首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Based on total ozone data from the World Ozone Data Center and stratospheric geopotential height data from the Meteorological Institute of Berlin Free University for the months of January through March for the time period of 1958–1996, the influence of the 11-year solar cycle and the equatorial quasi-biennial oscillation (QBO) on total ozone and the stratospheric circulation at 30 hPa over Northern Europe is investigated. The analysis is performed for different levels of solar activity. The relationship of the equatorial QBO with ozone and the stratospheric circulation over the study region exhibits unique features attributed to strong opposite connections between the equatorial zonal wind and ozone/stratospheric dynamics during periods of solar minimum and maximum. Using the Solar/QBO effect, a statistical extraction of the interannual variations of total ozone and stratospheric circulation over Northern Europe has been attempted. The variations extracted and observed for late winter show very good correspondence. The solar/QBO effect in total ozone and stratospheric dynamics over Northern Europe appears to be related to planetary wave activity.  相似文献   

2.
冬季太阳11年周期活动对大气环流的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
刘毅  陆春晖 《地球物理学报》2010,53(6):1269-1277
利用气象场的再分析资料和太阳辐射活动资料,对太阳11年周期活动影响北半球冬季(11月~3月)大气环流的过程进行了统计分析和动力学诊断.根据赤道平流层纬向风准两年振荡(QBO)的东、西风状态对太阳活动效应进行了分类讨论,结果表明:东风态QBO时,太阳活动效应主要集中在赤道平流层中、高层和南半球平流层,强太阳活动时增强的紫外辐射加热了赤道地区的臭氧层,造成平流层低纬明显增温,同时加强了南半球的Brewer-Dobson(B-D)环流,引起南极高纬平流层温度增加;而北半球中高纬的环流主要受行星波的影响,太阳活动影响很小.西风态QBO时,太阳活动效应在北半球更为重要,初冬时强太阳活动除了加热赤道地区臭氧层外,还抑制了北半球的B-D环流,造成赤道平流层温度增加和纬向风梯度在垂直方向的变化,从而改变了对流层两支行星波波导的强度;冬末时在太阳活动调制下,行星波向极波导增强,B-D环流逐渐恢复,造成北半球极地平流层明显增温,同时伴随着赤道区域温度的下降.  相似文献   

3.
The spectral structure of stratospheric fields (temperature and geopotential) is analyzed in terms of spherical harmonics in an effort to study the long-term behaviour of large-scale circulation patterns, as well as their connections to some extra-terrestrial effects. The daily meteorological data from the Free University Berlin (FUB) cover more or less the period 1976–1996 and are available for stratospheric levels of 50, 30 and 10 hPa. The analysis of the annual cycle of spherical harmonics is introduced, and changes of the principal wave components are compared with the changes in different sets of solar, geomagnetic and global circulation indices. This paper also deals with interannual variability with special emphasis on quasibiennial oscillations (QBO) and El Nino and Southern Oscillations (ENSO). Although this is a rather preliminary study, the decomposition of the stratospheric field into complex spherical harmonics seems to be a powerful technique in investigating and qualifying the response of the global atmospheric system to the changes in solar and geomagnetic activity, and in qualifying the relationships between large-scale circulation patterns and various oscillations such as QBO or ENSO, Using this technique, reasonable strong connections were found between wave numbers and interannual factors, and these connections were tentatively interpreted in terms of statistics. A very high degree of correlation was found for the four-trough shape of the polar vortex.  相似文献   

4.
This paper contains correlations between the NCEP/NCAR global stratospheric data below 10 hPa and the 11-year solar cycle. In the north summer the correlations between the stratospheric geopotential heights and the 11-year solar cycle are strong and positive on the Northern Hemisphere and as far south as 30°S, whereas they are weak in the north winter all over the globe. If the global stratospheric heights and temperatures in the north winter are stratified according to the phase of the QBO in the lower stratosphere, their correlations with the solar cycle are large and positive in the Arctic in the west years of the QBO but insignificantly small over the rest of the earth, as far as the South Pole. In the east years, however, the arctic correlations with the solar cycle are negative, but to the south they are positive and strong in the tropical and temperate regions of both hemispheres, similar to the correlations with the full series of stratospheric data in the other seasons. The influence of the solar cycle in the Arctic is stronger in the latter half of the winter. The global difference, in the northern winter, in the sign and strength of the correlations between the stratospheric heights and temperatures and the solar cycle in east and west years of the QBO can be ascribed to the fact that the dominant stratospheric teleconnection and the solar influence work in the same direction in the east years, but oppose each other in the west years.  相似文献   

5.
R. P. Kane 《Annales Geophysicae》1997,15(12):1581-1594
Data for geomagnetic activity index aa for 1868–1994 were subjected to spectral analysis for 12 intervals each of 11 consecutive years. In each interval, QBO and QTO (quasi-biennial and quasi-triennial oscillations) were observed at ∼ 2.00, 2.15, 2.40, 2.70 y and ∼ 3.20, 3.40 y, but not all in all intervals. These fluctuations are absent near (2–3 y before and after) the sunspot minima and are present only as 2 or 3 peaks in aa indices, one near or before the sunspot maximum and the other (one or two, generally the larger ones) in the declining phase of the sunspot cycle. Comparison with the solar wind (1965 onwards) showed a fairly good match, indicating that the aa variations were mostly due to similar variations in the solar wind, which must have their origin in solar physical processes. A few aa variations did not match with solar wind. When compared with terrestrial phenomena, no match was found with stratospheric low-latitude zonal wind QBO; but some QTO in aa matched QTO in ENSO (El Nino/ Southern Oscillation). This may or may not be a chance coincidence and needs further exploration.  相似文献   

6.
The effect of long-term (11-year solar cycle) solar UV variability on stratospheric chemical and thermal structure has been studied using a time-dependent one-dimensional model. Previous studies have suggested substantial variations in local and total ozone, and in stratospheric thermal structure from solar minimum to solar maximum. It is shown here that significant variations also occur in some of the trace constituents. Members of the HO x family and N2O exhibit the largest variations, and these changes, if detected, may provide additional means of verifying the presence of solar UV variability and its effects. Some of the species show large phase differences with the assumed solar flux variation. The role of chemical and transport time constants on the time variations of the trace species is examined. Comparisons with reported ozone and temperature data show reasonable agreement for the period 1960 to 1972.  相似文献   

7.
Spatiotemporal variations of the quasi-biennial oscillation (QBO) in temperature and ozone over the tropical–subtropical belts (40°N–40°S) have been studied using Microwave Limb Sounder data for the period 1992–1999. Wavelet analysis has been performed to study inter-annual variations in amplitude and phases of the QBO. Latitude-height cross-sections of the amplitudes of temperature and ozone QBO exhibit a double-peak structure near the equator. Phase structure reveals that the temperature QBO descended faster than the ozone QBO. Cross-wavelet analysis shows an anti-phase relation between the amplitudes of the temperature and ozone QBO in the upper stratospheric region, whereas in-phase relation exists in the middle stratospheric region.  相似文献   

8.
Spatial correlations between total column ozone observed by TOMS and equatorial zonal winds from 1979 to 2003 have been assessed. Four months and three different altitude levels have been analyzed: January and July (solstice months), April and October (equinoctial months), and 10, 30 and 50 hPa. The results are different for the months and altitudes considered. The highest correlations values appear in tropical zone at 30 hPa. The Brewer–Dobson circulation plays a key role in regulating the abundance of ozone, influenced by the quasi-biennial oscillation (QBO) circulation. Since the Brewer–Dobson is a slow circulation, correlations considering lags between one and 12 months were estimated. In this case, the highest correlations values are moving to subtropical latitudes at winter hemisphere, with different behaviors for three altitude levels considered.  相似文献   

9.
We present time series of January–May mean mesosphere/lower thermosphere (MLT) mean winds and planetary wave (PW) proxies over Europe together with stratospheric stationary planetary waves (SPW) at 50°N and time series of European ozone laminae occurrence. The MLT winds are connected with stratospheric PW and laminae at time scales of several years to decades. There is a tendency for increased wave activity after 1990, together with more ozone laminae and stronger MLT zonal winds. However, possible coupling processes are not straightforward. While mean MLT winds before the 1990s show similar interannual variations than stratospheric PW at 100 hPa, later a tendency towards a connection of the MLT with the middle stratosphere SPW is registered. There is also a tendency for a change in the correlation between lower and middle stratosphere SPW, indicating that coupling processes involving the European middle atmosphere from the lower stratosphere to the mesopause region have changed.  相似文献   

10.
Trends in total column ozone have been analyzed in terms of the equatorial zonal wind. We used zonal monthly mean total ozone from Total Ozone Mapping Spectrometer (TOMS) and monthly mean zonal wind in the equatorial stratosphere at 30 hPa to define the phases of the quasi-biennial oscillation (QBO). Total column ozone trends have been assessed during the period 1979–2004, for both Hemispheres, and for each month, under three conditions considering, all the ozone dataset, ozone values during easterly phase and ozone values during westerly phase of the QBO. When the whole dataset is considered, negative trends are observed. From low to midlatitudes a zonal pattern is noticed with increasing negative values toward higher latitudes. When the data is filtered according to the QBO phase, statistically significant positive trends appear in the westerly case during January to May at low latitudes .The trend pattern in the case of the easterly phase presents more negative values.  相似文献   

11.
热带平流层水汽的准两年周期振荡   总被引:5,自引:0,他引:5       下载免费PDF全文
施春华  郑彬  陈月娟  毕云 《地球物理学报》2009,52(10):2428-2435
分析了1993年到2002年10年间HALOE卫星资料的热带平流层水汽年际变率,结果表明:热带平流层水汽混合比在2~5 hPa、10~30 hPa、30~100 hPa有三组显著的准两年周期振荡(QBO)现象;其中2~5 hPa和10~30 hPa水汽QBO呈反位相循环;30~100 hPa水汽QBO有显著上传特性.SOCRATES3模式模拟和诊断结果表明,热带平流层水汽QBO是在纬向风QBO强迫下产生的次级动力、热力因子和化学作用耦合后的结果:上层主要是环流输送引起,中层是环流输送和温度扰动驱动下的化学作用引起,下层是对流层顶水汽冻结层的温度扰动和环流输送引起.  相似文献   

12.
Based on TIDI mesospheric wind observations, we analyzed the semidiurnal tide westward zonal wavenumber 1 and 2 (SW1 and SW2) component seasonal, inter-annual variations, and possible sudden stratospheric warming (SSW) related changes. Major findings are as follows: (1) The SW1 has a peak near the South Pole during the December solstice and near the North Pole during the March equinox. (2) The SW2 peaks at 60S and 60N mostly during winter solstices. The SW2 also peaks during late summer and early fall in the northern hemisphere. (3) The QBO effect on the semidiurnal tide is much weaker than that on the diurnal tide. The March equinox northern SW1 zonal amplitude appears to be stronger during the westward phase of the QBO, which is opposite of migrating diurnal tide QBO response. (4) Possible SSW event related changes in the semidiurnal tide are significant but not always consistent. Enhancements in the mid-latitude SW2 component during SSWs are observed, which may be related to the increase of total ozone at mid and high latitudes during SSW events. TIDI observations also show a decrease in the SW2 in the opposite hemisphere during a southern SSW event in 2002. Small increases in the high latitude SW1 in both hemispheres during the 2002 southern SSW event were recorded.  相似文献   

13.
We examine joint effects of the solar activity and phase of the quasi-biennial oscillation (QBO) on modes of low-frequency variability of tropospheric circulation in the Northern Hemisphere in winter. The winter months (December–March) are stratified by the solar activity into two (below/above median) classes, and each of these classes is subdivided by the QBO phase (west or east). The variability modes are determined by rotated principal component analysis of 500 hPa heights separately in each class of solar activity and QBO phase. Detected are all the modes known to exist in the Northern Hemisphere. The solar activity and QBO jointly affect the shapes, spatial extent, and intensity of the modes; the QBO effects are, however, generally weaker than those of solar activity. For both solar maxima and minima, there is a tendency to the east/west phase of QBO to be accompanied by a lower/higher activity of zonally oriented modes and increased meridionality/zonality of circulation. This means that typical characteristics of circulation under solar minima, including a more meridional appearance of the modes and less activity of zonal modes, are strengthened during QBO-E; on the other hand, circulation characteristics typical of solar maxima, such as enhanced zonality of the modes and more active zonal modes, are more pronounced during QBO-W. Furthermore, the zonal modes in the Euro-Atlantic and Asian sectors (North Atlantic Oscillation, East Atlantic pattern, and North Asian pattern) shift southwards in QBO-E, the shift being stronger in solar maxima.  相似文献   

14.
Two different equatorial quasi-biennial oscillation (QBO) indices, two reanalyses and radiosonde observations are used to analyze the Arctic stratospheric temperature and height. This analysis was used to assess the uncertainties in the connection of solar forcing, QBO and the Arctic variability. The results show that (1) the frequency of the westerly/easterly phases of the QBO over the stratospheric equator has a significant multiple peak seasonal variation. The primary seasonal peaks occur in February, March and April for the westerly phase of the QBO and the easterly phase peaks in June, July and August. (2) The correlation of stratospheric Arctic temperature and height with the solar radio flux shows statistical significance in February or July/August even if there is no stratified phase of QBO (easterly and westerly phases) involved. However, when the correlation was computed according to the stratified phase of QBO, the solar signals in both temperature and height fields are remarkably amplified in February and November under the westerly phase, but the signal in the height field is most significant only in August under the easterly phase. (3) The impact of the QBO and solar forcing on the stratospheric temperature and heights in the Arctic varies depending on the season. The impacts are also sensitive to the specific height of the QBO-defined level that is used, the specific period of the analysis and the dataset used.  相似文献   

15.
Using the monthly mean NCEP/NCAR reanalysis and NOAA Extended Reconstructed sea surface temperature (SST) datasets, strong correlations between the SST anomalies in the North Pacific and calculated three-dimensional Eliassen–Palm vertical fluxes are indicated in December 1958–1976 and 1992–2006. These correlations between the interannual variations of the SST anomalies and the penetration of planetary waves into the stratosphere are much less during the decadal sub-period 1976–1992 in the positive phase of the Pacific Decadal Oscillation (PDO) and the decadal cold SST anomalies in the North Pacific. Interannual variations of the polar jet in the lower stratosphere in January are strongly associated with SST anomalies in the Aleutian Low region in December for the years with positive PDO index. This sub-period corresponds well with that of the violation of the Holton–Tan relationship between the equatorial Quasi-Beinnial Oscillation (QBO) and the stratospheric circulation in the extra-tropics. It is shown that interannual and interdecadal variations of stratospheric dynamics, including stratospheric warming occurrences in January, depend strongly on changes of the upward propagation of planetary waves from the troposphere to the stratosphere over North Eurasia in preceding December. These findings give evidences of a large impact of the decadal SST variations in the North Pacific on wave activity in early winter due to changes of thermal excitation of planetary waves during distinct decadal periods. Possible causes of the decadal violation of the Holton–Tan relationship, its relation to the PDO and an influence of the 11-year solar cycle on the stratosphere are discussed.  相似文献   

16.
The search for a signal of the 11-year sunspot cycle in the heights and temperatures of the lower stratosphere was previously successfully conducted for the northern hemisphere with a data set from the Freie Universität Berlin, covering four solar cycles. This work has been extended to the whole globe by means of the NCEP/NCAR reanalyses for the period 1968–1996. The re-analyses show that the signal exists in the southern hemisphere too, and that it is of nearly the same size and shape as on the northern hemisphere. The NCEP/NCAR reanalyses yield higher correlations with the solar cycle than do the Berlin analyses for the same period, because the interannual variability is lower in the NCEP/NCAR data.The correlations between the solar cycle and the zonally averaged temperatures at the standard levels between 200 and 10 hPa are largest between the tropopause and the 25 km level, that is, in the ozone layer. This may be partly a direct effect in this layer, because of more absorber (ozone) and more ultraviolet radiation from the sun in the peaks of the 11-year solar cycle. However, it is more likely to be mainly an indirect dynamical consequence of UV absorption by ozone in the middle and upper stratosphere.The largest temperature correlations move with the sun from one summer hemisphere to the other, and the largest height correlations move poleward from winter to summer.  相似文献   

17.
平流层气溶胶的准两年周期特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文采用HALOE和SAGE Ⅱ资料,分析了平流层气溶胶的准两年周期变化(简称QBO)特征及其与臭氧QBO的关系,结果表明:(1)北半球中高纬上空平流层气溶胶存在明显的QBO特征,其QBO信号自上向下传播,振荡幅度在平流层中下层可以达到20%;而在赤道和南半球上空的平流层气溶胶的QBO特征相对于北半球则不明显;(2)在...  相似文献   

18.
A discussion is given of atmospheric reactions in the H2O–CH4–O2–O3–NO x system. In the lower troposphere such reactions may lead to significant production of ozone. Their role in the odd hydrogen balance, especially of the troposphere and lower stratosphere, is discussed. CH3OH may be an intermediate in the oxidation cycle of methane, especially in the cold stratosphere. Its photodissociation into H2 and CH2O may consequently provide an important source for stratospheric H2. Catalytic photochemical chains of reactions involving NO x and HO x may also lead to tropospheric destruction of ozone. Due to lack of knowledge it is not possible at present to evaluate the importance of the before-mentioned reactions.With the aid of model calculations it is indicated that stratospheric ozone is most sensitive to changes in the adopted lower boundary values of N2O and that an increase in water vapour concentrations in the lower stratosphere will indeed cause some increase in ozone as predicted.Fluctuations in the flux of solar radiation near 190 nm may cause significant variations in stratospheric ozone concentrations.  相似文献   

19.
本文基于1979—2014年臭氧总量的卫星遥感数据,利用多元线性回归模型对臭氧总量数据序列进行模拟计算,考察了北太平洋上空臭氧总量长期变化趋势及其影响因素的作用.结果表明,北太平洋地区大气臭氧总量长期变化呈现减少趋势,但是减少速率随季节和纬度带表现出差异性,在各纬度带臭氧峰值季节臭氧下降趋势最为显著.在0°—15°N地区臭氧高值出现在夏秋季节并在8月达到峰值,峰值月份臭氧年均下降率约为0.2DU/a;15°—30°N亚热带地区臭氧高值出现在春夏季并在5月达到峰值,峰值月份臭氧年均下降速率约为0.22DU/a;而在30°—45°N中纬度地区臭氧高值出现在冬春季并在2月达到峰值,峰值月份臭氧年均下降率0.75DU/a.在臭氧分布年平均态基础上,影响臭氧总量分布变化的因素主要有臭氧损耗物质(EESC)、太阳辐射周期(Solar)、准两年振荡(QBO)和厄尔尼诺-南方涛动(ENSO)等.其中,EESC导致臭氧损耗效应随着纬度升高而增大,在从低到高的三个纬度带损耗最大值分别为11DU、16DU和66DU;Solar增强导致臭氧增加,在三个纬度带的增加效应最大值分别为16DU、17DU和19DU;QBO@10hPa和QBO@30hPa对臭氧影响幅度基本在±10DU内波动,只有QBO@10hPa对30°—45°N区域的影响作用达到14DU,值得注意的是QBO影响作用随着纬度变化存在相位差异,在0°—15°N区域臭氧变化与QBO呈现相同相位,而在15°—30°N和30°—45°N区域臭氧变化与QBO呈现相反相位;ENSO对各个纬度带臭氧影响幅度也在±10DU内,ENSO影响作用在不同纬度带也存在相位差异,臭氧总量变化在0°—15°N、15°—30°N区域与ENSO相位相反,在30°—45°N区域与ENSO相位一致.  相似文献   

20.
We present results from the Numerical Spectral Model (NSM), which focus on the temperature environment of the mesopause region where polar mesospheric clouds (PMC) form. The PMC occur in summer and are observed varying on time scales from months to years, and the NSM describes the dynamical processes that can generate the temperature variations involved. The NSM simulates the quasi-biennial oscillation (QBO), which dominates the zonal circulation of the lower stratosphere at equatorial latitudes. The modeled QBO extends into the upper mesosphere, due to gravity wave (GW) filtering, consistent with UARS zonal wind and TIMED temperature measurements. While the QBO zonal winds are confined to equatorial latitudes, the associated temperature variations extend to high latitudes. The meridional circulation redistributes the QBO energy—and the resulting temperature oscillations away from the equator produce inter-annual variations that can exceed 5 K in the polar mesopause region, with considerable differences between the two hemispheres. The NSM shows that the 30-month QBO produces a 5-year or semi-decadal (SD) oscillation, and stratospheric NCEP data provide observational evidence for that. This SD oscillation extends in the temperature to the upper mesosphere, where it could contribute to the long-term variations of the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号