首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
Maritime-type glaciers in the eastern Nyainqêntanglha Range, located in the southeastern part of the Tibetan Plateau, are an important water source for downstream residents and ecological systems. To better understand the variability of glaciers in this region, we used the band ratio threshold(TM3/TM5 for the Landsat TM /ETM+ and TM4/TM6 for Landsat OLI) to extract glacier outlines in ~1999 and ~2013. After that, we also generated a series of glacier boundaries and monitored glacier variations in the past 40 years with the help of the Chinese Glacier Inventory data(1975) and Landsat TM, ETM+ and OLI data. The total glacier area decreased by 37.69 ± 2.84% from 1975 to 2013. The annual percentage area change(APAC) was ~1.32% a-1 and ~1.29% a-1 in the periods 1975-1999 and 1999-2013, respectively. According to the lag theory, the reaction time is probably about 10 years and we discuss the variations of temperature and precipitation between 1965 and 2011. Temperature and precipitation increased between 1965 and 2011 at a rate of 0.34°C /10 a and 15.4 mm/10 a, respectively. Extensive meteorological data show that the glacier shrinkage rate over the period may be mainly due to increasing air temperature, while the increasing precipitation partly made up for the mass loss of glacier ice resulting from increasing temperature may also lead to the low APAC between 1999 and 2013. The lag theory suggests that glacier shrinkage may accelerate in the next 10 years. Small glaciers were more sensitive to climate change, and there was a normal distribution between glacier area and elevation. Glaciers shrank in all aspects, and south aspects diminished faster than others.  相似文献   

2.
Glacier changes since the early 1960s,eastern Pamir,China   总被引:2,自引:0,他引:2  
Glaciers in the eastern Pamir are important for water resources and the social and economic development of the region.In the last 50 years,these glaciers have shrunk and lost ice mass due to climate change.In order to understand recent glacier dynamics in the region,a new inventory was compiled from Landsat TM/ETM+ images acquired in2009,free of clouds and with minimal snow cover on the glacierized mountains.The first glacier inventory of the area was also updated by digitizing glacier outlines from topographical maps that had been modified and verified using aerial photographs.Total glacier area decreased by 10.8%±1.1%,mainly attributed to an increase in air temperature,although precipitation,glacier size and topographic features also combined to affect the general shrinkage of the glaciers.The 19.3–21.4 km~3 estimated glacier mass loss has contributed to an increase in river runoff and water resources.  相似文献   

3.
Glaciers in the western Nyainqentanglha Range are an important source of water for social and economic development. Changes in their area were derived from two Chinese glacier inventories; one from the 1970 1:50,000 scale Chinese Topographic Maps series and the other from Landsat TM/ETM+ images acquired in 2009. Analyses also included boundaries from 2000 and 2014 Landsat TM/ETM+ images. A continuing and accelerating shrinkage of glaciers occurred here from 1970 to 2014, with glacier area decreasing by 244.38 ± 29.48 km~2(27.4% ± 3.3%)or 0.62% ± 0.08% a~(–1). While this is consistent with a changing climate, local topographic parameters, such as altitude, slope, aspect and debris cover, are also important influences. Recession is manifested by a rise in the elevation of the glacier terminus. The shrinkage of glaciers with NE, N and NW orientations exceeded that of other aspects, and glaciers with SE and S orientations experienced less shrinkage. Changes in the average positive difference of glaciation(PDG) show that the western Nyainqentanglha Range has unfavorable conditions for glacier maintenance which is being exacerbated by a warming climate since 1970.  相似文献   

4.
The work presents microparticle concentrations in snowpits from the East Rongbuk Glacier on Mt. Qomolangma (Everest) (ER) (28.02°N, 86.96°E, 6536 m a.s.l.), the Zhadang Glacier on Mt. Nyainqentanglha (NQ) (30.47°N, 90.65°E, 5800m a.s.l.), and the Guoqu Glacier on Mt. Geladaindong (GL) (33.95°N, 91.28°E, 5823m a.s.l.) over the Tibetan Plateau (TP). Variations of microparticle and major ions (e.g. Mg2+, Ca2+) concentrations in snowpits show that the values of the microparticles and ions in the non-monsoon seasons are much higher than those in the monsoon seasons. Annual flux of microparticle deposition at ER is lower than those at NQ and GL, which could be attributed to the long distance away from the possible dust source regions as well as the elevation for ER higher than the others. Compared with other remote areas, microparticle concentrations in the southern TP are much lower than those in the northern TP, but still much higher than those in Greenland and Antarctica. The seasonal and spatial microparticle variations are clearly related to the variations of atmospheric circulation according to the air mass 5-day backward trajectory analyses of HYSPLIT Model. Resultingly, the high microparticle values in snow are mainly attributed to the westerlies and the strong dust storm outbreaks on the TP, while the monsoon circulation brings great amount of precipitation from the Indian Ocean, thus reducing in the aerosol concentrations.  相似文献   

5.
Shoot density, standing crop (above- and below-ground biomass) and habitat of salt marsh grass Porteresia coarctata were investigated along the coast of Bakkhali estuary, Cox’s Bazar, Bangladesh from January to December 2006. Shoot density of P. coarctata was influenced by season and was found to be higher (>2 500 shoots/m 2 ) in post-monsoon and minimal in monsoon season; plants were particularly active in vegetative propagation during pre-monsoon. Above-ground biomass was greater along the protected coast compared with the exposed one in this estuary. Below-ground biomass was higher (7.75-269.53 g DW/m 2 ) than that above ground (2.20-114.75 g DW/m 2 ). Standing crops of P. coarctata showed a negative relationship (R=-0.77; P<0.05) with sedimentation rate, while seasonal activity influenced sedimentation. The recorded sedimentation rate was lower (6.09 mg/(cm 2 ·d)) in pre-monsoon and highest (14.55 mg/(cm 2 ·d)) in monsoon season. The mean value of pore water salinity was higher (34.25±5.05) during post-monsoon and lowest (18.0±3.71) in monsoon season. The soil was sandy clay in this P. coarctata bed; it consisted of 86% sand, 13% clay and 1% silt. Soil organic matter dropped during the monsoon season (0.78%-0.67%) and was highest ((2.17±1.42)%-(2.3±1.47)%) during post-monsoon, probably owing to accumulation of decomposed peat on the marsh surface. The mean pore water NH 4 -N concentration ranged from 2.44±1.65 to 3.33±1.82 μg/L, with a minimum air temperature of 22.09°C in post-monsoon and a maximum of 31.16°C in pre-monsoon. Variations of physico-chemical parameters in the soil, water, and climate governed biological parameters of P. coarctata in the Bakkhali estuary, and were comparable with estuarine environments elsewhere.  相似文献   

6.
Tropical glaciers are extremely sensitive to a warming climate. In this paper, the evolution of the remaining tropical glaciers in Australasia(Irian Jaya, Indonesia) during the period 1988-2015 was quantified. Landsat series images, a digital elevation model from SRTM, and previously published data were used. Estimated total glacier area in 1988, 1993, 1997 and 2004 was 3.85 km2±0.13 km2, 3.01 km2±0.08 km2, 2.49 km2±0.07 km2 and 1.725 km2 ±0.042 km2, respectively. Only 0.58 km2±0.016 km2 glacierized area remained in 2015 in Puncak Jaya, which is about 84.9% loss in just 27 years. If this rate continued, the remaining tropical glaciers in Australasia would disappear in the 2020 s. Timeseries analysis of climate variables showed significant positive trends in air temperature(0.009°C per year) and relative humidity(0.43% per year) but no considerable tendency was observed for precipitation. Warming climate together with mining activities would accelerate loss of glacier coverage in this region.  相似文献   

7.
Glaciers in the Shaksgam valley provide important fresh water resources to neighbourhood livelihood. Repeated creation of the glacier inventories is important to assess glacier–climate interactions and to predict future runoff from glacierized catchments. For this study, we applied a multi-criteria technique to map the glaciers of the Shaksgam valley of China, using Landsat Thematic Mapper(Landsat TM)(2009) and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model version two(ASTER GDEM V2) data. The geomorphometric parameters slope, plan, and profile curvature were generated from ASTER GDEM. Then they were organized in similar surface groups using cluster analysis. For accurate mapping of supraglacial debris area, clustering results were combined with a thermal mask generated from the Landsat TM thermal band. The debris-free glaciers were identified using the band ratio(TM band 4/TM band 5) technique. Final vector maps of the glaciers were created using overlay tools in a geographic information system(GIS).Accuracy of the generated glacier outlines was assessed through comparison with glacier outlines based on the Second Chinese Glacier Inventory(SCGI) data and glacier outlines created from high-resolution Google Earth? images of 2009. Glacier areas derived using the proposed approach were 3% less than in the reference datasets. Furthermore, final glacier maps show satisfactory mapping results, but identification of the debris-cover glacier terminus(covered by thick debris layer) is still problematic. Therefore, manual editing was necessary to improve the final glacier maps.  相似文献   

8.
Like for most parts of High Asia, researches concerning the Pleistocene landscape evolution of the Leh Basin (34°03′ N/77°38′ E) have also left contradictions. To push this topic, three up to now unexplored Ladakh Range tributaries of the Leh Basin (Stagmo-, Arzu- and Nang-Valley) have been investigated. U-shaped profiles, transfluence passes, moraine mantled and glacially rounded peaks and ridges, roches moutonnées, glacial flank polishings and ground moraines document the former glaciation of the study area. The ice fillings of these tributaries reached a minimum thickness up to 540 m. Even at the valley outlets and on the orographic right side of the Leh Basin, the glaciation was more than 350 m thick. Based on these empirically extracted results, theoretical snow line considerations lead to the conclusion that the whole Leh Basin was filled up by a former Indus-Valley glacier. An ice injection limited to the nourishment areas of the Ladakh Range valleys could not have caused the reconstructed ice cover (down to 3236 m a.s.l.), which is proved by extended ground moraine complexes. Only an Indus ice stream network (most likely during the LGP), nourished by inflowing glaciers of the Ladakh- and Stok Range, explains the widespread existence of the glacial sediments at the outlets of the investigated valleys.  相似文献   

9.
可可西里处于青藏高原腹地,是青藏高原自然环境的交接与过渡地带。近年来该区域冰川物质平衡可能有从西向东由正转负的趋势,但是其过渡地带岗扎日地区冰川状态未知。本研究利用地形图、SRTM、ASTER和Landsat等资料分析了岗扎日地区冰川面积变化和物质平衡变化,并对可可西里地区冰川变化空间规律进行了探讨,结果表明:①1970-2016年岗扎日冰川总面积年均缩小率为0.08±0.02%。2006年后冰川退缩趋势减缓。②1970-2012年岗扎日冰川平均减薄-8.64±0.30 m,体积减少1.45±0.06 km3,平均物质平衡为-0.21±0.01 m w.e. a-1。冰川物质平衡趋势由负转正(1970-1999年:-0.34±0.01 m w.e. a-1;1999-2012:0.16±0.02 w.e. a-1)。③东南、南、西南朝向作为迎风坡,1970年以来其冰川物质亏损较小,1999-2012年呈现强烈的正平衡。冰川面积变化滞后于物质平衡变化,东朝向和东南朝向冰川面积缩小率最大,主要是因为冰川冰舌较长,末端所处的海拔较低。④气温升高是岗扎日冰川1970-1999年呈现负物质平衡状态的主因,降水增多是1999-2012年正平衡状态的主因。⑤可可西里地区冰川1970s以来面积年均缩小率从西向东不断增大、物质平衡下降,与西风环流和季风环流相关,但局地气候也影响冰川变化和物质平衡。  相似文献   

10.
For the reconstruction of past climate variations,investigations on the history of glaciers are necessary.In the Himalaya,investigations like these have a rather short tradition in comparison with other mountains on earth.At the same time,this area on the southern margin of Tibet is of special interest because of the question as to the monsoon-influence that is connected with the climate-development.Anyhow,the climate of High Asia is of global importance.Here for the further and regionally intensifying answer to this question,a glacial glacier reconstruction is submitted from the CentralHimalaya,more exactly from the Manaslu-massif.Going on down-valley from the glacial-historical investigations of 1977 in the upper Marsyandi Khola(Nadi) and the partly already published results of field campaigns in the middle Marsyandi Khola and the Damodar- and Manaslu Himal in the years 1995,2000,2004 and 2007,new geomorphological and geological field- and laboratory data are introduced here from the Ngadi(Nadi) Khola and the lower Marsyandi Nadi from the inflow of the Ngadi(Nadi) Khola down to the southern mountain foreland.There has existed a connected ice-stream-network drained down to the south by a 2,100-2,200 m thick and 120 km long Marsyandi Nadi main valley glacier.At a height of the valley bottom of c.1,000 m a.s.l.the Ngadi Khola glacier joined the still c.1,300 m thick Marsyandi parent glacier from the Himalchuli-massif(Nadi(Ngadi) Chuli) – the south spur of the Manaslu Himal.From here the united glacier tongue flowed down about a further 44 km to the south up to c.400 m a.s.l.(27°57'38 "N/84°24'56" E) into the Himalaya fore-chains and thus reached one of or the lowest past ice margin position of the Himalayas.The glacial(LGP(Last glacial period),LGM(Last glacial maximum) Würm,Stage 0,MIS 3-2) climatic snowline(ELA = equilibrium line altitude) has run at 3,900 to 4,000 m a.s.l.and thus c.1,500 altitude meters below the current ELA(Stage XII) at 5,400-5,500 m a.s.l.The reconstructed,maximum lowering of the climatic snowline(ΔELA = depression of the equilibrium line altitude) about 1,500 m corresponds at a gradient of 0.6°C per 100 altitude meters to a High Glacial decrease in temperature of 9°C(0.6 × 15 = 9).At that time the Tibetan inland ice has caused a stable cold high,so that no summer monsoon can have existed there.Accordingly,during the LGP the precipitation was reduced,so that the cooling must have come to more than only 9°C.  相似文献   

11.
The study investigated the streamflow response to the shrinking cryosphere under changing climate in the Lidder valley, Upper Indus Basin(UIB), Kashmir Himalayas. We used a combination of multitemporal satellite data and topographic maps to evaluate the changes in area, length and volume of the glaciers from 1962 to 2013. A total of 37 glaciers from the Lidder valley, with an area of 39.76 km~2 in 1962 were selected for research in this study. It was observed that the glaciers in the valley have lost ~28.89 ±0.1% of the area and ~19.65 ±0.069% of the volume during the last 51 years, with variable interdecadal recession rates. Geomorphic and climatic influences on the shrinking glacier resources were studied. 30-years temperature records(1980-2010) in the study area showed a significant increasing trend in all the seasons. However, the total annual precipitation during the same period showed a nonsignificant decreasing trend except during the late summer months(July, August and September), when the increasing trend is significant. The depletion of glaciers has led to the significant depletion of the streamflows under the changing climate in the valley. Summer streamflows(1971-2012) have increased significantly till mid-nineties but decreased significantly thereafter, suggesting that the tipping point of streamflow peak, due to the enhanced glacier-melt contribution under increasing global temperatures, may have been already reached in the basin. The observed glacier recession and climate change patterns, if continued in future, would further deplete the streamflows with serious implications on water supplies for different uses in the region.  相似文献   

12.
High-resolution imagery can be used to reconstruct former glacier boundaries through the identification of glacial erosional and sedimentary geomorphology. We employed moraine mapping and the accumulation–area ratio method(AAR), in conjunction with Landsat, Google Earth, and SRTM imagery, to reconstruct glacier boundaries and equilibrium-line altitudes(ELAs) for Mt. Kenya in the Last Glacial Maximum(LGM), the Little Ice Age(LIA), and at present. Our results show that the areas of Lewis Glacier and the Tyndall-I glacier system were 0.678 km~2 and 0.390 km~2, respectively, during the maximum of LIA. Those mean that the both glaciers have shrunken by 87.0% and 88.7%, respectively since the LIA. Area change ratios for each glacier were significantly larger in the period of 2000 through 2015 than the former periods, indicating that glacier recession has accelerated. Continuous ice loss in this region has been driven by rising temperature and fluctuating precipitation. Linear regression data for Lewis glacier show that mass balance sensitivity to dry season temperature was –315 mm w.e./℃, whereas the sensitivity to dry season precipitation was 5.2 mm w.e./mm. Our data also show that the ELA on the western slope of Mt. Kenya rose by 716-816 m from the LGM to the modern era, corresponding to that temperature rose by 5.2℃-6.5℃.  相似文献   

13.
Landsat images, real-time kinematic GPS measurements, and topographic maps were used to determine changes in ice elevation, volume, and areal extent of the Laohugou No. 12 glacier (Qilian Mountains, China) between 1957 and 2007. The glacier experienced significant thinning and areal shrinkage in the ablation zone, but slight thickening in part of the accumulation zone. Elevation decreased by 18.6±5.4 m between 1957 and 2007 in the regions covered by the GPS measurements. The total volume loss for the entire glacier was estimated to be 0.218 km3 using a third-order polynomial fit method. The area diminished by 0.28 km2 between 1957 and 1994, 0.26 km2 between 1994 and 2000, and 0.28 km2 between 2000 and 2007, suggesting that the rate of loss in glacial coverage has increased since the mid-1990s. Significant increases in annual mean air temperature may have contributed to shrinkage and thinning of the glacier.  相似文献   

14.
Results are presented of the longitudinal and vertical profiling of salinity and suspended particulate matter (SPM) at the Muthupet estuary, India, during a one year period under widely varying freshwater flow conditions. Freshwater flow was available during post-monsoon and monsoon. An up-estuary shift in the location of estuarine turbidity maxima (ETM) was observed during the transition from post-monsoon to pre-monsoon and further it shifted downstream during the transition from pre-monsoon to monsoon, thereby exhibiting a pronounced seasonal cycle. The salinity intrusion was dependent on the freshwater discharge and was expressed as a power function of freshwater flow, explaining 97% of the variance. The formation of a salt plug in Muthupet estuary and its seasonal dynamics were observed, which is not an identified feature of any of the Indian estuaries studied so far. The geographical positions of salt plug and ETM core were more or less the same during their formation. The occurrence of two ETM during the LW of post-monsoon and the absence of ETM during monsoon explains the strong seasonal variation in the formation of ETM. The primary factor affecting the formation of ETM was identified as the freshwater flow over an annual cycle; the resuspension of sediments by tidal current affecting the formation on a flood/ebb cycle was secondary. The extent of shift of ETM was found to be an inverse logarithmic function of the freshwater discharge. The separation between ETM intrusion and salinity intrusion increased two fold with the increase in ETM intrusion.  相似文献   

15.
Glacier variations in the Tibetan Plateau and surrounding mountain ranges in China affect the livelihood of over one billion people who depend on water from the Yellow, Yangtze, Brahmaputra, Ganges and Indus rivers originating in these areas. Based on the results of the present study and published literature, we found that the glaciers shrank 15.7% in area from 1963 to 2010 with an annual area change of -0.33%. The shrinkage generally decreased from peripheral mountain ranges to the interior of Tibet.The linear trends of annual air temperature and precipitation at 147 stations were 0.36°C(10a)~(-1) and 8.96 mm(10a)~(-1) respectively from 1961 to 2010. The shrinkage of glaciers was well correlated with the rising temperature and the spatial patterns of the shrinkage were influenced by other factors superimposed on the rising temperature such as glacier size, type, elevation, debris cover and precipitation.  相似文献   

16.
The distribution of borehole temperature at four high-altitude alpine glaciers was investigated. The result shows that the temperature ranges from -13.4℃ to -1.84℃, indicating the glaciers are cold throughout the boreholes. The negative gradient (i.e., the temperature decreasing with the increasing of depth) due to the advection of ice and climate warming, and the negative gradient moving downwards relates to climate warming, are probably responsible for the observed minimum temperature moving to lower depth in boreholes of the Gyabrag glacier and Miaoergou glacier compared to the previously investigated continental ice core borehole temperature in West China. The borehole temperature at 10m depth ranges from -8.0℃ in the Gyabrag glacier in the central Himalayas to -12.9℃ in the Tsabagarav glacier in the Altai range. The borehole temperature at 10 m depth is 3-4 degrees higher than the calculated mean annual air temperature on the surface of the glaciers and the higher 10 m depth temperature is mainly caused by the production of latent heat due to melt-water percolation and refreezing. The basal temperature is far below the melting point, indicating that the glaciers are frozen to bedrock. The very low temperature gradients near the bedrock suggest that the influence of geothermal flux and ice flow on basal temperature is very weak. The low temperature and small velocity of ice flow of glaciers are beneficial for preservation of the chemical and isotopic information in ice cores.  相似文献   

17.
This study reports on the clean ice area and surface elevation changes of the Khersan and Merjikesh glaciers in the north of Iran between 1955 and 2010 based on several high to medium spatial resolution remote sensing data.The object-oriented classification technique has been applied to nine remote sensing images to estimate the debris-free areas.The satellite-based analysis revealed that the clean ice areas of Khersan and Merjikesh glaciers shrank since 2010 with an overall area decrease of about 45% and 60% respectively.It means that the dramatic proportions of 1955 glaciers surface area are covered with debris during the last five decades.Although the general trend is a clean ice area decrease,some advancement is observed over the period of 1997-2004.During 1987-1991 the maximum decrease in the clean ice area was observed.However,the clean ice area had steadily increased between 1997 and 2010.To quantify the elevation changes besides the debris-free change analysis,several Digital Elevation Models(DEMs) were extracted from aerial photo(1955),topographic map(1997),ASTER image(2002) and Worldview-2 image(2010) and after it a 3-D Coregistration and a linear relationship adjustments techniques were used to remove the systematic shifts and elevation dependent biases.Unlike the sinusoidal variation of our case studies which was inferred from planimetric analysis,the elevation change results revealed that the glacier surface lowering has occurred during 1955-2010 continuously without any thickening with the mean annual thinning of about 0.4 ± 0.04 m per year and 0.3 ± 0.026 m per year for Khersan and Merjikesh glaciers,respectively.The maximum thinning rate has been observed during 1997-2002(about 1.1 ± 0.09 per year and 0.96 ± 0.01 mper year,respectively),which was compatible partially with debris-free change analysis.The present result demonstrates that although in debris-covered glaciers clean ice area change analysis can illustrate the direction of changes(retreat or advance),due to the high uncertainty in glacier area delineation in such glaciers,it cannot reveal the actual glacier changes.Thus,both planimetric and volumetric change analyses are very critical to obtain accurate glacier variation results.  相似文献   

18.
In the Khumbu-and Khumbakarna Himalaya an ice stream network and valley glacier system has been reconstructed for the last glacial period (Würmian, Last Ice Age, Isotope stage 4–2, 60–18 Ka BP, Stage 0) with glaciogeomorphological and sedimentological methods. It was a part of the glacier system of the Himalaya and has communicated across transfluence passes with the neighbouring ice stream networks toward the W and E. The ice stream network has also received inflow from the N, from a Tibetan ice stream network, by the Kyetrak-Nangpa-Bote Koshi Drangka (Valley) in the W, by the W-Rongbuk glacier valley into the Ngozumpa Drangka (Valley), by the Central Rongbuk glacier valley into the Khumbu Drangka (Valley) and by the antecedent Arun Nadi transverse-valley in the E of the investigation area. The ice thickness of the valley glacier sections, the surface of which was situated above the snow-line, amounted to 1000–1450 m. The most extended parent valley glaciers have been measured approx. 70 km in length (Dudh Koshi glacier), 67 km (Barun-Arun glacier) and 80 km (Arun glacier). The tongue end of the Arun glacier has flowed down to c. 500 m and that of the Dudh Koshi glacier to c. 900 m asl. At heights of the catchment areas of 8481 (or 8475) m (Makalu), i.e., 8848 (or 8872) m (Mt. Everest, Sagarmatha, Chogolungma) this is a vertical distance of the Ice Age glaciation of c. 8000 m. The steep faces towering up to 2000 m above the névé areas of the 6000–7000 m-high surfaces of the ice stream network were located 2000–5000 m above the ELA. Accordingly, their temperatures were so low, that their rock surfaces were free of flank ice and ice balconies. From the maximum past glacier extension up to the current glacier margins, 13 (altogether 14) glacier stages have been differentiated and in part 14C-dated. They were four glacier stages of the late glacial period, three of the neoglacial period and six of the historical period. By means of 130 medium-sized valley glaciers the corresponding ELA-depressions have been calculated in comparison with the current courses of the orographic snow-line. The number of the glacier stages since the maximum glaciation approx. agrees with that e.g. in the Alps and the Rocky Mountains since the last glacial period. Accordingly, it is interpreted as an indication of the Würmian age (last glacial period) of the lowest ice margin positions. The current climatic, average glacier snow-line in the research area runs about 5500 m asl. The snow-line depression (ELA) of the last glacial period (Würm) calculated by four methods has run about 3870 m asl, so that an ELA-depression of c. 1630 m has been determined. This corresponds to a lowering of the annual temperature by c. 8, i.e., 10°C according to the specific humid conditions at that time.  相似文献   

19.
光学与微波遥感的新疆积雪覆盖变化分析   总被引:1,自引:0,他引:1  
利用2002-2013年冬季的MODIS光学遥感数据,以及AMSR-E、AMSR2与MWRI被动微波遥感数据,建立了新疆地区冬季每日积雪分布遥感反演模型。首先,将Terra与Aqua双星MODIS的积雪产品融合,初步去云并最大化积雪信息;然后,利用AMSR-E/AMSR2和MWRI被动微波数据进行每日雪盖提取;最后,利用被动微波遥感数据反演得到的每日雪盖结果对双星融合后依然有云的像元进行替换,得到每日积雪分布情况。据此模型提取了11年间冬季的积雪天数信息,结合气象台站观测数据,分析了新疆冬季积雪的年内和年际变化规律。结果表明,新疆地区积雪主要分布在北部新疆,积雪天数与地形关系密切,山区积雪天数较多,盆地及城市区积雪天数较少;积雪天数年内变化是从11月到次年1月随温度降低逐渐增加,从1月到3月积雪天数则逐渐减少。新疆地区积雪天数在这11年中存在一定的波动,积雪天数与该年的平均气温,以及月低于0℃的天数存在显著相关性,与降雪量关系不明显。新疆地区近年来积雪天数重心有向西向南移动的趋势,这可能与全球气候变暖导致多年积雪融化有关。  相似文献   

20.
Glacier area changes in the Qangtang Plateau are analyzed during 1970-2000 using air photos,relevant photogrammetric maps and satellite images based on the multi-temporal grid method.The results indicate that the melting of glaciers accelerated,only a few of glaciers in an advancing state during 1970-2000 in the whole Qangtang Plateau.However,the glaciers seemed still more stable in the study area than in most areas of western China.We estimate that glacier retreat was likely due to air temperature warming during 1970-2000 in the Qangtang Plateau.Furthermore,the functional model of glacier system is applied to study climate sensitivity of glacier area changes,which indicates that glacier lifespan mainly depends on the heating rate,secondly the precipitation,and precipitation increasing can slow down glacier retreat and make glacier lifespan prolonged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号