首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rainfall characteristics during the annual rainy season are explored for the Mzingwane catchment of south-western Zimbabwe, for both historic period (1886–1906) and more recent times (1950–2015), based on available daily and monthly precipitation series. Annual and seasonal rainfall trends are determined using the modified Mann-Kendall test, magnitude of trends test and Sen’s slope estimator. Rainfall variability is quantified using the coefficient of variation (CV), precipitation concentration index (PCI) and standard precipitation index (SPI). Results suggest that contemporary mean annual rainfall may not have changed from that measured during the historic period of 1886–1906. However, the number of rainy days (≥ 1 mm) has decreased by 34%, thus suggesting much more concentrated and increased rainfall intensity. A notable shift in both the onset and cessation dates of the rainy season is recorded, particularly during the twenty-first century, which has resulted in a significantly reduced (p < 0.05) length of the rainy season. The combination of a reduced number of rainy days (≥ 1 mm) and a shortened rainy season suggests that long intra-season dry spells have become more common through time and have considerable negative consequences for agriculture and wetland ecosystem in the region. In addition, high spatio-temporal rainfall variability and seasonal PCI values indicate strong seasonality in the rainy season. Based on the SPI results, the El Niño Southern Oscillation (ENSO) strongly influences rainfall variability. The results further suggest high uncertainty in rain season characteristics, which requires effective planning for water needs.  相似文献   

2.
利用开鲁气象站1954—2011年逐日降水量数据,分析了近58a降水量和降水日数的年、季变化趋势和气候倾向率以及4—10月不同等级降水日数和降水量的比例。结果表明:(1)开鲁58a平均年降水量为332.5mm,年平均降水日数64d,占全年总日数的17.5%,日降水量强度仅5.2mm;(2)年降水量与降水日数呈显著的正相关关系,降水日数多,降水量则多;(3)近58a年降水日数和降水量均呈显著的减少变化趋势,降水日数减少1.8d/10a,降水量减少13.2mm/10a;特别是1999—2011年日降水强度明显减小,年平均降水量仅277.5mm,比前45a平均减少了2成,春夏季干旱突出;(4)降水量和降水日数季节分配不均,夏季降水量占全年的70.3%,雨季集中,旱季明显;(5)作物生长季(4—10月)降水量级少,有效降水日数少,因此,发生干旱的概率高,特别是季节连旱,不利于作物的生长发育,严重制约着农牧业生产的发展。  相似文献   

3.
Summary Two cumulus convection and two planetary boundary layer schemes are used to investigate the climate of southern Africa using the MM5 regional climate model. Both a wet (1988/89) and a dry (1991/92) summer (December–February, DJF) rainfall season are simulated and the results compared with three different observational sources: Climate Research Unit seasonal data (precipitation, 2 m surface temperature, number of rain days), satellite-derived diurnal precipitation and the Surface Radiation Budget diurnal short-wave fluxes and optical depth. Using the ETA model boundary layer in MM5 simulates too much incident short-wave radiation at the surface at 12 UTC, whereas the medium range forecast model boundary layer yields a diurnal cycle of short-wave radiation closer to the observed. The Betts-Miller convection scheme in MM5 simulates peak rainfall later in the day and less rain days than observed, whereas when using the Kain-Fritsch convection scheme a peak rainfall earlier in the day and more rain days than observed are simulated. The intensity of the hydrological cycle is therefore dependent on the choice of convection scheme, which in turn is further modified by the boundary layer scheme. Precipitation during the wet 1988/89 season is reasonably captured by most simulations, though using the Betts-Miller scheme more accurately simulates rainfall during the dry 1991/92 season. Mean DJF biases in the surface temperature and diurnal temperature range are consistent with biases in the number of rain days and the diurnal cycles of surface moisture and energy.  相似文献   

4.
南海西南季风异常与广东省汛期重要天气的关系   总被引:5,自引:1,他引:4  
南海西南季风的活动直接影响广东省前、后汛期重要天气的异常,因此深入探索南海西南季风的活动规律及其与广东省各种重大天气异常的关系十分必要.利用合成分析和相关统计方法,探讨和分析了南海西南季风建立早晚、强弱与广东省前、后汛期降水量趋势,初、终台的早晚及登陆广东省的热带气旋个数等重要天气的关系.指出南海西南季风爆发早的年份,前汛期雨量以正常偏少为主、后汛期雨量以偏多为主、登陆广东热带气旋偏多;南海西南季风偏强的年份,后汛期雨量以偏多为主,登陆广东热带气旋以正常偏多为主.还分析了4~6月、7~9月以及前冬(12~2月)的海温场、500 hPa高度场与西南季风建立早晚、强弱的关系,初步探索了西南季风建立的早晚、强弱与广东省汛期重要天气气候异常的关系的一些机理,其结果可供短期气候业务预测参考.  相似文献   

5.
利用四川省雅安市1951~2008年逐日降水资料和1969~2000年逐小时降水资料,统计分析了青藏高原东侧雅安地区4个典型旱年和4个典型涝年的降水量、降水频率的多时间尺度变化特征。结果表明,雅安旱年的平均年降水量为1242.9mm,涝年的平均年降水量比旱年多1010mm。旱年汛期降水量占旱年降水总量的70.4%,涝年汛期降水量超出旱年一倍,且占涝年降水总量的81.1%。旱、涝年降水量的季节变化明显,且涝年的季节差异更加显著;雨强与降水量的季节变化相似,夏季达到最大,且旱、涝年年雨强和汛期雨强的差异很明显;旱、涝年之间的雨日差异要小的多,季节差异也不突出。旱、涝年降水量和雨日的最大值、最小值出现月份不同,旱年降水量7月最多、1月最少,而涝年降水量8月最多、12月最少。另外,旱、涝年白天、夜间的月降水量和月雨日最大值出现时间不同,并且不同降水强度,旱、涝年降水量和雨日的逐月变化也有较大差异;旱、涝年降水日变化与夜雨特征都突出,但夜间降水量和频次远远大于白天。旱、涝年降水量和频次的最大值、最小值出现时间有差异,旱年最大小时降水量在01时,最小在14时。涝年夜间小时降水量为双峰结构,最大小时降水量在23时,另一最大值在03时,最小在16时。旱年和涝年最大小时降水频次均出现在00时,最小分别出现在14时和15时。并且,降水量和频次从谷值到峰值的增加速率超过了从峰值到谷值的衰减速率;进一步分析发现,随着降水强度的增加,其夜间降水量越容易出现多峰值的波动,且旱、涝年夜间降水量和频次的差值也越明显。其中,旱年中雨和大雨降水量和频次高于涝年,但涝年暴雨降水量和频次远高于旱年。   相似文献   

6.
The activity of South China Sea southwest monsoon (SCSSM) has direct impacts on the anomalies of important weather in Guangdong province during the raining seasons. So it is necessary to explore thoroughly the activity pattern of SCSSM and its relationship with important weather anomalies in the province. In this paper, the methods of composite analysis and correlation statistics are used to study the relationship between the onset date and intensity of SCSSM and the important weather, such as precipitation trends in Guangdong province during the annually first and second raining seasons, the timing of the annually first and last typhoon and the number of typhoons landing in Guangdong province. The results show that the rainfall is less than normal during the first raining season, but more than normal during the second one and there are more tropical cyclones landing in Guangdong province in the years of early SCSSM onset. The rainfall is more than normal during the second raining season and there are more tropical cyclones landing in Guangdong province in the years of strong SCSSM. The relationship between the SST of April - June, July - September and previous winter (December - February) and 500 hPa geopotential height and the onset date and intensity of SCSSM is analyzed. Some mechanisms between the onset dates and intensity of SCSSM and the important weather anomalies in Guangdong province are preliminarily explored. The results can be used for reference in short-term climate forecast.  相似文献   

7.
利用华南地区248个国家级地面气象站逐小时降水数据和14个探空站数据,分析了2003—2016年4—6月华南前汛期降水日变化特征。据南海夏季风爆发时间,将降水分为爆发前后两个时段。华南地区主要存在两条大雨带,一个位于云贵高原至南岭山脉以南,另一个位于广东沿海地区。偏北雨带集中发生在后半夜至清晨时段,偏南雨带集中发生在中午至下午时段。南海夏季风爆发前后,降水量不存在明显相关性,相关系数较大时次位于中午至下午时段。前后期年降水标准差在0.5附近,变化幅度明显时段主要集中于凌晨至清晨。午后出现3 h多年降水量变化幅度最大值,最小时段为中午12时。降水量、降水频率和降水强度的经向分布特征明显且相似:降水量和降水频率在112 °E附近出现日变化转折,以西多出现不稳定夜雨,以东白天降水波动较大。在南海夏季风爆发前,降水特征主要表现为西部高频、南部高强,在清晨更多作用于对暴雨系统的增长;季风爆发后则表现为西北-东南南的高频率高强度降水形态,在傍晚更多作用于增加降水发生频率。   相似文献   

8.
Highly concentrated precipitation, where a large percentage of annual precipitation occurs over a few days, may include a high risk of flooding and severe soil erosion. Thus, areas with severe erosion such as the Loess Plateau in China are particularly vulnerable to highly concentrated precipitation events due to climate change. In this study, we investigated spatial and temporal patterns in the concentration of rainfall in the Middle Yellow River (MYR) from the last 56 years (1958–2013). We used daily and monthly precipitation data from 26 meteorological stations in the study area to calculate the precipitation concentration index (PCI) and the concentration index (CI). The southern and northern parts of the MYR were characterized by a lower CI with a decreasing trend, while the middle parts had a higher CI with an increasing trend. High PCI values occurred in the southern MYR, while lower PCIs with a more homogenous rainfall distribution were found mainly in the northern parts of the MYR. The annual PCI and CI exhibited positive trends at most stations, although only a minority of stations had significant trends (P < 0.05). At seasonal scales, CI exhibited significantly increasing trends in winter at most stations, while a few stations had significant trends in the other three seasons. These findings provide important reference information to facilitate ecological restoration and farming operations in the study region.  相似文献   

9.
采用安徽省15站近60年来的降水资料,研究了季节和年雨日、降水量及雨强的气候变化特征.结果表明:1)空间分布上,雨日、降水量"南多北少",雨强中北部地区相当,皆小于南部地区;雨日数南北在冬春季相差较大,降水量夏季最多、冬季最少,雨强上南北在春季相差较大;雨日、降水量及雨强在年和季节上基本呈现显著正相关关系.2)时间演变上,雨日在减少,降水量、雨强在增多(大),且表现为两阶段的变化特征;小波分析显示约10 a的年代际周期变化,雨日上存在、降水量上在衰减、雨强上则不明显,约5 a、3 a的周期变化存在较多;雨日在春秋季减少明显,降水量春秋季减少,夏冬季增加但不明显,雨强尤以夏冬季增大明显;无论是年还是各季节的时间演变上,降水量与雨日、雨强均呈显著正相关,但雨日与雨强之间相关性则差些.  相似文献   

10.
11.
采用应用于跨行业影响模式比较计划(ISIMIP)的5个CMIP5全球气候模式模拟的历史和未来RCP排放情景下的逐日降水数据,在评估模式对汉江流域1961—2005年极端降水变化特征模拟能力的基础上,进一步计算了RCP2.6、RCP4.5和RCP8.5排放情景下汉江流域未来2016—2060年极端降水总量(R95p)、极端降水贡献率(PEP)、连续5 d最大降水(RX5d)和降水强度(SDII),结果表明:RCP4.5情景下的极端降水指数上升最明显,R95p和RX5d分别较基准期增加12.5%和8.2%,PEP增加3.2个百分点,SDII微弱上升。在不同排放情景下,PEP均有一定的增幅,以流域西北和东南部增幅较大;R95p在流域绝大部分区域表现出一定的增加,且流域东南部和北部是增幅高值区;RX5d在RCP2.6和RCP4.5情景下整体表现为增加的特征,但在RCP8.5情景下整体表现为减少的特征。对极端降水预估的不确定性中,SDII的不确定性最小,RX5d的不确定性最大;不确定性大值区主要位于流域东部、东南部和西北部部分区域。  相似文献   

12.
Extreme climate events in China: IPCC-AR4 model evaluation and projection   总被引:11,自引:1,他引:10  
Observations from 550 surface stations in China during 1961–2000 are used to evaluate the skill of seven global coupled climate models in simulating extreme temperature and precipitation indices. It is found that the models have certain abilities to simulate both the spatial distributions of extreme climate indices and their trends in the observed period. The models’ abilities are higher overall for extreme temperature indices than for extreme precipitation indices. The well-simulated temperature indices are frost days (Fd), heat wave duration index (HWDI) and annual extreme temperature range (ETR). The well-simulated precipitation indices are the fraction of annual precipitation total due to events exceeding the 95th percentile (R95T) and simple daily intensity index (SDII). In a general manner, the multi-model ensemble has the best skill. For the projections of the extreme temperature indices, trends over the twenty-first century and changes at the end of the twenty-first century go into the same direction. Both frost days and annual extreme temperature range show decreasing trends, while growing season length, heat wave duration and warm nights show increasing trends. The increases are especially manifested in the Tibetan Plateau and in Southwest China. For extreme precipitation indices, the end of the twenty-first century is expected to have more frequent and more intense extreme precipitation. This is particularly visible in the middle and lower reaches of the Yangtze River, in the Southeast coastal region, in the west part of Northwest China, and in the Tibetan Plateau. In the meanwhile, accompanying the decrease in the maximum number of consecutive dry days in Northeast and Northwest, drought situation will reduce in these regions.  相似文献   

13.
2016年梅汛期降雨环流特征及ECMWF中期预报偏差分析   总被引:2,自引:2,他引:2  
利用NCAR/NCEP逐日再分析资料和台站观测日平均降雨资料,分析2016年梅汛期的大气环流演变特点和期间3次强降雨过程的环流特征,对比了欧洲中期数值模式(EC模式)的预报能力,并对其中期预报降雨的落区偏北、强度偏弱的偏差原因进行分析。结果表明,2016年梅汛期中高纬度环流多变化,多冷空气活动但势力总体不强,夏季风在6月下旬和7月上旬逐步增强,西太平洋副热带高压稳定维持,为强降雨的发生提供了有利动力和水汽条件。在梅汛期前期EC在中期时效对于夏季风的预报强度偏强、副高位置偏北,直接造成模式预报的雨带位置偏北。EC对于乌拉尔山一带的环流系统预报能力较好,但对于日本海-鄂霍茨克海一带的环流系统预报能力较差,从而使得影响我国的冷空气路径和强度预报均出现偏差,这对于7月初的强降水的强度和落区预报也有明显影响。   相似文献   

14.
利用1961—2017年广东86个地面气象观测站逐日降水资料,定义广东区域性暴雨过程的标准,构建了综合考虑区域暴雨过程持续时间、暴雨范围、最大日降水量和最大过程降水量4个指标的广东区域性暴雨过程综合强度评估方法,由此分析近57年广东区域性暴雨过程次数、强度、雨涝年景等特征和变化。结果表明:近57年来,广东共出现1211次区域性暴雨过程,平均每年21.2次,主要出现在4—9月,单次过程平均持续时间是2.3 d;广东区域性暴雨过程的次数和强度存在明显的月际、年际和年代际变化,次数最多出现在5月,强度最大出现在6月;广东雨涝年景指数以0.17/(10 a)的速率显著上升;强和较强等级的广东区域性暴雨过程次数呈显著增加趋势,较弱等级区域性暴雨次数呈显著减少趋势。评估得到广东强雨涝年有5年:2008年、2001年、1973年、1994年、1993年,其中有4年出现在1990年以后。  相似文献   

15.
Extreme weather exerts a huge impact on human beings and it is of vital importance to study the regular pattern of meteorological and hydrological factors. In this paper, a selection of seven extreme indices is used to analyze the trend of precipitation extremes of 18 meteorological stations located in Zhejiang Province, east China using the Mann–Kendall test. Then the precipitation trends in the plum season (from May to July) and typhoon season (from August to October) are studied separately. The results show that the precipitation trend varies from east to west. There is a positive trend in the east and a negative one in the west. The largest part of Zhejiang Province shows a positive trend in heavy precipitation and the most significant upward trend is detected in Dinghai with 3.4?mm/year for precipitation on very wet days. Although the upward trend of extreme precipitation is not prevailing, the range of increase in specific areas is apparent, like Dinghai with 1.3?mm/year. Precipitation intensity exhibits an upward trend in most areas and a typical upward trend can be found in Dachendao, Tianmushan, and Yuhuan with 0.04, 0.02, and 0.05?mm/year respectively. Precipitation intensity in both plum and typhoon seasons has increased too, especially for the coastal stations.  相似文献   

16.
The study evaluated CORDEX RCMs’ ability to project future rainfall and extreme events in the Mzingwane catchment using an ensemble average of three RCMs (RCA4, REMO2009 and CRCM5). Model validation employed the statistical mean and Pearson correlation, while trends in projected rainfall and number of rainy days were computed using the Mann-Kendall trend test and the magnitudes of trends were determined by Sen’s slope estimator. Temporal and spatial distribution of future extreme dryness and wetness was established by using the Standard Precipitation Index (SPI). The results show that RCMs adequately represented annual and inter-annual rainfall variability and the ensemble average outperformed individual models. Trend results for the projected rainfall suggest a significant decreasing trend in future rainfall (2016–2100) for all stations at p < 0.05. In addition, a general decreasing trend in the number of rainy days is projected for future climate, although the significance and magnitude varied with station location. Model results suggest an increased occurrence of future extreme events, particularly towards the end of the century. The findings are important for developing proactive sustainable strategies for future climate change adaption and mitigation.  相似文献   

17.
利用巴音布鲁克气象站1960-2011年逐日降水资料,统计了逐年降水日数、降水量、以及5—9月不同量级降雨日数、降雨量,进而得到暖季不同降雨雨强,运用线性趋势系数、M—K检验及滑动71检验等方法分析了巴音布鲁克山区降水的变化趋势和突变特征。结果表明:近52a来巴音布鲁克山区年降水量和降水日数呈明显的增加趋势,气候倾向率分别为9.5mm/10a、3.2d/10a,然而年降水量和降水日数的增加主要源自冷季而非暖季,年降水量与降水强度关系更密切。巴音布鲁克山区暖季5~9月降雨量占年降水量的八成以上,暖季微雨日显著减少,小雨事件对年降水量的贡献率减弱,大雨和暴雨的贡献率增加。冷季降水量和降水日数显著增加,冷季降水日数在1975年附近发生增多突变,冷季降水量在2003年后发生增多突变。  相似文献   

18.
Exploring the characteristic of the extreme climatic events, especially future projection is considerably important in assessing the impacts of climatic change on hydrology and water resources system. We investigate the future patterns of climate extremes (2001–2099) in the Haihe River Basin (HRB) derived from Coupled General Circulation Model (CGCM) multimodel ensemble projections using the Bayesian Model Average (BMA) approach, under a range of emission scenarios. The extremes are depicted by three extreme temperature indices (i.e., frost days (FD), growing season length (GSL), and T min >90th percentile (TN90)) and five extreme precipitation indices (i.e., consecutive dry days (CDD), precipitation ≥10 mm (R10), maximum 5-day precipitation total (R5D), precipitation >95th percentile (R95T), and simple daily intensity index (SDII)). The results indicate frost days display negative trend over the HRB in the 21st century, particularly in the southern basin. Moreover, a greater season length and more frequent warm nights are also projected in the basin. The decreasing CDD, together with the increasing R10, R5D, R95T, and SDII in the 21st century indicate that the extreme precipitation events will increase in their intensity and frequency in the basin. Meanwhile, the changes of all eight extremes climate indices under A2 and A1B scenarios are more pronounced than in B1. The results will be of practical significance in mitigation of the detrimental effects of variations of climatic extremes and improve the regional strategy for water resource and eco-environment management, particularly for the HRB characterized by the severe water shortages and fragile ecological environment.  相似文献   

19.
青海省近40年雨日、雨强气候变化特征   总被引:19,自引:2,他引:17  
汪青春  李林  刘蓓  秦宁生  朱尽文 《气象》2005,31(3):69-72
利用青海省1961-2002年26个代表站逐日雨量资料和青海省东部地区10个站1981~2001年降水自记资料,分析近40年来青海省雨日、雨强气候变化。结果表明:青海近年来虽然夏半年降水量和雨日在减少,但降水强度在增大。夏半年降水量的减少主要是降水日数的减少造成的;而冬半年降水量的明显增加是由于雨日增多和每个降水日平均雨量的增大造成的。近20年来10分钟、1小时最大降水的强度在明显增加。同时,20世纪90年代夜间出现强降水的几率多于80年代。  相似文献   

20.
Distribution of seasonal rainfall in the East Asian monsoon region   总被引:8,自引:1,他引:8  
Summary ?This study deals with the climatological aspect of seasonal rainfall distribution in the East Asian monsoon region, which includes China, Korea and Japan. Rainfall patterns in these three countries have been investigated, but little attention has been paid to the linkages between them. This paper has contributed to the understanding of the inter-linkage of various sub-regions. Three datasets are used. One consists of several hundred gauges from China and South Korea. The second is based on the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP). The two sources of precipitation information are found to be consistent. The third dataset is the NCEP/NCAR reanalysis 850-hPa winds. The CMAP precipitation shows that the seasonal transition over East Asia from the boreal winter to the boreal summer monsoon component occurs abruptly in mid-May. From late March to early May, the spring rainy season usually appears over South China and the East China Sea, but it is not so pronounced in Japan. The summer monsoon rainy season over East Asia commonly begins from mid-May to late May along longitudes of eastern China, the Korean Peninsula, and Japan. A strong quasi-20-day sub-seasonal oscillation in the precipitation appears to be dominant during this rainy season. The end date of the summer monsoon rainy season in eastern China and Japan occurs in late July, while the end date in the Korean Peninsula is around early August. The autumn rainy season in the Korean Peninsula has a major range from mid-August to mid-September. In southern China, the autumn rainy season prevails from late August to mid-October but a short autumn rainy season from late August to early September is noted in the lower part of the Yangtze River. In Japan, the autumn rainy season is relatively longer from mid-September to late October. The sub-seasonal rainfall oscillation in Korea, eastern China and Japan are explained by, and comparable to, the 850-hPa circulation. The strong westerly frontal zone can control the location of the Meiyu, the Changma, and the Baiu in East Asia. The reason that the seasonal sea surface temperature change in the northwestern Pacific plays a critical role in the northward advance of the onset of the summer monsoon rainfall over East Asia is also discussed. Received October 5, 2001; revised April 23, 2002; accepted May 11, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号