首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glaciers in the Tomor region of Tianshan Mountains preserve vital water resources.However,these glaciers suffer from strong mass losses in the recent years because of global warming.From 2008 to 2009,a large-scale scientific expedition has been carried out in this region.As an individual reference glacier,the tongue area of Qingbingtan glacier No.72 was measured by the high precise Real Time Kinematic-Global Position System (RTK-GPS).In this paper,changes of the tongue area of Qingbingtan glacier No.72 has been studied based on topographic map,remote sensing image and the survey during 2008-2009 field campaign.Results indicated that the ice surface-elevation of the tongue area changed-0.22±0.14 m a-1 from 1964 to 2008.The estimated loss in ice volume was 0.014±0.009 km3,which represented a ~20 % decrease from the 1964 volume and was equivalent to average annual mass balance of-0.20±0.12 m water equivalent for the tongue area during 1964-2008.Terminus retreated by 1852 m,approximately 41 m a-1,with the area reduction of 1.533 km2 (0.034 km2 a-1) from 1964 to 2009.Furthermore,the annual velocity reached to ~70 m a-1.Comparing with the other monitored glaciers in the eastern Tianshan Mountains,Qingbingtan glacier No.72 experienced more intensive in shrinkage,which resulted from the combined effects of climate change and glacier dynamic,providing evidence of the response to climatic warming.  相似文献   

2.
GPS measurement,an effective method for surveying glacier surface topography,has been applied in some glaciers for many years.The Shuiguan River No.4 glacier,a small glacier with its area of 1.84 km2 in 1972,located in the east of the Qilian Mountains,China,was selected to study its ice elevation change using GPS measurement in 2007.This study was conducted on the ablation area with GPS-measured area 0.5 km2.The ice elevation change of the glacier was obtained by comparing the DEM obtained by a 1:50 000 topographic map made in 1972 with the DEM by GPS-measured data acquired in 2007.The differences of the two DEMs showed the thinning condition of the glacier was apparent.The mean thinning was 15±8 m with the mean thinning rate of 0.42±0.22 m a-1 for 1972-2007 in the measurement area,which equaled 0.38±0.20 m yr-1 in water equivalent(w.e.).The prominent thinning occurred on the south part of the glacier,which was the area near the glacier terminus with the maximum thinning of 41±8 m.Assuming the thinning value of 15±8 m for the glacier area below 4640 m a.s.l.,the wasting ice mass was calculated to be 6.4±3.2×10-3 km3 for 1972-2007,corresponding to 5.7±2.8×10-3 km3 w.e.,which meant that the montane runoff released by the glacier was at least 5.7±2.8×106 m3 between 1972-2007.  相似文献   

3.
The glacial morphology of southern South American presents invaluable evidence to reconstruct former glacier behaviour and its relation to climate and environmental changes. However, there are still spatial and temporal gaps in the reconstruction of the Holocene Patagonian glacial landscape. Here we present the first geomorphological record for the Sierra Baguales Mountain Range(SBMR), forming the eastern foothills of the Southern Patagonian Andes 200 km from the Pacific coast. This area is topographically isolated from the Southern Patagonian Ice Field(SPIF), and is affected by the Westerly Winds. The study area shows evidence of ice sheet and alpine glaciations related to Andean uplift,which caused a marked climatic contrast between its western and eastern flanks since the Last Glacial Maximum(LGM). The regional rock mass strength and precipitation gradient acted as a controlling factor in the glacial cirque distribution and sizes, as well as in the development of glaciation types. We report new radiocarbon dates associated with warm/dry to cold/wet climatic changes during the middle Holocene, when former small alpine glaciers were located in the uppermost section of the SBMR basins, and eventually converged to form a small ice field or a composite valley glacier at lower elevations.This can be explained by an estimated regional temperature drop of 3.8°C±0.8°C, based on a 585±26m Equilibrium Line Altitude(ELA) descent, inferred by geomorphological evidence and the Accumulation Area Ratio(AAR), in addition to a free-air adiabatic lapse rate. Subsequently, the glaciers receded due to climatic factors including a rise in temperature, as well as non-climatic factors, mainly the glacier bedrock topography.  相似文献   

4.
In the Khumbu-and Khumbakarna Himalaya an ice stream network and valley glacier system has been reconstructed for the last glacial period (Würmian, Last Ice Age, Isotope stage 4–2, 60–18 Ka BP, Stage 0) with glaciogeomorphological and sedimentological methods. It was a part of the glacier system of the Himalaya and has communicated across transfluence passes with the neighbouring ice stream networks toward the W and E. The ice stream network has also received inflow from the N, from a Tibetan ice stream network, by the Kyetrak-Nangpa-Bote Koshi Drangka (Valley) in the W, by the W-Rongbuk glacier valley into the Ngozumpa Drangka (Valley), by the Central Rongbuk glacier valley into the Khumbu Drangka (Valley) and by the antecedent Arun Nadi transverse-valley in the E of the investigation area. The ice thickness of the valley glacier sections, the surface of which was situated above the snow-line, amounted to 1000–1450 m. The most extended parent valley glaciers have been measured approx. 70 km in length (Dudh Koshi glacier), 67 km (Barun-Arun glacier) and 80 km (Arun glacier). The tongue end of the Arun glacier has flowed down to c. 500 m and that of the Dudh Koshi glacier to c. 900 m asl. At heights of the catchment areas of 8481 (or 8475) m (Makalu), i.e., 8848 (or 8872) m (Mt. Everest, Sagarmatha, Chogolungma) this is a vertical distance of the Ice Age glaciation of c. 8000 m. The steep faces towering up to 2000 m above the névé areas of the 6000–7000 m-high surfaces of the ice stream network were located 2000–5000 m above the ELA. Accordingly, their temperatures were so low, that their rock surfaces were free of flank ice and ice balconies. From the maximum past glacier extension up to the current glacier margins, 13 (altogether 14) glacier stages have been differentiated and in part 14C-dated. They were four glacier stages of the late glacial period, three of the neoglacial period and six of the historical period. By means of 130 medium-sized valley glaciers the corresponding ELA-depressions have been calculated in comparison with the current courses of the orographic snow-line. The number of the glacier stages since the maximum glaciation approx. agrees with that e.g. in the Alps and the Rocky Mountains since the last glacial period. Accordingly, it is interpreted as an indication of the Würmian age (last glacial period) of the lowest ice margin positions. The current climatic, average glacier snow-line in the research area runs about 5500 m asl. The snow-line depression (ELA) of the last glacial period (Würm) calculated by four methods has run about 3870 m asl, so that an ELA-depression of c. 1630 m has been determined. This corresponds to a lowering of the annual temperature by c. 8, i.e., 10°C according to the specific humid conditions at that time.  相似文献   

5.
Supercooled water with temperatures below freezing point,was identified from hydrographic data obtained by Chinese and Australian expeditions to Prydz Bay,Antarctica,during the austral summer.The study shows that most supercooled waters occurred at depths of 63-271 m in the region north of the Amery Ice Shelf(AIS) front.The maximum supercooling was 0.16°C below the in-situ freezing point.In temperature and salinity ranges of-2.14--1.96°C and 34.39-34.46,respectively,the water was colder and fresher than peripheral shelf water.The supercooled water had less variability in the vertical profiles compared to shelf water.Based on analysis of their thermohaline features and spatial distribution,as well as the circulation pattern in Prydz Bay,we conclude that these supercooled waters originated from a cavity beneath the AIS and resulted from upwelling just outside of the AIS front.Water emerging from the ice shelf cools to an extremely low temperature(about-2.0°C) by additional cooling from the ice shelf,and becomes buoyant with the addition of melt water from the ice shelf base.When this water flows out of the ice shelf front,its upper boundary is removed,and thus it rises abruptly.Once the temperature of this water reaches below the freezing point,supercooling takes place.In summer,the seasonal pycnocline at-100 m water depth acts as a barrier to upwelling and supercooling.The upwelling of ice shelf outflow water illuminates a unique mid-depth convection of the polar ocean.  相似文献   

6.
The 4.45 m-thick pure ice lens have been discovered firstly at depth from 19.81 -24.26 m in the bore No.6, which locates in north bank of the Ngoring Lake. In source region of the Huanghe (Yellow) River, 14C dating, X -ray diffraction, pollen analysis, micropalaeontology, chemical components, environmental isotope 2H, 3H, 18O and freezing point of the ice and water samples from the bore have been tested and microorganism in the ice have been also appraised with microscope. Combined with the research on geomorphy and Quaternary around the lake, the ice lens are determined as a kind of deep-buried lake ice, formed in 35,030-45,209 yr.B.P., and annual mean air temperature was about -10℃ during that time.  相似文献   

7.
Landsat satellite images were used to map and monitor the snow-covered areas of four glaciers with different aspects(Passu: 36.473°N, 74.766°E;Momhil: 36.394°N, 75.085°E; Trivor: 36.249°N,74.968°E; and Kunyang: 36.083°N, 75.288°E) in the upper Indus basin, northern Pakistan, from 1990-2014. The snow-covered areas of the selected glaciers were identified and classified using supervised and rule-based image analysis techniques in three different seasons. Accuracy assessment of the classified images indicated that the supervised classification technique performed slightly better than the rule-based technique. Snow-covered areas on the selected glaciers were generally reduced during the study period but at different rates. Glaciers reached maximum areal snow coverage in winter and premonsoon seasons and minimum areal snow coverage in monsoon seasons, with the lowest snow-covered area occurring in August and September. The snowcovered area on Passu glacier decreased by 24.50%,3.15% and 11.25% in the pre-monsoon, monsoon and post-monsoon seasons, respectively. Similarly, the other three glaciers showed notable decreases in snow-covered area during the pre-and post-monsoon seasons; however, no clear changes were observed during monsoon seasons. During pre-monsoon seasons, the eastward-facing glacier lost comparatively more snow-covered area than the westward-facing glacier. The average seasonal glacier surface temperature calculated from the Landsat thermal band showed negative correlations of-0.67,-0.89,-0.75 and-0.77 with the average seasonal snowcovered areas of the Passu, Momhil, Trivor and Kunyang glaciers, respectively, during pre-monsoon seasons. Similarly, the air temperature collected from a nearby meteorological station showed an increasing trend, indicating that the snow-covered area reduction in the region was largely due to climate warming.  相似文献   

8.
High-resolution imagery can be used to reconstruct former glacier boundaries through the identification of glacial erosional and sedimentary geomorphology. We employed moraine mapping and the accumulation–area ratio method(AAR), in conjunction with Landsat, Google Earth, and SRTM imagery, to reconstruct glacier boundaries and equilibrium-line altitudes(ELAs) for Mt. Kenya in the Last Glacial Maximum(LGM), the Little Ice Age(LIA), and at present. Our results show that the areas of Lewis Glacier and the Tyndall-I glacier system were 0.678 km~2 and 0.390 km~2, respectively, during the maximum of LIA. Those mean that the both glaciers have shrunken by 87.0% and 88.7%, respectively since the LIA. Area change ratios for each glacier were significantly larger in the period of 2000 through 2015 than the former periods, indicating that glacier recession has accelerated. Continuous ice loss in this region has been driven by rising temperature and fluctuating precipitation. Linear regression data for Lewis glacier show that mass balance sensitivity to dry season temperature was –315 mm w.e./℃, whereas the sensitivity to dry season precipitation was 5.2 mm w.e./mm. Our data also show that the ELA on the western slope of Mt. Kenya rose by 716-816 m from the LGM to the modern era, corresponding to that temperature rose by 5.2℃-6.5℃.  相似文献   

9.
Like for most parts of High Asia, researches concerning the Pleistocene landscape evolution of the Leh Basin (34°03′ N/77°38′ E) have also left contradictions. To push this topic, three up to now unexplored Ladakh Range tributaries of the Leh Basin (Stagmo-, Arzu- and Nang-Valley) have been investigated. U-shaped profiles, transfluence passes, moraine mantled and glacially rounded peaks and ridges, roches moutonnées, glacial flank polishings and ground moraines document the former glaciation of the study area. The ice fillings of these tributaries reached a minimum thickness up to 540 m. Even at the valley outlets and on the orographic right side of the Leh Basin, the glaciation was more than 350 m thick. Based on these empirically extracted results, theoretical snow line considerations lead to the conclusion that the whole Leh Basin was filled up by a former Indus-Valley glacier. An ice injection limited to the nourishment areas of the Ladakh Range valleys could not have caused the reconstructed ice cover (down to 3236 m a.s.l.), which is proved by extended ground moraine complexes. Only an Indus ice stream network (most likely during the LGP), nourished by inflowing glaciers of the Ladakh- and Stok Range, explains the widespread existence of the glacial sediments at the outlets of the investigated valleys.  相似文献   

10.
Sand wedge is formed under the conditions of coldclimate, and is an important basis for reconstructingpaleoenvironment (LI et al., 1990; WANG, 1991 ). Ithas been reported constantly over the last 20 years inthe Qinghai-Xizang (Tibet) Plateau (GUO, 1979; CUl,1983; XU et al., 1984; LIANG et al.,, 1984; PAN etal., 199 ) and North China (YANG et al., 1983; DONGet al., 1985) and Northeast China (GUO et al.,1981 ). We also found fossil sand wedge groups formedin the end of the Late P…  相似文献   

11.
The studies on prediction of climate in Xinjiang almost show that the precipitation would increase in the coming 50 years, although there were surely some uncertainties in precipitation predictions. On the basis of the structure of glacier system and nature of equilibrium line altitude at steady state (ELAo), a functional model of the glacier system responding to climate changes was established, and it simultaneously involved the rising of summer mean temperature and increasing of mean precipitation. The results from the functional model under the climatic scenarios with temperature increasing rates of 0.01, 0.03 and 0.05 K/year indicated that the precipitation increasing would play an evident role in glacier system responding to climate change: if temperature become 1 ℃ higher, the precipitation would be increased by 10%, which can slow down the glaciers retreating rate in the area by 4 %, accelerate runoff increasing rate by 8 % and depress the ELAo rising gradient by 24 m in northern Xinjiang glacier system where semi-continental glaciers dominate, while it has corresponding values of only 1%, 5 % and 18m respectively in southern Xinjiang glacier system, where extremely continental glaciers dominate.  相似文献   

12.
This study reports on the clean ice area and surface elevation changes of the Khersan and Merjikesh glaciers in the north of Iran between 1955 and 2010 based on several high to medium spatial resolution remote sensing data.The object-oriented classification technique has been applied to nine remote sensing images to estimate the debris-free areas.The satellite-based analysis revealed that the clean ice areas of Khersan and Merjikesh glaciers shrank since 2010 with an overall area decrease of about 45% and 60% respectively.It means that the dramatic proportions of 1955 glaciers surface area are covered with debris during the last five decades.Although the general trend is a clean ice area decrease,some advancement is observed over the period of 1997-2004.During 1987-1991 the maximum decrease in the clean ice area was observed.However,the clean ice area had steadily increased between 1997 and 2010.To quantify the elevation changes besides the debris-free change analysis,several Digital Elevation Models(DEMs) were extracted from aerial photo(1955),topographic map(1997),ASTER image(2002) and Worldview-2 image(2010) and after it a 3-D Coregistration and a linear relationship adjustments techniques were used to remove the systematic shifts and elevation dependent biases.Unlike the sinusoidal variation of our case studies which was inferred from planimetric analysis,the elevation change results revealed that the glacier surface lowering has occurred during 1955-2010 continuously without any thickening with the mean annual thinning of about 0.4 ± 0.04 m per year and 0.3 ± 0.026 m per year for Khersan and Merjikesh glaciers,respectively.The maximum thinning rate has been observed during 1997-2002(about 1.1 ± 0.09 per year and 0.96 ± 0.01 mper year,respectively),which was compatible partially with debris-free change analysis.The present result demonstrates that although in debris-covered glaciers clean ice area change analysis can illustrate the direction of changes(retreat or advance),due to the high uncertainty in glacier area delineation in such glaciers,it cannot reveal the actual glacier changes.Thus,both planimetric and volumetric change analyses are very critical to obtain accurate glacier variation results.  相似文献   

13.
For the reconstruction of past climate variations,investigations on the history of glaciers are necessary.In the Himalaya,investigations like these have a rather short tradition in comparison with other mountains on earth.At the same time,this area on the southern margin of Tibet is of special interest because of the question as to the monsoon-influence that is connected with the climate-development.Anyhow,the climate of High Asia is of global importance.Here for the further and regionally intensifying answer to this question,a glacial glacier reconstruction is submitted from the CentralHimalaya,more exactly from the Manaslu-massif.Going on down-valley from the glacial-historical investigations of 1977 in the upper Marsyandi Khola(Nadi) and the partly already published results of field campaigns in the middle Marsyandi Khola and the Damodar- and Manaslu Himal in the years 1995,2000,2004 and 2007,new geomorphological and geological field- and laboratory data are introduced here from the Ngadi(Nadi) Khola and the lower Marsyandi Nadi from the inflow of the Ngadi(Nadi) Khola down to the southern mountain foreland.There has existed a connected ice-stream-network drained down to the south by a 2,100-2,200 m thick and 120 km long Marsyandi Nadi main valley glacier.At a height of the valley bottom of c.1,000 m a.s.l.the Ngadi Khola glacier joined the still c.1,300 m thick Marsyandi parent glacier from the Himalchuli-massif(Nadi(Ngadi) Chuli) – the south spur of the Manaslu Himal.From here the united glacier tongue flowed down about a further 44 km to the south up to c.400 m a.s.l.(27°57'38 "N/84°24'56" E) into the Himalaya fore-chains and thus reached one of or the lowest past ice margin position of the Himalayas.The glacial(LGP(Last glacial period),LGM(Last glacial maximum) Würm,Stage 0,MIS 3-2) climatic snowline(ELA = equilibrium line altitude) has run at 3,900 to 4,000 m a.s.l.and thus c.1,500 altitude meters below the current ELA(Stage XII) at 5,400-5,500 m a.s.l.The reconstructed,maximum lowering of the climatic snowline(ΔELA = depression of the equilibrium line altitude) about 1,500 m corresponds at a gradient of 0.6°C per 100 altitude meters to a High Glacial decrease in temperature of 9°C(0.6 × 15 = 9).At that time the Tibetan inland ice has caused a stable cold high,so that no summer monsoon can have existed there.Accordingly,during the LGP the precipitation was reduced,so that the cooling must have come to more than only 9°C.  相似文献   

14.
Maritime-type glaciers in the eastern Nyainqêntanglha Range, located in the southeastern part of the Tibetan Plateau, are an important water source for downstream residents and ecological systems. To better understand the variability of glaciers in this region, we used the band ratio threshold(TM3/TM5 for the Landsat TM /ETM+ and TM4/TM6 for Landsat OLI) to extract glacier outlines in ~1999 and ~2013. After that, we also generated a series of glacier boundaries and monitored glacier variations in the past 40 years with the help of the Chinese Glacier Inventory data(1975) and Landsat TM, ETM+ and OLI data. The total glacier area decreased by 37.69 ± 2.84% from 1975 to 2013. The annual percentage area change(APAC) was ~1.32% a-1 and ~1.29% a-1 in the periods 1975-1999 and 1999-2013, respectively. According to the lag theory, the reaction time is probably about 10 years and we discuss the variations of temperature and precipitation between 1965 and 2011. Temperature and precipitation increased between 1965 and 2011 at a rate of 0.34°C /10 a and 15.4 mm/10 a, respectively. Extensive meteorological data show that the glacier shrinkage rate over the period may be mainly due to increasing air temperature, while the increasing precipitation partly made up for the mass loss of glacier ice resulting from increasing temperature may also lead to the low APAC between 1999 and 2013. The lag theory suggests that glacier shrinkage may accelerate in the next 10 years. Small glaciers were more sensitive to climate change, and there was a normal distribution between glacier area and elevation. Glaciers shrank in all aspects, and south aspects diminished faster than others.  相似文献   

15.
Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas.  相似文献   

16.
Tropical glaciers are extremely sensitive to a warming climate. In this paper, the evolution of the remaining tropical glaciers in Australasia(Irian Jaya, Indonesia) during the period 1988-2015 was quantified. Landsat series images, a digital elevation model from SRTM, and previously published data were used. Estimated total glacier area in 1988, 1993, 1997 and 2004 was 3.85 km2±0.13 km2, 3.01 km2±0.08 km2, 2.49 km2±0.07 km2 and 1.725 km2 ±0.042 km2, respectively. Only 0.58 km2±0.016 km2 glacierized area remained in 2015 in Puncak Jaya, which is about 84.9% loss in just 27 years. If this rate continued, the remaining tropical glaciers in Australasia would disappear in the 2020 s. Timeseries analysis of climate variables showed significant positive trends in air temperature(0.009°C per year) and relative humidity(0.43% per year) but no considerable tendency was observed for precipitation. Warming climate together with mining activities would accelerate loss of glacier coverage in this region.  相似文献   

17.
The dielectric constant of the lunar regolith can directly influence the reflection coefficient and the trans-mission coefficient of the Moon′s surface, and plays an important role in the Moon research. In order to study the di-electric properties of the lunar regolith, the lunar regolith simulant was made according to the making procedure of the CAS-1 simulant made by Chinese Academy of Sciences. Then the dielectric constants of the lunar regolith simulant were measured with 85070E Aiglent Microwave Network Analyzer in the frequency ranging from 0.2 GHz to 20.0 GHz and at temperature of 25.1℃, 17.7℃, 13.1℃, 11.5℃, 9.6℃, 8.0℃, 4.1℃, -0.3℃, -4.7℃, -9.5℃, -18.7℃, -27.7℃, and -32.6℃, respectively. The Odelevsky model was employed to remove the influence of water in the air on the final effective dielectric constants. The results indicate that frequency and temperature have apparent influences on the dielectric constants of the lunar regolith simulant. The real parts of the dielectric constants increase fast over the range of 0.2 GHz to 3.0 GHz, but decrease slowly over the range of 4.0 GHz to 20.0 GHz. The opposite phenomenon occurs in the imaginary parts. The influences of the frequency and temperature on the brightness temperature were also estimated based on the radiative transfer equation. The result shows that the variation of the frequency and temperature results in great changes of the microwave brightness temperature emitting from the lunar regolith.  相似文献   

18.
The correlation between mean surface air temperature and altitude is analyzed in this paper based on the annual and monthly mean surface air temperature data from 106 weather stations over the period 1961–2003 across the Qinghai-Tibet Plateau. The results show that temperature variations not only depend on altitude but also latitude, and there is a gradual decrease in temperature with the increasing altitude and latitude. The overall trend for the vertical temperature lapse rate for the whole plateau is approximately linear. Three methods, namely multivariate composite analysis, simple correlation and traditional stepwise regression, were applied to analyze these three correlations. The results assessed with the first method are well matched to those with the latter two methods. The apparent mean annual near-surface lapse rate is −4.8 °C /km and the latitudinal effect is −0.87 °C /olatitude. In summer, the altitude influences the temperature variations more significantly with a July lapse rate of -4.3°C /km and the effect of latitude is only −0.28°C /olatitude. In winter, the reverse happens. The temperature decrease is mainly due to the increase in latitude. The mean January lapse rate is −5.0°C /km, while the effect of latitude is −1.51°C /olatitude. Comparative analysis for pairs of adjacent stations shows that at a small spatial scale the difference in altitude is the dominant factor affecting differences in mean annual near-surface air temperature, aided to some extent by differences of latitude. In contrast, the lapse rate in a small area is greater than the overall mean value for the Qinghai-Tibet Plateau (5 to 13°C /km). An increasing trend has been detected for the surface lapse rate with increases in altitude. The temperature difference has obvious seasonal variations, and the trends for the southern group of stations (south of 33° latitude) and for the more northerly group are opposite, mainly because of the differences in seasonal variation at low altitudes. For yearly changes, the temperature for high-altitude stations occurs earlier clearly. Temperature datasets at high altitude stations are well-correlated, and those in Nanjing were lagged for 1 year but less for contemporaneous correlations. The slope of linear trendline of temperature change for available years is clearly related to altitude, and the amplitude of temperature variation is enlarged by high altitude. The change effect in near-surface lapse rate at the varying altitude is approximately 1.0°C /km on the rate of warming over a hundred-year period.  相似文献   

19.
Introduction The Tibetan Plateau, located in west China, was uplifted during the Cenozoic and became the most youthful plateau in the world. Some researches have also shown that it started to develop into the cryosphere in the beginning of the Middle Pleistocene and became one of the three global cryospheres (two other cryospheres being the Artic and the Antarctic) (SHI et al. 1996). Because of the cryosphere development in the Tibetan Plateau, many periglacial and permafrost geomorpholog…  相似文献   

20.
From the synopical CTD sections in the WOCE PR11 repeated cruises, the South Pacific Subtropical Mode Water (SPSTMW) has been identified in the region of the Tasman Front Extension (TFE) around 29?S to the east of Australia. In the depth range of 150-250 m, the SPSTMW appears as a thermostad with vertical temperature gradient lower than 1.6℃(100 m)-1 and a tem- perature range of 16.5-19.5℃ and as a pycnostad with PV lower than 2×10-10 m-1 s-1 and a potential density range of 25.4-26.0 kg m-3. Like the subtropical mode waters in the North Atlantic and North Pacific, the formation of the SPSTMW is associated with the convective mixing during the austral wintertime as manifested from the time series of the Argo floats. And cold water entrains into the mixed layer with the deepening mixed layer from September to the middle of October. During the wintertime formation process, mesoscale eddies prevailing in the TFE region play an important role in the SPSTMW formation, and have a great effect on the SPSTMW distribution in the next year. The deeper (shallower) mixed layer in wintertime, consistent with the depressed (uplifted) permanent thermocline, is formed by the anticyclonic (cyclonic) eddies, and the substantial mode water thicker than 50 m is mainly found in the region of the anticyclonic eddies where the permanent thermocline is deeper than 450 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号