –500 < x/z 0< + 500 (z 0 is the maximum roughness length, the roughness transition is located at x/z 0 = 0), flow reduction (flow acceleration) upstream of a roughness transition is one order of magnitude smaller than the flow reduction (flow acceleration) downstream of a smooth-rough (rough-smooth) transition. The flow acceleration (flow reduction) above that layer is two orders of magnitude.The internal boundary layer (IBL) for horizontal mean velocity extends to roughly 300z 0 upstream of a roughness transition, whereas the IBL for turbulent shear stress as well as the distortion of flow equilibrium extend almost twice as far. For the friction velocity, an undershooting (overshooting) with respect to upstream equilibrium is predicted which precedes overshooting (undershooting) over new equilibrium just behind a roughness transition.The flow modification over a finite fetch of modified roughness is weaker than over a corresponding fetch downstream of a single step change in roughness and the flow stays closer to upstream equilibrium. Even in front of the first roughness change of a finite fetch of modified roughness, a distortion of flow equilibrium due to the second, downwind roughness change can be observed.  相似文献   

3.
The statistics of turbulent flow across a forest edge have been examined using large-eddy simulation, and results compared with field and wind-tunnel observations. The moorland-to-forest transition is characterized by flow deceleration in the streamwise direction, upward distortion of the mean flow, formation of a high pressure zone immediately in front of the edge, suppression of the standard deviations and covariance of velocity components, and enhancement of velocity skewnesses. For the selected forest density, it is observed that the maximum distortion angle is about 8 degrees from the horizontal. Instead of approaching a downwind equilibrium state in a monotonic manner, turbulence (standard deviations and covariances of velocity components) and mean streamwise velocity undershoot in the transition zone behind the edge. Evolution of flow statistics clearly reveals the growth of an internal boundary layer, and the establishment of an equilibrium layer downwind of the edge. It is evident that lower-order moments generally adjust more quickly over the new rough surface than do higher-order moments. We also show that the streamwise velocity standard deviation at canopy height starts its recovery over the rough surface sooner than does the vertical velocity standard deviation, but completes full adjustment later than the latter. Despite the limited domain size upstream of the edge, large-eddy simulation has successfully reproduced turbulent statistics in good agreement with field and wind-tunnel measurements.  相似文献   

4.
Turbulence Statistics Above And Within Two Amazon Rain Forest Canopies   总被引:1,自引:1,他引:0  
The turbulence structure in two Amazon rain forestswas characterised for a range of above-canopystability conditions, and the results compared withprevious studies in other forest canopies and recenttheory for the generation of turbulent eddies justabove forest canopies. Three-dimensional wind speedand temperature fluctuation data were collectedsimultaneously at up to five levels inside and abovetwo canopies of 30–40 m tall forests, during threeseparate periods. We analysed hourly statistics, jointprobability distributions, length scales, spatialcorrelations and coherence, as well as power spectraof vertical and horizontal wind speed.The daytime results show a sharp attenuation ofturbulence in the top third of the canopies, resultingin very little movement, and almost Gaussianprobability distributions of wind speeds, in the lowercanopy. This contrasts with strongly skewed andkurtotic distributions in the upper canopy. At night,attenuation was even stronger and skewness vanishedeven in the upper canopy. Power spectral peaks in thelower canopy are shifted to lower frequencies relativeto the upper canopy, and spatial correlations andcoherences were low throughout the canopy. Integrallength scales of vertical wind speed at the top of thecanopy were small, about 0.15 h compared to avalue of 0.28 h expected from the shear lengthscale at the canopy top, based on the hypothesis that theupper canopy air behaves as a plane mixing layer. Allthis suggests that, although exchange is not totallyinhibited, tropical rain forest canopies differ from other forests in that rapid, coherentdownward sweeps do not penetrate into the lowercanopy, and that length scales are suppressed. This isassociated with a persistent inversion of stability inthat region compared to above-canopy conditions. Theinversion is likely to be maintained by strong heatabsorption in the leaves concentrated near thecanopy top, with the generally weak turbulence beingunable to destroy the temperature gradients over thelarge canopy depth.  相似文献   

5.
Large-eddy simulations were performed of a neutrally-stratified turbulent flow within and above an ideal, horizontally- and vertically-homogeneous plant canopy. Three simulations were performed for shear-driven flows in small and large computational domains, and a pressure-driven flow in a small domain, to enable the nature of canopy turbulence unaffected by external conditions to be captured. The simulations reproduced quite realistic canopy turbulence characteristics, including typical ramp structures appearing in time traces of the scalar concentration near the canopy top. Then, the spatial structure of the organised turbulence that caused the scalar ramps was examined using conditional sampling of three-dimensional instantaneous fields, triggered by the occurrence of ramp structures. A wavelet transform was used for the detection of ramp structures in the time traces. The ensemble-averaged results illustrate that the scalar ramps are associated with the microfrontal structure in the scalar, the ejection-sweep structure in the streamwise and vertical velocities, a laterally divergent flow just around the ramp-detection point, and a positive, vertically-coherent pressure perturbation. These vertical structures were consistent with previous measurements made in fields or wind tunnels. However, the most striking feature is that the horizontal slice of the same structure revealed a streamwise-elongated region of high-speed streamwise velocity impacting on another elongated region of low-speed velocity. These elongated structures resemble the so-called streak structures that are commonly observed in near-wall shear layers. Since elongated structures of essentially similar spatial scales were observed in all of the runs, these streak structures appear to be inherent in near-canopy turbulence. Presumably, strong wind shear formed just above the canopy is involved in their formation. By synthesis of the ensemble-averaged and instantaneous results, the following processes were inferred for the development of scalar microfronts and their associated flow structures: (1) a distinct scalar microfront develops where a coherent downdraft associated with a high-speed streak penetrates into the region of a low-speed streak; (2) a stagnation in flow between two streaks of different velocities builds up a vertically-coherent high-pressure region there; (3) the pressure gradients around the high-pressure region work to reduce the longitudinal variations in streamwise velocity and to enhance the laterally-divergent flow and lifted updrafts downstream of the microfront; (4) as the coherent mother downdraft impinges on the canopy, canopy-scale eddies are formed near the canopy top in a similar manner as observed in conventional mixing-layer turbulence.  相似文献   

6.
We have analyzed eddy covariance data collected within open canopy to investigate the influence of non-flat terrain and wind direction shear on the canopy turbulence. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree at this site. A variety of turbulent statistics were examined as a function of wind direction in near-neutral conditions. Heterogeneous surface characteristics results in significant differences in measured turbulent statistics. Upwind trees on the flat and up-sloping terrains yield typical features of canopy turbulence while upwind elevated surface with trees yields significant wind direction shear, reduced u and w skewness, and negligible correlation between u and w. The directional dependence of turbulence statistics is due that strong wind blows more horizontally rather than following terrain, and hence combination of slope related momentum flux and canopy eddy motion decreases the magnitude of Sk w and r uw for the downslope flow while it enhances them for the upslope flow. Significant v skewness to the west indicates intermittent downdraft of northerly wind, possibly due to lateral shear of wind in the presence of significant wind direction shear. The effects of wind direction shear on turbulent statistics were also examined. The results showed that correlation coefficient between lateral velocities and vertical velocity show significant dependence on wind direction shear through change of lateral wind shear. Quadrant analysis shows increased outward interaction and reduced role of sweep motion for longitudinal momentum flux for the downslope flow. Multi-resolution analysis indicates that uw correlation shows peak at larger averaging time for the upslope flow than for the downslope flow, indicating that large eddy plays an active role in momentum transfer for the upslope flow. On the other hand, downslope flow shows larger velocity variances than other flows despite similar wind speed. These results suggest that non-flatness of terrain significantly influences on canopy-atmosphere exchange.  相似文献   

7.
The damage caused by windstorms to forest ecosystems is often very heterogeneous. In order to improve the stability of forested landscapes, it is of great importance to identify the factors responsible for this spatial variability. The structure of the landscape itself may play a role, through possible influences of canopy heterogeneities on the development of turbulence. For the purpose of investigating the role of landscape fragmentation on turbulence development, we used a numerical flow model with a k–ε turbulence scheme model, previously validated in simple cases with well-defined surface changes (roughness change and forest edge flow). A series of two- and three-dimensional simulations were performed over a heterogeneous urban forested park in Europe, which was severely damaged in various places by the Lothar windstorm in December 1999. The model shows the development of a region of strong turbulence, resulting from the generation of large wind shear at the top of the canopy. A sensitivity study shows how the location, extension and intensity of the region depend on canopy characteristics such as the leaf density, the nature of the edge or the presence of gaps and clearings. Simulations performed in conditions representative of the windstorm show that the location of the damaged areas corresponds very closely to the regions where the turbulent kinetic energy was above a certain threshold.  相似文献   

8.
We analyse single-point velocity statistics obtained in a wind tunnel within and above a model of a waving wheat crop, consisting of nylon stalks 47 mm high and 0.25 mm wide in a square array with frontal area index 0.47. The variability of turbulence measurements in the wind tunnel is illustrated by using a set of 71 vertical traverses made in different locations, all in the horizontally-homogeneous (above-canopy) part of the boundary layer. Ensemble-averaged profiles of the statistical moments up to the fourth order and profiles of Eulerian length scales are presented and discussed. They are consistent with other similar experiments and reveal the existence of large-scale turbulent coherent structures in the flow. The drag coefficient in this canopy as well as in other reported experiments is shown to exhibit a characteristic height-dependency, for which we propose an interpretation. The velocity spectra are analysed in detail; within and just above the canopy, a scaling based on fixed length and velocity scales (canopy height and mean horizontal wind speed at canopy top) is proposed. Examination of the turbulent kinetic energy and shear stress budgets confirms the role of turbulent transport in the region around the canopy top, and indicates that pressure transport may be significant in both cases. The results obtained here show that near the top of the canopy, the turbulence properties are more reminiscent of a plane mixing layer than a wall boundary layer.  相似文献   

9.
Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy   总被引:58,自引:42,他引:16  
This paper argues that the active turbulence and coherent motions near the top of a vegetation canopy are patterned on a plane mixing layer, because of instabilities associated with the characteristic strong inflection in the mean velocity profile. Mixing-layer turbulence, formed around the inflectional mean velocity profile which develops between two coflowing streams of different velocities, differs in several ways from turbulence in a surface layer. Through these differences, the mixing-layer analogy provides an explanation for many of the observed distinctive features of canopy turbulence. These include: (a) ratios between components of the Reynolds stress tensor; (b) the ratio K H/K M of the eddy diffusivities for heat and momentum; (c) the relative roles of ejections and sweeps; (d) the behaviour of the turbulent energy balance, particularly the major role of turbulent transport; and (e) the behaviour of the turbulent length scales of the active coherent motions (the dominant eddies responsible for vertical transfer near the top of the canopy). It is predicted that these length scales are controlled by the shear length scale % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa% aaleaacaWGtbaabeaakiabg2da9iaadwfacaGGOaGaamiAaiaacMca% caGGVaGabmyvayaafaGaaiikaiaadIgacaGGPaaaaa!3FD0!\[L_S = U(h)/U'(h)\] (where h is canopy height, U(z) is mean velocity as a function of height z, and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaafa% Gaeyypa0JaaeizaiaadwfacaGGVaGaaeizaiaadQhaaaa!3C32!\[U' = {\rm{d}}U/{\rm{d}}z\]). In particular, the streamwise spacing of the dominant canopy eddies is x = mL s, with m = 8.1. These predictions are tested against many sets of field and wind-tunnel data. We propose a picture of canopy turbulence in which eddies associated with inflectional instabilities are modulated by larger-scale, inactive turbulence, which is quasi-horizontal on the scale of the canopy.  相似文献   

10.
This is the first of a series of three papers describing experiments on the dispersion of trace heat from elevated line and plane sources within a model plant canopy in a wind tunnel. Here we consider the wind field and turbulence structure. The model canopy consisted of bluff elements 60 mm high and 10 mm wide in a diamond array with frontal area index 0.23; streamwise and vertical velocity components were measured with a special three-hot-wire anemometer designed for optimum performance in flows of high turbulence intensity. We found that:
  1. The momentum flux due to spatial correlations between time-averaged streamwise and vertical velocity components (the dispersive flux) was negligible, at heights near and above the top of the canopy.
  2. In the turbulent energy budget, turbulent transport was a major loss (of about one-third of local production) near the top of the canopy, and was the principal gain mechanism lower down. Wake production was greater than shear production throughout the canopy. Pressure transport just above the canopy, inferred by difference, appeared to be a gain in approximate balance with the turbulent transport loss.
  3. In the shear stress budget, wake production was negligible. The role of turbulent transport was equivalent to that in the turbulent energy budget, though smaller.
  4. Velocity spectra above and within the canopy showed the dominance of large eddies occupying much of the boundary layer and moving downstream with a height-independent convection velocity. Within the canopy, much of the vertical but relatively little of the streamwise variance occurred at frequencies characteristic of wake turbulence.
  5. Quadrant analysis of the shear stress showed only a slight excess of sweeps over ejections near the top of the canopy, in contrast with previous studies. This is a result of improved measurement techniques; it suggests some reappraisal of inferences previously drawn from quadrant analysis.
  相似文献   

11.
The adjustment of the boundary layer immediately downstream froma coastline is examined based on two levels of eddy correlation data collected on a mast at the shore and six levels of eddy correlation data and profiles of mean variables collected from a mast 2 km offshore during the Risø Air-Sea Experiment. The characteristics of offshore flow are studied in terms of case studies and inter-variable relationships for the entire one-month data set. A turbulent kinetic energy budget is constructed for each case study.The buoyancy generation of turbulence is small compared to shear generation and dissipation. However, weakly stable and weakly unstable cases exhibit completely different vertical structure. With flow of warm air from land over cooler water, modest buoyancy destruction of turbulence and reduced shear generation of turbulence over the less rough sea surface cause the turbulence to rapidly weaken downstream from the coast. The reduction of downward mixing of momentum by the stratification leads to smaller roughness lengths compared to the unstable case. Shear generation at higher levels and advection of stronger turbulence from land often lead to an increase of stress and turbulence energy with height and downward transport of turbulence energy toward the surface.With flow of cool air over a warmer sea surface, a convective internal boundary layer develops downstream from the coast. An overlying relatively thick layer of downward buoyancy flux (virtual temperature flux) is sometimes maintained by shear generation in the accelerating offshore flow.  相似文献   

12.
Coherent Turbulent Structures Across a Vegetation Discontinuity   总被引:3,自引:2,他引:1  
The study of turbulent flow across a vegetation discontinuity is of significant interest as such landscape features are common, and as there is no available theory to describe this regime adequately. We have simulated the three-dimensional dynamics of the airflow across a discontinuity between a forest (with a leaf area index of 4) and a clearing surface using large-eddy simulation. The properties of the bulk flow, as well as the large-scale coherent turbulent structures across the forest-to-clearing transition and the clearing-to-forest transition, are systematically explored. The vertical transport of the bulk flow upstream of the leading edge gives rise to the enhanced gust zone around the canopy top, while the transport downstream of the trailing edge leads to the formation of a recirculation zone above the clearing surface. The large-scale coherent structures across the two transitions exhibit both similarities with and differences from those upstream of the corresponding transition. For example, the ejection motion is dominant over the sweep motion in most of the region 1?<?z/h < 2 (h is the canopy height) immediately downstream of the trailing edge, much as in the forested area upstream. Also, the streamwise vortex pair, which has previously been observed within the canopy sublayer and the atmospheric boundary layer, is consistently found across both transitions. However, the inflection observed both in the mean streamwise velocity, as well as in the vertical profiles of the coherent structures in the forested area, disappears gradually across the forest-to-clearing transition. The coherence of the turbulence, quantified by the percentage of the total turbulence kinetic energy that the coherent structures capture from the flow, decreases sharply immediately downstream of the trailing edge of the forest and increases downstream of the leading edge of the forest. The effects of the ratio of the forest/clearing lengths under a given streamwise periodicity on flow statistics and coherent turbulent structures are presented as well.  相似文献   

13.
The Influence of Hilly Terrain on Canopy-Atmosphere Carbon Dioxide Exchange   总被引:1,自引:1,他引:1  
Topography influences many aspects of forest-atmosphere carbon exchange; yet only a small number of studies have considered the role of topography on the structure of turbulence within and above vegetation and its effect on canopy photosynthesis and the measurement of net ecosystem exchange of CO2 (Nee) using flux towers. Here, we focus on the interplay between radiative transfer, flow dynamics for neutral stratification, and ecophysiological controls on CO2 sources and sinks within a canopy on a gentle cosine hill. We examine how topography alters the forest-atmosphere CO2 exchange rate when compared to uniform flat terrain using a newly developed first-order closure model that explicitly accounts for the flow dynamics, radiative transfer, and nonlinear eco physiological processes within a plant canopy. We show that variation in radiation and airflow due to topography causes only a minor departure in horizontally averaged and vertically integrated photosynthesis from their flat terrain values. However, topography perturbs the airflow and concentration fields in and above plant canopies, leading to significant horizontal and vertical advection of CO2. Advection terms in the conservation equation may be neglected in flow over homogeneous, flat terrain, and then Nee = Fc, the vertical turbulent flux of CO2. Model results suggest that vertical and horizontal advection terms are generally of opposite sign and of the same order as the biological sources and sinks. We show that, close to the hilltop, Fc departs by a factor of three compared to its flat terrain counterpart and that the horizontally averaged Fc-at canopy top differs by more than 20% compared to the flat-terrain case.  相似文献   

14.
The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer.It is found that when the mean horizontal flow was stronger,the turbulent kinetic energy was increased at all levels,as well as the downward mean wind at the middle level.Since the mean vertical flow on the top and bottom were both negligible at that time,there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column.After consideration of energy conversion,it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other.The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow.Turbulent sensible and latent heat flux anomaly were also analyzed.The results show that in both daytime and at night,when the surface layer turbulence was intensified as a result of strengthened mean flow,the sensible heat flux was decreased while the latent heat flux was increased.Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.  相似文献   

15.
Momentum and turbulent kinetic energy (TKE) budgets across a forest edge have been investigated using large-eddy simulation (LES). Edge effects are observed in the rapid variation of a number of budget terms across this vegetation transition. The enhanced drag force at the forest edge is largely balanced by the pressure gradient force and by streamwise advection of upstream momentum, while vertical turbulent diffusion is relatively insignificant. For variance and TKE budgets, the most important processes at the forest edge are production due to the convergence (or divergence) of the mean flow, streamwise advection, pressure diffusion and enhanced dissipation by canopy drag. Turbulent diffusion, pressure redistribution and vertical shear production, which are characteristic processes in homogeneous canopy flow, are less important at the forest transition. We demonstrate that, in the equilibrated canopy flow, a substantial amount of TKE produced in the streamwise direction by the vertical shear of the mean flow is redistributed in the vertical direction by pressure fluctuations. This redistribution process occurs in the upper canopy layers. Part of the TKE in the vertical velocity component is transferred by turbulent and pressure diffusion to the lower canopy levels, where pressure redistribution takes place again and feeds TKE back to the streamwise direction. In this TKE cycle, the primary source terms are vertical shear production for streamwise velocity variance and pressure redistribution for vertical velocity variance. The evolution of these primary source terms downwind of the forest edge largely controls the adjustment rates of velocity variances.  相似文献   

16.
The dependence on atmospheric stability of flow characteristics adjacent to a very rough surface was investigated in a larch forest in Japan. Micrometeorological measurements of three-dimensional wind velocity and air temperature were taken at two heights above the forest, namely 1.7 and 1.2 times the mean canopy height h. Under near-neutral and stable conditions, the observed turbulence statistics suggest that the flow was likely to be that of the atmospheric surface layer (ASL) at 1.7h, and of the roughness sublayer (RSL) at 1.2h. However, in turbulence spectra, canopy-induced large coherent motions appeared clearly at both heights. Even under strongly stable conditions, the large-scale motions were retained at 1.2h, whereas they were overwhelmed by small-scale motions at 1.7h. This phenomenon was probably due to the enhanced contribution of the ASL turbulence associated with nocturnal decay of the RSL depth, because the small-scale motions appeared at frequencies close to the peak frequencies of well-known ASL spectra. This result supports the relatively recent concept that canopy flow is a superimposition of coherent motions and the ASL turbulence. The large-scale motions were retained in temperature spectra over a wider region of stability compared to streamwise wind spectra, suggesting that a canopy effect extended higher up for temperature than wind. The streamwise spacing of dominant eddies according to the plane mixing-layer analogy was only valid in a narrow range at near neutral, and it was stabilised at nearly half its value under stable conditions.  相似文献   

17.
Detection and analysis of coherent structures in urban turbulence   总被引:3,自引:0,他引:3  
Summary The continuous wavelet transform provides a suitable tool to visualize the vertical structure of turbulence and to detect coherent structures in turbulent time series. This is demonstrated with a simple example of an artificially ramp structured time series. In this study turbulence data, i.e. the fluctuations of the horizontal wind components u′ and v′, the vertical component w′ and temperature T′, sampled with 20.83 Hz and measured simultaneously at three levels (z/h=1.5, 2.1 and 3.2, with z as the sensor height and h the height of the roughness elements) over an urban canopy in the inner city of Basel, Switzerland, are analyzed. The detection of the coherent structures was performed using the Mexican hat wavelet and the zero-crossing method. The analysis for unstable conditions shows that organized structures (ejection-sweep cycles) cover about 45% of the total run time. A conditional average from a total of 116 detected ejection-sweep sequences during 7 hours was calculated over a time window of 100 seconds. This dominating time scale was derived from peak frequencies of the wavelet spectra as well as from the Fourier spectra. It is shown that the normalized amplitudes of fluctuations of temperature and longitudinal wind speed during the events are largest at the lowest measurement level just above the canopy and decrease with increasing distance from the roughness elements. A comparison of related studies over different non-urban surfaces (mainly forests) shows that the shape of conditionally averaged ejection-sweep sequences is very similar for all canopies, however, the dominating time scale in general increases the rougher the surface is and the higher the roughness elements are.  相似文献   

18.
We present a new model of the structure of turbulence in the unstable atmospheric surface layer, and of the structural transition between this and the outer layer. The archetypal element of wall-bounded shear turbulence is the Theodorsen ejection amplifier (TEA) structure, in which an initial ejection of air from near the ground into an ideal laminar and logarithmic flow induces vortical motion about a hairpin-shaped core, which then creates a second ejection that is similar to, but larger than, the first. A series of TEA structures form a TEA cascade. In real turbulent flows TEA structures occur in distorted forms as TEA-like (TEAL) structures. Distortion terminates many TEAL cascades and only the best-formed TEAL structures initiate new cycles. In an extended log layer the resulting shear turbulence is a complex, self-organizing, dissipative system exhibiting self-similar behaviour under inner scaling. Spectral results show that this structure is insensitive to instability. This is contrary to the fundamental hypothesis of Monin--Obukhov similarity theory. All TEAL cascades terminate at the top of the surface layer where they encounter, and are severely distorted by, powerful eddies of similar size from the outer layer. These eddies are products of the breakdown of the large eddies produced by buoyancy in the outer layer. When the outer layer is much deeper than the surface layer the interacting eddies are from the inertial subrange of the outer Richardson cascade. The scale height of the surface layer, z s, is then found by matching the powers delivered to the creation of emerging TEAL structures to the power passing down the Richardson cascade in the outer layer. It is z s = u * 3 /ks, where u * is friction velocity, k is the von Kármán constant and s is the rate of dissipation of turbulence kinetic energy in the outer layer immediately above the surface layer. This height is comparable to the Obukhov length in the fully convective boundary layer. Aircraft and tower observations confirm a strong qualitative change in the structure of the turbulence at about that height. The tallest eddies within the surface layer have height z s, so z s is a new basis parameter for similarity models of the surface layer.  相似文献   

19.
This study examines the structure of horizontal modes (meandering, vortical modes or fossil turbulence) in a layer of intermittent turbulence occurring at the top of a strongly stratified nocturnal inversion layer as observed by fast response aircraft data. The spatial variation of the coefficients of the principal components identify regular coherent structures with mainly horizontal motions. Conditional sampling is formulated in terms of this spatial variation. The quasi-horizontal motions are characterized by relatively sharp edges (transition zones) where horizontal convergence or divergence, small-scale turbulence and vertical fluxes seem to be concentrated. Zones of horizontal divergence appear to be associated with ejection of cold air from the underlying surface inversion while the convergent zones might be due to random collisions between horizontal modes.  相似文献   

20.
Canopy turbulence plays an important role in mass and energy exchanges at the canopy-atmosphere interface. Despite extensive studies on canopy turbulence over a flat terrain, less attention has been given to canopy turbulence in a complex terrain. The purpose of this study is to scrutinize characteristics of canopy turbulence in roughness sublayer over a hilly forest terrain. We investigated basic turbulence statistics, conditionally sampled statistics, and turbulence spectrum in terms of different atmospheric stabilities, wind direction and vertical structures of momentum fluxes. Similarly to canopy turbulence over a homogeneous terrain, turbulence statistics showed coherent structure. Both quadrant and spectrum analysis corroborated the role of intermittent and energetic eddies with length scale of the order of canopy height, regardless of wind direction except for shift of peak in vertical wind spectrum to relatively high frequency in the down-valley wind. However, the magnitude of the momentum correlation coefficient in a neutral condition was smaller than typical value over a flat terrain. Further scrutiny manifested that, in the up-valley flow, temperature skewness was larger and the contribution of ejection to both momentum and heat fluxes was larger compared to the downvalley flow, indicating that thermal instability and weaker wind shear in up-valley flow asymmetrically affect turbulent transport within the canopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号