首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
李琳  潘静  李崇银 《地球物理学报》2013,56(6):1825-1834
极涡崩溃是平流层大气环流一个重要的变化过程,本文利用31年的再分析资料研究了南半球平流层极涡崩溃早晚年的异常特征.研究结果表明,南半球平流层极涡崩溃偏早年极涡崩溃前后平流层环流场异常表现为整层一致的变化,即都为正温度异常、正位势高度异常和负纬向风异常;而南半球平流层极涡崩溃偏晚年极涡崩溃前后平流层环流场异常的整层一致性的变化不典型,而在符号上与极涡崩溃偏早年的异常相反.与北半球平流层极涡崩溃前后环流异常相反明显不同,南半球平流层极涡崩溃偏早或偏晚年在极涡崩溃前后的环流异常保持相同的性质.进一步分析表明行星波活动在南极极涡的崩溃过程中起到了重要作用,极涡崩溃早年上传行星波比极涡崩溃晚年强,并且持续时间长.通过波流相互作用,行星波的异常使得极涡崩溃早年和晚年10月的平流层高纬地区分别为位势高度正异常和负异常,环流异常持续保持可能最终影响了南半球平流层极涡的崩溃时间.分析显示南半球极涡崩溃偏晚与La Niña事件之间可能存在一定的联系,但在极涡崩溃偏早年与赤道太平洋海表温度异常(SSTA)并无明显关系.  相似文献   

2.
平流层气溶胶的准两年周期特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文采用HALOE和SAGE Ⅱ资料,分析了平流层气溶胶的准两年周期变化(简称QBO)特征及其与臭氧QBO的关系,结果表明:(1)北半球中高纬上空平流层气溶胶存在明显的QBO特征,其QBO信号自上向下传播,振荡幅度在平流层中下层可以达到20%;而在赤道和南半球上空的平流层气溶胶的QBO特征相对于北半球则不明显;(2)在...  相似文献   

3.
本文研究赤道异常逐日起伏程度的年变化规律,发现它与太阳活动及地磁活动呈微弱的负相关,但却受到QBO的明显调制,QBO东风相起伏加大,QBO西风相起伏减小.这一事实似乎表明,太阳爆发或磁暴不是产生赤道异常逐日起伏的主要原因;而上行行星波的扰动有可能是引起赤道异常逐日起伏的主要原因.  相似文献   

4.
本研究揭示了北半球冬季Madden-Julian振荡(MJO)对北半球中间层大气的作用.卫星观测和数值模式模拟的结果表明,北半球高纬度中间层大气在MJO第4相位后约35天显著降温,这一现象滞后MJO引起的高平流层扰动约10天.在中纬度,向上传播的行星波增强还导致了中间层温度在滞后MJO第4相位25天左右时出现1波结构的温度异常. MJO引起的异常行星波可以调制平流层顶-低中间层区域纬向西风在MJO第4相位后约30天减弱.同时,由于重力波的临界层滤波机制,减弱的西风会引起中间层的气候平均西向重力波减弱.受到行星波和重力波变化的共同作用,中间层的经向环流在MJO第4相位滞后约35天显著减弱,并导致极区中间层降温.  相似文献   

5.
利用1979~2010年NCEP-DOE 2逐日再分析资料,以北半球春季平流层极夜急流核心纬带(65°~75°N)纬向平均纬向风最后一次转为东风的日期定义为春季平流层最后增温事件(SFW)的爆发日期,研究发现,SFW事件平均在4月中下旬发生,且由平流层高层向低层依次滞后,10 hPa的SFW爆发平均超前50 hPa约13天;爆发当日伴随纬向风场时间变率和行星波辐合的最大值,平流层环流实现由冬向夏的季节转换;过去32年以来SFW的爆发早晚具有显著的年际变化,最早的SFW事件发生在3月中旬,最晚的SFW事件在5月下旬才出现.合成分析表明,SFW爆发偏早(晚)年的春季,纬向风场由西风向东风的转变更为快速(缓慢),爆发前5天至爆发后5天,30 hPa纬向风减小约20 m s-1(5 m s-1),伴随的平流层行星波活动也相对较强(弱);表现在环流异常场上,SFW爆发前后平流层极区环流异常呈反(同)位相分布,表明发生较早的SFW事件主要受波强迫驱动而伴随爆发性增温,而发生较晚的SFW事件则更反映了极涡的季节变化特征.无论SFW偏早还是偏晚年,爆发后极区平流层与对流层温度异常之间均呈反位相关系,反映了SFW爆发事件中的平流层-对流层动力耦合特征.另外,在20世纪90年代中期前后,SFW爆发日期还存在明显的年代际转折,90年代中期之前SFW平均发生日期较之后约偏早11天;与之相联系的是冬末、春初行星波活动在90年代中期之前偏强,而在90年代中期之后有偏弱趋势.  相似文献   

6.
2009/2010年冬季北极涛动异常及其影响分析   总被引:1,自引:0,他引:1  
2009/2010年冬季出现了持续的北极涛动(AO)负异常,同时北半球的天气气候也发生了大范围的异常,两者的关系是大家极为关注的重要问题.本文的分析表明2009/2010年冬季北半球经历了两次显著的AO负异常过程,2009年12月和2010年2月AO指数分别达到了同期历史的最低值.2009年12月的AO负异常过程又可以又分为两个阶段,第一个阶段是由于前期行星波上传的增强导致平流层极涡减弱,随后平流层环流异常向下发展造成了对流层的AO负异常;第二个阶段是因为对流层低层高纬地区的温度正异常维持了第一个阶段在对流层高纬地区的位势高度正异常,使得AO负异常得以较长时间维持,这两个阶段的接连发生和共同作用使得对流层低层经历了一个较强的AO负异常过程.而2010年2月的AO负异常过程则是由平流层爆发性增温所造成的平流层异常环流下传造成的.通过对历史上11个AO负异常事件的统计分析,可以认为AO负异常事件可能由平流层爆发性增温以及平流层极区弱的环流异常下传造成,也可能来源于对流层内部的动力过程.进一步研究表明,2009/2010年冬季持续的极端AO负异常与该冬季北半球大范围的温度和降水异常有密切联系,关注AO异常及其影响是天气预报、气候预测的重要问题.  相似文献   

7.
火山活动对北半球平流层气候异常变化的影响   总被引:8,自引:0,他引:8  
文中利用逐次滤波法滤除北半球平流层70 hPa约15~22 km高空大气温度异常变化中太阳活动的影响之后,进一步分析了火山活动的气候效应,分析结果表明,火山活动能引起平流层较大幅度增温,对于北半球70hPa高空气候异常变化的影响超过了总方差的30%;火山活动影响最显著的高度是平流层70 hPa约15~22 km高空,由此高度向上或向下,火山活动的影响都逐渐减小;火山活动引起平流层大气升温的同时还将引起对流层大气降温,其分界线大致位于对流层顶300 hPa附近;强火山爆发如皮纳图博火山爆发、阿贡火山爆发和堪察加北楮缅奴等火山爆发是引起未来两年左右平流层中下层温度异常变化最重要的因素,其方差贡献率超过百分之五十三!;火山喷发高度越高,引起平流层增温效应的层次也越高;北半球大气温度异常变化对南半球火山活动响应的滞后时间比北半球火山活动长. 平流层高空气候异常变化还具有显著的22年变化周期,分析认为是大气温度场对太阳磁场磁性周期22年异常变化的响应,其方差贡献率超过9%.  相似文献   

8.
利用IAP9L-AGCM模式考察了模式中与南极涛动异常相关的海温敏感区,发现南半球高纬海温异常能够强迫出南极涛动异常,而赤道东太平洋海温异常与太平洋南美型密切相关.研究了南极涛动异常对冬春季北半球大气环流及亚洲北部气温的影响,结果表明,南极涛动加强,能够引起北半球高纬环流异常和欧亚西风加强,以及亚洲北部地表气温和850 hPa气温显著增温.数值模拟支持了已有的诊断结果,也证实了冬春季节南极涛动异常下两半球高纬间的经向遥相关存在.  相似文献   

9.
应用1871-2008年NCEP/NCAR月平均再分析资料,研究了1948-2008年期间全球纬向平均大气环流基本模态的年代际变化.小波凝聚谱的结果表明全球纬向平均大气环流基本模态存在显著的20年左右周期的年代际变化.小波凝聚位相的结果清楚地显示了纬向平均大气环流基本模态的变化顺序.在20年左右的年代际变化时间尺度上,全球纬向平均温度超前纬向平均位势高度2个月,同时超前纬向平均流10个月出现变化;全球纬向平均位势高度又超前纬向平均流8个月出现变化.全球温度上升(下降), 将使高纬度的纬向平均位势高度降低(升高),中低纬度的纬向平均位势高度升高(降低);进而使得中高纬和热带的纬向平均西风加(减)速或东风减(加)速,同时使极地和副热带的西风减(加)速或东风加(减)速.20世纪70年代末期以来全球显著增暖的异常信号最早出现在南半球对流层顶附近,其次出现在南半球对流层低层、北半球对流层顶附近和北半球对流层低层.  相似文献   

10.
本文利用最大熵谱分析方法处理了电离层赤道异常北峰Okinawa站的f0F2行星波周期的振荡.比较同一期间相近经度链上的南北半球观测到的低热层中性大气运动,发现较短周期的2-5日波,尤其是在南北半球的夏季期间(北半球7-8月前后,南半球1-2月前后),其纬向风与赤道异常振荡强弱及周期变化具有良好的同步对应性.对于较长周期的中性风振荡,只要其幅度相当大,也会在赤道异常的振荡中有所对应.从而提供证据说明中性风的行星波振荡是赤道异常的行星波振荡的驱动源.  相似文献   

11.
Based on total ozone data from the World Ozone Data Center and stratospheric geopotential height data from the Meteorological Institute of Berlin Free University for the months of January through March for the time period of 1958–1996, the influence of the 11-year solar cycle and the equatorial quasi-biennial oscillation (QBO) on total ozone and the stratospheric circulation at 30 hPa over Northern Europe is investigated. The analysis is performed for different levels of solar activity. The relationship of the equatorial QBO with ozone and the stratospheric circulation over the study region exhibits unique features attributed to strong opposite connections between the equatorial zonal wind and ozone/stratospheric dynamics during periods of solar minimum and maximum. Using the Solar/QBO effect, a statistical extraction of the interannual variations of total ozone and stratospheric circulation over Northern Europe has been attempted. The variations extracted and observed for late winter show very good correspondence. The solar/QBO effect in total ozone and stratospheric dynamics over Northern Europe appears to be related to planetary wave activity.  相似文献   

12.
This paper contains correlations between the NCEP/NCAR global stratospheric data below 10 hPa and the 11-year solar cycle. In the north summer the correlations between the stratospheric geopotential heights and the 11-year solar cycle are strong and positive on the Northern Hemisphere and as far south as 30°S, whereas they are weak in the north winter all over the globe. If the global stratospheric heights and temperatures in the north winter are stratified according to the phase of the QBO in the lower stratosphere, their correlations with the solar cycle are large and positive in the Arctic in the west years of the QBO but insignificantly small over the rest of the earth, as far as the South Pole. In the east years, however, the arctic correlations with the solar cycle are negative, but to the south they are positive and strong in the tropical and temperate regions of both hemispheres, similar to the correlations with the full series of stratospheric data in the other seasons. The influence of the solar cycle in the Arctic is stronger in the latter half of the winter. The global difference, in the northern winter, in the sign and strength of the correlations between the stratospheric heights and temperatures and the solar cycle in east and west years of the QBO can be ascribed to the fact that the dominant stratospheric teleconnection and the solar influence work in the same direction in the east years, but oppose each other in the west years.  相似文献   

13.
The interaction between the factors of the quasi-biennial oscillation (QBO) and the 11-year solar cycle is considered as an separate factor influencing the interannual January–March variations of total ozone over Northeastern Europe. Linear correlation analysis and the running correlation method are used to examine possible connections between ozone and solar activity at simultaneous moment the QBO phase. Statistically significant correlations between the variations of total ozone in February and, partially, in March, and the sunspot numbers during the different phases of QBO are found. The running correlation method between the ozone and the equatorial zonal wind demonstrates a clear modulation of 11-y solar signal for February and March. Modulation is clearer if the QBO phases are defined at the level of 50 hPa rather than at 30 hPa. The same statistical analyses are conducted also for possible connections between the index of stratospheric circulation C1 and sunspot numbers considering the QBO phase. Statistically significant connections are found for February. The running correlations between the index C1 and the equatorial zonal wind show the clear modulation of 11-y solar signal for February and March. Based on the obtained correlations between the interannual variations of ozone and index C1, it may be concluded that a connection between solar cycle – QBO – ozone occurs through the dynamics of stratospheric circulation.  相似文献   

14.
We examine joint effects of the solar activity and phase of the quasi-biennial oscillation (QBO) on modes of low-frequency variability of tropospheric circulation in the Northern Hemisphere in winter. The winter months (December–March) are stratified by the solar activity into two (below/above median) classes, and each of these classes is subdivided by the QBO phase (west or east). The variability modes are determined by rotated principal component analysis of 500 hPa heights separately in each class of solar activity and QBO phase. Detected are all the modes known to exist in the Northern Hemisphere. The solar activity and QBO jointly affect the shapes, spatial extent, and intensity of the modes; the QBO effects are, however, generally weaker than those of solar activity. For both solar maxima and minima, there is a tendency to the east/west phase of QBO to be accompanied by a lower/higher activity of zonally oriented modes and increased meridionality/zonality of circulation. This means that typical characteristics of circulation under solar minima, including a more meridional appearance of the modes and less activity of zonal modes, are strengthened during QBO-E; on the other hand, circulation characteristics typical of solar maxima, such as enhanced zonality of the modes and more active zonal modes, are more pronounced during QBO-W. Furthermore, the zonal modes in the Euro-Atlantic and Asian sectors (North Atlantic Oscillation, East Atlantic pattern, and North Asian pattern) shift southwards in QBO-E, the shift being stronger in solar maxima.  相似文献   

15.
Using the monthly mean NCEP/NCAR reanalysis and NOAA Extended Reconstructed sea surface temperature (SST) datasets, strong correlations between the SST anomalies in the North Pacific and calculated three-dimensional Eliassen–Palm vertical fluxes are indicated in December 1958–1976 and 1992–2006. These correlations between the interannual variations of the SST anomalies and the penetration of planetary waves into the stratosphere are much less during the decadal sub-period 1976–1992 in the positive phase of the Pacific Decadal Oscillation (PDO) and the decadal cold SST anomalies in the North Pacific. Interannual variations of the polar jet in the lower stratosphere in January are strongly associated with SST anomalies in the Aleutian Low region in December for the years with positive PDO index. This sub-period corresponds well with that of the violation of the Holton–Tan relationship between the equatorial Quasi-Beinnial Oscillation (QBO) and the stratospheric circulation in the extra-tropics. It is shown that interannual and interdecadal variations of stratospheric dynamics, including stratospheric warming occurrences in January, depend strongly on changes of the upward propagation of planetary waves from the troposphere to the stratosphere over North Eurasia in preceding December. These findings give evidences of a large impact of the decadal SST variations in the North Pacific on wave activity in early winter due to changes of thermal excitation of planetary waves during distinct decadal periods. Possible causes of the decadal violation of the Holton–Tan relationship, its relation to the PDO and an influence of the 11-year solar cycle on the stratosphere are discussed.  相似文献   

16.
Ozone depression in the polar stratosphere during the energetic solar proton event on 4 August 1972 was observed by the backscattered ultraviolet (BUV) experiment on the Nimbus 4 satellite. Distinct asymmetries in the columnar ozone content, the amount of ozone depressions and their temporal variations above 4 mb level (38 km) were observed between the two hemispheres. The ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres due to the geomagnetic dipole field These asymmetries can be therefore ascribed to the differences mainly in dynamics and partly in the solar illumination and the vertical temperature structure between the summer and the winter polar atmospheres. The polar stratosphere is less disturbed and warmer in the summer hemisphere than the winter hemisphere since the propagation of planetary wave from the troposphere is inhibited by the wind system in the upper troposphere, and the air is heated by the prolonged solar insolation. Correspondingly, the temporal variations of stratospheric ozone depletion and its recovery appear to be smooth functions of time in the (northern) summer hemisphere and the undisturbed ozone amount is slighily, less than that of its counterpart. On the other hand, the tempotal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) indicates large amplitudes and irregularities due to the disturbances produced by upward propagating waves which prevail in the polar winter atmosphere. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperature and wind observed by balloons and rocker soundings.  相似文献   

17.
Based on the daily NCEP/DOE reanalysis II data,dates of the boreal spring Stratospheric Final Warming(SFW) events during 1979–2010 are defined as the time when the zonal-mean zonal wind at the central latitudes(65°–75°N) of the westerly polar jet drops below zero and never recovers until the subsequent autumn.It is found that the SFW events occur successively from the mid to the lower stratosphere and averagely from the mid to late April with a temporal lag of about 13 days from 10 to 50 hPa.Over the past 32 years,the earliest SFW occurs in mid March whereas the latest SFW happens in late May,showing a clear interannual variability of the time of SFW.Accompanying the SFW onset,the stratospheric circulation transits from a winter dynamical regime to a summertime state,and the maximum negative tendency of zonal wind and the strongest convergence of planetary-wave are observed.Composite results show that the early/late SFW events in boreal spring correspond to a quicker/slower transition of the stratospheric circulation,with the zonal-mean zonal wind reducing about 20/5 m s-1 at 30 hPa within 10 days around the onset date.Meanwhile,the planetary wave activities are relatively strong/weak associating with an out-of-/in-phase circumpolar circulation anomaly before and after the SFW events in the stratosphere.All these results indicate that,the earlier breakdown of the stratospheric polar vortex(SPV),as for the winter stratospheric sudden warming(SSW) events is driven mainly by wave forcing;and in contrast,the later breakdown of the SPV exhibits more characteristics of its seasonal evolution.Nevertheless,after the breakdown of SPV,the polar temperature anomalies always exhibit an out-of-phase relationship between the stratosphere and the troposphere for both the early and late SFW events,which implies an intimate stratosphere–troposphere dynamical coupling in spring.In addition,there exists a remarkable interdecadal change of the onset time of SFW in the mid 1990s.On average,the SFW onset time before the mid 1990s is 11 days earlier than that afterwards,corresponding to the increased/decreased planetary wave activities in late winter-early spring before/after the 1990s.  相似文献   

18.
We present results from the Numerical Spectral Model (NSM), which focus on the temperature environment of the mesopause region where polar mesospheric clouds (PMC) form. The PMC occur in summer and are observed varying on time scales from months to years, and the NSM describes the dynamical processes that can generate the temperature variations involved. The NSM simulates the quasi-biennial oscillation (QBO), which dominates the zonal circulation of the lower stratosphere at equatorial latitudes. The modeled QBO extends into the upper mesosphere, due to gravity wave (GW) filtering, consistent with UARS zonal wind and TIMED temperature measurements. While the QBO zonal winds are confined to equatorial latitudes, the associated temperature variations extend to high latitudes. The meridional circulation redistributes the QBO energy—and the resulting temperature oscillations away from the equator produce inter-annual variations that can exceed 5 K in the polar mesopause region, with considerable differences between the two hemispheres. The NSM shows that the 30-month QBO produces a 5-year or semi-decadal (SD) oscillation, and stratospheric NCEP data provide observational evidence for that. This SD oscillation extends in the temperature to the upper mesosphere, where it could contribute to the long-term variations of the region.  相似文献   

19.
The transport mechanisms responsible for the seasonal behavior of total ozone are deduced from the comparison of model results to stratospheric data. The seasonal transport is dominated by a combination of the diabatic circulation and transient planetary wave activity acting on a diffusively and photochemically determined background state. The seasonal variation is not correctly modeled as a diffusive process. The buildup of total ozone at high latitudes during winter is dependent upon transient planetary wave activity of sufficient strength to cause the breakdown of the polar vortex. While midwinter warmings are responsible for enhanced ozone transport to high latitudes, the final warming marking the transition from zonal mean westerlies to zonal mean easterlies is the most important event leading to the spring maximum. The final warming is not followed by reacceleration of the mean flow; so that the ozone transport associated with this event is more pronounced than that associated with midwinter warmings.  相似文献   

20.
Continuous wind observations allow detailed investigations of the upper mesosphere circulation in winter and its coupling with the lower atmosphere. During winter the mesospheric/lower thermospheric wind field is characterized by a strong variability. Causes of this behaviour are planetary wave activity and related stratospheric warming events. Reversals of the dominating eastward directed mean zonal winds in winter to summerly westward directed winds are often observed in connection with stratospheric warmings. In particular, the amplitude and duration of these wind reversals are closely related to disturbances of the dynamical regime of the upper stratosphere.The occurrence of long-period wind oscillations and wind reversals in the mesosphere and lower thermosphere in relation to planetary wave activity and circulation disturbances in the stratosphere has been studied for 12 winters covering the years 1989–2000 on the basis of MF radar wind observations at Juliusruh (55°N, since 1989) and Andenes (69°N, since 1998). Mesospheric wind oscillations with long-periods between 10 and 18 days are observed during the presence of enhanced planetary wave activity in the stratosphere and are combined with a reversal of the meridional temperature gradient of the stratosphere or with upper stratospheric warmings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号