首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
北京1841年以来均一化最高和最低气温日值序列的构建   总被引:1,自引:0,他引:1  
司鹏  郭军  赵煜飞  王冀  曹丽娟  王敏  王琪  冯婧 《气象学报》2022,80(1):136-152
长期连续的日值观测资料是研究百年来极端气候事件及其变化特征的重要基础支撑.目前中外由于缺乏可靠的逐日百年尺度气候资料,使得20世纪50年代以前的极端气候变化规律仍然没有得到很好的认识.基于国家气象信息中心收集整理的日最高和最低气温观测资料,构建北京1841—2019年气温日值序列.首先,通过数据质量控制剔除原始基础资料...  相似文献   

2.
Temperature reconstructions from Europe for the past 500 years based on documentary and instrumental data are analysed. First, the basic documentary data sources, including information about climate and weather-related extremes, are described. Then, the standard palaeoclimatological reconstruction method adopted here is discussed with a particular application to temperature reconstructions from documentary-based proxy data. The focus is on two new reconstructions; January–April mean temperatures for Stockholm (1502–2008), based on a combination of data for the sailing season in the Stockholm harbour and instrumental temperature measurements, and monthly Central European temperature (CEuT) series (1500–2007) based on documentary-derived temperature indices of the Czech Republic, Germany and Switzerland combined with instrumental records from the same countries. The two series, both of which are individually discussed in greater detail in subsequent papers in this special edition, are here compared and analysed using running correlations and wavelet analysis. While the Stockholm series shows a pronounced low-frequency component, the CEuT series indicates much weaker low-frequency variations. Both series are analysed with respect to three different long-period reconstructions of the North Atlantic Oscillation (NAO) and are compared with other European temperature reconstructions based on tree-rings, wine-harvest data and various climate multiproxies. Correlation coefficients between individual proxy-based series show weaker correlations compared to the instrumental data. There are also indications of temporally varying temperature cross-correlations between different areas of Europe. The two temperature reconstructions have also been compared to geographically corresponding temperature output from simulations with global and regional climate models for the past few centuries. The findings are twofold: on the one hand, the analysis reinforces the hypothesis that the index-data based CEuT reconstruction may not appropriately reflect the centennial scale variations. On the other hand, it is possible that climate models may underestimate regional decadal variability. By way of a conclusion, the results are discussed from a broader point of view and attention is drawn to some new challenges for future investigations in the historical climatology in Europe.  相似文献   

3.
The behaviour of precipitation and maximum temperature extremes in the Mediterranean area under climate change conditions is analysed in the present study. In this context, the ability of synoptic downscaling techniques in combination with extreme value statistics for dealing with extremes is investigated. Analyses are based upon a set of long-term station time series in the whole Mediterranean area. At first, a station-specific ensemble approach for model validation was developed which includes (1) the downscaling of daily precipitation and maximum temperature values from the large-scale atmospheric circulation via analogue method and (2) the fitting of extremes by generalized Pareto distribution (GPD). Model uncertainties are quantified as confidence intervals derived from the ensemble distributions of GPD-related return values and described by a new metric called “ratio of overlapping”. Model performance for extreme precipitation is highest in winter, whereas the best models for maximum temperature extremes are set up in autumn. Valid models are applied to a 30-year period at the end of the twenty-first century (2070–2099) by means of ECHAM5/MPI-OM general circulation model data for IPCC SRES B1 scenario. The most distinctive future changes are observed in autumn in terms of a strong reduction of precipitation extremes in Northwest Iberia and the Northern Central Mediterranean area as well as a simultaneous distinct increase of maximum temperature extremes in Southwestern Iberia and the Central and Southeastern Mediterranean regions. These signals are checked for changes in the underlying dynamical processes using extreme-related circulation classifications. The most important finding connected to future changes of precipitation extremes in the Northwestern Mediterranean area is a reduction of southerly displaced deep North Atlantic cyclones in 2070–2099 as associated with a strengthened North Atlantic Oscillation. Thus, the here estimated future changes of extreme precipitation are in line with the discourse about the influence of North Atlantic circulation variability on the changing climate in Europe.  相似文献   

4.
Weather and climate extremes are often associated with substantial adverse impacts on society and the environment. Assessment of changes in extremes is of great and broad interest. This study first homogenizes daily minimum and maximum surface air temperatures recorded at 146 stations in Canada. In order to assess changes in one-in-20 year extremes (i.e., extremes with a 20-year return period) in temperature, annual maxima and minima of both daily minimum temperatures and daily maximum temperatures are derived from the homogenized daily temperature series and analyzed with a recently developed extreme value analysis approach based on a tree of generalized extreme value distributions (including stationary and non-stationary cases). The procedure is applied to estimate the changes over the period 1911 to 2010 at 115 stations, located mainly in southern Canada, and over the period 1961 to 2010 at 146 stations across Canada (including 37 stations in the North). The results show that warming is strongest for extreme low temperature and weakest for extreme high temperature and is much stronger in the Canadian Arctic than in southern Canada. Warming is stronger in winter than in summer and stronger during nighttime than daytime of the same season.  相似文献   

5.
利用全国754站逐日最高气温观测序列,在论证极端温度概率分布与非平稳性关系的基础上,构建和比较了多种非平稳广义极值模型,定义了极端高温的动态重现期和重现水平,提出了一种极端高温事件的新型评估思想和方法,并将其应用于极端气候变化研究。通过该方法可以更好地解释极端事件的真实极端性,有效地增强极端事件之间的可比性,从而保留更多历史极端气候事件的信息。动态重现期的变换运用可对当前极端事件发生的真实状态和趋势提出更准确评估。该方法的提出可有效澄清学术领域和公共舆论对于多年一遇极端事件的理解上长期混淆重现期的绝对值和概率性这一分歧和谬误。  相似文献   

6.
This paper addresses deficiencies of stochastic Weather Generators (WGs) in terms of reproduction of low-frequency variability and extremes, as well as the unanticipated effects of changes to precipitation occurrence under climate change scenarios on secondary variables. A new weather generator (named IWG) is developed in order to resolve such deficiencies and improve WGs performance. The proposed WG is composed of three major components, including a stochastic rainfall model able to reproduce realistic rainfall series containing extremes and inter-annual monthly variability, a multivariate daily temperature model conditioned to the rainfall occurrence, and a suitable multi-variate monthly generator to fit the low-frequency variability of daily maximum and minimum temperature series. The performance of IWG was tested by comparing statistical characteristics of the simulated and observed weather data, and by comparing statistical characteristics of the simulated runoff outputs by a daily rainfall-runoff model fed by the generated and observed weather data. Furthermore, IWG outputs are compared with those of the well-known LARS-WG weather generator. The tested characteristics are a variety of different daily statistics, low-frequency variability, and distribution of extremes. It is concluded that the performance of the IWG is acceptable, better than LARS-WG in the majority of tests, especially in reproduction of extremes and low-frequency variability of weather and runoff series.  相似文献   

7.
Daily precipitation series at 15 stations in the Beijing metropolitan region (BMR) during 1960-2012 were homogenized using the multiple analysis of series for homogenization method, with additional adjustments based on analysis of empirical cumulative density function (ECDF) regarding climate extremes. The cumulative density functions of daily precipitation series, the trends of annual and seasonal precipitation, and summer extreme events during 1960-2012 in the original and final adjusted series at Beijing station were comparatively analyzed to show the necessity and efficiency of the new method. Results indicate that the ECDF adjustments can improve the homogeneity of high-order moments of daily series and the estimation of climate trends in extremes. The linear trends of the regional-mean annual and seasonal (spring, summer, autumn, and winter) precipitation series are -10.16, 4.97, -20.04, 5.02, and -0.11 mm (10 yr)-1, respectively. The trends over the BMR increase consistently for spring/autumn and decrease for the whole year/summer; however, the trends for winter decrease in southern parts and increase in northern parts. Urbanization affects local trends of precipitation amount, frequency, and intensity and their geographical patterns. For the urban-influenced sites, urbanization tends to slow down the magnitude of decrease in the precipitation and extreme amount series by approximately -10.4% and -6.0%, respectively; enhance the magnitude of decrease in precipitation frequency series by approximately 5.7%; reduce that of extremes by approximately -8.9%; and promote the decreasing trends in the summer intensity series of both precipitation and extremes by approximately 6.8% and 51.5%, respectively.  相似文献   

8.
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre’s climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.  相似文献   

9.
 The study seeks to describe one method of deriving information about local daily temperature extremes from larger scale atmospheric flow patterns using statistical tools. This is considered to be one step towards downscaling coarsely gridded climate data from global climate models (GCMs) to finer spatial scales. Downscaling is necessary in order to bridge the spatial mismatch between GCMs and climate impact models which need information on spatial scales that the GCMs cannot provide. The method of statistical downscaling is based on physical interaction between atmospheric processes with different spatial scales, in this case between synoptic scale mean sea level pressure (MSLP) fields and local temperature extremes at several stations in southeast Australia. In this study it was found that most of the day-to-day spatial variability of the synoptic circulation over the Australian region can be captured by six principal components. Using the scores of these PCs as multivariate indicators of the circulation a substantial part of the local daily temperature variability could be explained. The inclusion of temperature persistence noticeably improved the performance of the statistical model. The model established and tested with observations is thought to be finally applied to GCM-simulated pressure fields in order to estimate pressure-related changes in local temperature extremes under altered CO2 conditions. Received: 26 March 1996 / Accepted: 20 September 1996  相似文献   

10.
广义极值分布理论在重现期计算的应用   总被引:3,自引:0,他引:3  
在气候统计学上,常用Weibull、Gumbel、Frechet统计分布函数对极端气候要素的分布进行拟合,广义极值分布理论综合了以上三种极值分布模型,在气候分析中得到了广泛应用。以南昌市年汛期日最大降水量为例,利用广义极值分布理论对其分布进行拟合,并对重现值及其置信区间进行计算,为气候要素极值的统计分析提供了一种新的手段。  相似文献   

11.
通过对1961—2010年中国540个气象站逐日降水观测数据和高精度区域气候模式CCLM(COSMO model in climate mode)3839个格点模拟值的对比,检验CCLM模式对中国日降水的模拟能力,揭示了1961—2010年日降水分布格局的变化特征;同时利用CCLM模式对中国地区2011—2050年的日降水预估值(SRES-A1B情景),运用概率统计和极值理论方法,分析了2011—2050年日降水序列及其极值的可能变化趋势。结果表明:除华南和青藏高原西部存在着较大的偏差以外,模式和观测日降水序列的峰度和偏度的分布格局较一致,空间相关系数达到0.75以上,CCLM能够很好地模拟中国日降水的分布特征。2011—2050年,峰度和偏度在江淮部分地区、东北与内蒙中东部等地区呈显著增加趋势,降水极端事件将会增多;最大日降水量和汛期最多无降水日数在上述地区的增加,进一步反映干旱和洪涝出现概率将升高。  相似文献   

12.
We study the influence of station network density on the distributions and trends in indices of area-average daily precipitation and temperature in the E-OBS high resolution gridded dataset of daily climate over Europe, which was produced with the primary purpose of Regional Climate Model evaluation. Area averages can only be determined with reasonable accuracy from a sufficiently large number of stations within a grid-box. However, the station network on which E-OBS is based comprises only 2,316 stations, spread unevenly across approximately 18,000 0.22° grid-boxes. Consequently, grid-box data in E-OBS are derived through interpolation of stations up to 500 km distant, with the distance of stations that contribute significantly to any grid-box value increasing in areas with lower station density. Since more dispersed stations have less shared variance, the resultant interpolated values are likely to be over-smoothed, and extreme daily values even more so. We perform an experiment over five E-OBS grid boxes for precipitation and temperature that have a sufficiently dense local station network to enable a reasonable estimate of the area-average. We then create a series of randomly selected station sub-networks ranging in size from four to all stations within the E-OBS interpolation search radii. For each sub-network realisation, we estimate the grid-box average applying the same interpolation methodology as used for E-OBS, and then evaluate the effect of network density on the distribution of daily values, as well as trends in extremes indices. The results show that when fewer stations have been used for the interpolation, both precipitation and temperature are over-smoothed, leading to a strong tendency for interpolated daily values to be reduced relative to the “true” area-average. The smoothing is greatest for higher percentiles, and therefore has a disproportionate effect on extremes and any derived extremes indices. For many regions of the E-OBS dataset, the station density is sufficiently low to expect this smoothing effect to be significant and this should be borne in mind by any users of the E-OBS dataset.  相似文献   

13.
Homogenization of climate observations remains a challenge to climate change researchers, especially in cases where metadata (e.g., probable dates of break points) are not always available. To examine the influence of metadata on homogenizing climate data, the authors applied the recently developed Multiple Analysis of Series for Homogenization (MASH) method to the Beijing (BJ) daily temperature series for 1960--2006 in three cases with different references: (1) 13M---considering metadata at BJ and 12 nearby stations; (2) 13NOM---considering the same 13 stations without metadata; and (3) 21NOM---considering 20 further stations and BJ without metadata. The estimated mean annual, seasonal, and monthly inhomogeneities are similar between the 13M and 13NOM cases, while those in the 21NOM case are slightly different. The detected biases in the BJ series corresponding to the documented relocation dates are as low as -0.71oC, -0.79oC, and -0.5oC for the annual mean in the 3 cases, respectively. Other biases, including those undocumented in metadata, are minor. The results suggest that any major inhomogeneity could be detected via MASH, albeit with minor differences in estimating inhomogeneities based on the different references. The adjusted annual series showed a warming trend of 0.337, 0.316, and 0.365oC (10 yr)-1 for the three cases, respectively, smaller than the estimate of 0.453oC (10 yr)-1 in the original series, mainly due to the relocation-induced biases. The impact of the MASH-type homogenization on estimates of climate extremes in the daily temperature series is also discussed.  相似文献   

14.
Although uncertainties are still large, many potentially dangerous effects have already been identified concerning the impacts of global warming on human societies. For example, the record-breaking 2003 summer heat wave in Europe has given a glimpse of possible future European climate conditions. Here we use an ensemble of regional climate simulations for the end of the twentieth and twenty-first centuries over Europe to show that frequency, length and intensity changes in warm and cold temperature extremes can be derived to a close approximation from the knowledge of changes in three central statistics, the mean, standard deviation and skewness of the Probability Distribution Function, for which current climate models are better suited. In particular, the effect of the skewness parameter appears to be crucial, especially in the case of cold extremes, since it mostly explains the relative warming of these events compared to the whole distribution. An application of this finding is that the future impacts of extreme heat waves and cold spells on non-climatological variables (e.g., mortality) can be estimated to a first-order approximation from observed time series of daily temperature transformed in order to account for simulated changes in these three statistics.  相似文献   

15.
The physical science linking human-induced increases in greenhouse gasses to the warming of the global climate system is well established, but the implications of this warming for ecosystem processes and services at regional scales is still poorly understood. Thus, the objectives of this work were to: (1) describe rates of change in temperature averages and extremes for western Montana, a region containing sensitive resources and ecosystems, (2) investigate associations between Montana temperature change to hemispheric and global temperature change, (3) provide climate analysis tools for land and resource managers responsible for researching and maintaining renewable resources, habitat, and threatened/endangered species and (4) integrate our findings into a more general assessment of climate impacts on ecosystem processes and services over the past century. Over 100 years of daily and monthly temperature data collected in western Montana, USA are analyzed for long-term changes in seasonal averages and daily extremes. In particular, variability and trends in temperature above or below ecologically and socially meaningful thresholds within this region (e.g., ?17.8°C (0°F), 0°C (32°F), and 32.2°C (90°F)) are assessed. The daily temperature time series reveal extremely cold days (≤??17.8°C) terminate on average 20 days earlier and decline in number, whereas extremely hot days (≥32°C) show a three-fold increase in number and a 24-day increase in seasonal window during which they occur. Results show that regionally important thresholds have been exceeded, the most recent of which include the timing and number of the 0°C freeze/thaw temperatures during spring and fall. Finally, we close with a discussion on the implications for Montana’s ecosystems. Special attention is given to critical processes that respond non-linearly as temperatures exceed critical thresholds, and have positive feedbacks that amplify the changes.  相似文献   

16.
Tree-ring oxygen stable isotope data series from conifers growing on the Dachstein Plateau (Austrian Alps) were selected to demonstrate the applicability of the serial pooling method using shifted 5-year tree-ring blocks for summer temperature reconstruction. The addressed method allows the construction of long isotope chronologies with significant climate correlation and well preserved climate sensitivity applying the irreducible sample replication of five trees. The linear regression model for temperature reconstruction is verifiable and the predicted data are well correlated with instrumental data, especially reproducing the long-term temperature trend. However, the reduced mean variance leads to loss of extreme years, which can be regulated by the combination of one data series in annual resolution with five shifted 5-year block data series. This significantly improves the variance of the mean chronology, sufficiently to identify extremes. Therefore, we recommend the use of mixed data sets as a compromise between essential sample replication and economic considerations.  相似文献   

17.
诊断天气气候时间序列极值特征的一种新方法   总被引:11,自引:2,他引:11       下载免费PDF全文
将平稳过程的交叉理论用于天气气候极值分析,提出了一种诊断天气气候时间序列极值特征量的新方法,在正态假设下,推证出天气气候记录中,极值出现频数、持续时间和等待时间的估计公式,论证了极值出现频数与其频谱结构的对应关系及其相互推算方法.实例应用表明,其理论计算值与实测值相当一致,这种方法对于气候变化诊断与预测和天气预报具有很强的实用价值.  相似文献   

18.
Based on the principles of the probability theory a statistical model has been developed assessing the likelihood of occurrence of extreme temperature events from the knowledge of the statistical characteristics of the daily temperature extremes. It is demonstrated that the probability of such events is more sensitive to changes in the variability of climate than to changes in its average. Further, this sensitivity increases at a nonlinear rate the more extreme the event. The applicability of the model has been verified by comparing the simulated frequencies of a large spectrum of temperature events with the observed numbers derived from a long time series of daily temperature extremes at Potsdam. Accordingly, the relative simulation errors increase significantly as the events become more extreme. A correction is possible, because most of these errors are systematic rather than random. Moreover, in accordance with the climate observations the simulations reveal statistically significant linear trends in the number of extreme events since the end of the last century. Local scenarios of extreme temperature events have been derived for the city of Berlin by considering both hypothetical new climate states and climate changes simulated by a General Circulation Model (GCM). As a consequence of an increase in the atmospheric concentration of greenhouse gases up to the end of the next century according to the IPCC Scenario A the repetition rate of extreme events in summer (e.g., hot days) is expected to rise considerably relative to the current climate. Moreover, in the winter season cold days will become extremely rare.  相似文献   

19.
 Based on the daily observational precipitation data of 147 stations in the Yangtze River basin for 1960-2005, and the projected daily data of 79 grids from ECHAM5/MPI-OM in the 20th century, time series of precipitation extremes which contain annual maximum (AM) and Munger index (MI) were constructed. The distribution feature of precipitation extremes was analyzed based on the two index series. Research results show that (1) the intensity and probability of extreme heavy precipitation are higher in the middle Mintuo River sub-catchment, the Dongting Lake area, the mid-lower main stream section of the Yangtze River, and the southeastern Poyang Lake sub-catchment; whereas, the intensity and probability of drought events are higher in the mid-lower Jinsha River sub-catchment and the Jialing River sub-catchment; (2) compared with observational data, the averaged value of AM is higher but the deviation coefficient is lower in projected data, and the center of precipitation extremes moves northwards; (3) in spite of certain differences in the spatial distributions of observed and projected precipitation extremes, by applying General Extreme Value (GEV) and Wakeby (WAK) models with the method of L-Moment Estimator (LME) to the precipitation extremes, it is proved that WAK can simulate the probability distribution of precipitation extremes calculated from both observed and projected data quite well. The WAK could be an important function for estimating the precipitation extreme events in the Yangtze River basin under future climatic scenarios.  相似文献   

20.
1960-2005年长江流域降水极值概率分布特征   总被引:1,自引:1,他引:0  
Based on the daily observational precipitation data of 147 stations in the Yangtze River basin for 1960-2005,and the projected daily data of 79 grids from ECHAM5/MPI-OM in the 20th century,time series of precipitation extremes which contain annual maximum(AM)and Munger index(MI)were constructed.The distribution feature of precipitation extremes was analyzed based on the two index series.Research results show that(1)the intensity and probability of extreme heavy precipitation are higher in the middle Mintuo River sub-catchment,the Dongting Lake area,the mid-lower main stream section of the Yangtze River,and the southeastern Poyang Lake sub-catchment;whereas,the intensity and probability of drought events are higher in the mid-lower Jinsha River sub-catchment and the Jialing River sub-catchment;(2)compared with observational data,the averaged value of AM is higher but the deviation coefficient is lower in projected data,and the center of precipitation extremes moves northwards;(3)in spite of certain differences in the spatial distributions of observed and projected precipitation extremes,by applying General Extreme Value(GEV)and Wakeby(WAK)models with the method of L-Moment Estimator(LME)to the precipitation extremes,it is proved that WAK can simulate the probability distribution of precipitation extremes calculated from both observed and projected data quite well.The WAK could be an important function for estimating the precipitation extreme events in the Yangtze River basin under future climatic scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号