首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用西南印度洋脊中段Indomed-Gallieni洋段49-51°E区段全覆盖高分辨率多波束水深地形资料,应用构造地貌学分析方法,结合区域地形及其他地球物理等资料,在分段分析49-51°E区段岩浆-构造动力学模式的基础上,进一步探讨了约10 Ma以来Indomed-Gallieni洋段的演化史.28、29洋段目前岩浆供应不足,在轴部不对称深断层的控制之下不对称扩张,属于超慢速扩张洋脊较常见的演化方式.轴部火山建造主要向北翼增生,发育与火山脊相关的火山地貌;南翼构造拉张作用强烈,地貌上可观察到大量断块,拆离断层可能大量存在.而27洋段水深浅、火山密集、轴部缺失裂谷,超慢速扩张下却具有较高的岩浆通量.Indomed-Gallieni洋段地形高地建造于一次岩浆增强事件,但应该不是因为Crozet热点的影响.27洋段为目前仍受该岩浆增强事件影响的唯一区段,但其强度和规模也在逐渐减小;包括28、29洋段在内的Indomed-Gallieni段其他部分,已重新恢复到岩浆供应不足的正常超慢速扩张洋脊演化模式.28、29洋段和27洋段岩浆供应均存在岩浆通量由多至少的周期,周期内岩浆供应较多时期轴部建脊,减少时期轴部火山建造裂离.但27洋段由于仍受岩浆增强事件的影响,与28、29洋段表现形式不同,主要表现为火山建造裂离方式、岩浆供应周期长短以及构造活动强烈程度的不同.  相似文献   

2.
超慢速扩张西南印度洋中脊岩浆的集中供给在空间维度上表现为岩浆扩张段(NVR)与相邻的非转换断层不连续带(NTD)地壳结构的差异,而在时间维度上表现为离轴与沿轴地壳结构的差异.为了进一步揭示岩浆集中供给的时空分布特征,本文选取西南印度洋中脊热液区2010年海底地震仪深部探测中平行于洋中脊距轴部偏北约10 km的离轴测线d0d10,使用射线追踪正演和反演的方法,得到了NVR和NTD北侧离轴区域的地壳及上地幔P波速度结构,并与轴部速度结构进行了对比分析.研究结果表明:(1)NTD北侧离轴区域的地壳厚度约5.2 km,其厚度明显大于轴部NTD下方地壳厚度(~3.2 km),由此推测洋脊轴部NTD区域形成的地壳在不断减薄;(2)NVR北侧离轴区域的地壳厚度约7.0 km,其厚度亦大于轴部NVR地壳厚度(~5.8 km),表明在洋中脊演化过程中洋脊轴区域的岩浆供给在不断减少,其活动性在不断减弱.  相似文献   

3.
洋中脊速度结构是揭示大洋岩石圈演化过程的重要约束.为探讨不同扩张速率下洋中脊的洋壳速度结构特征,挑选了全球152处快速(全扩张速率 90mm·a-1)、慢速(全扩张速率20~50mm·a-1)和超慢速(全扩张速率20mm·a-1)扩张洋中脊和非洋中脊的洋壳1-D地震波速度结构剖面,通过筛选统计、求取平均值等方法对分类的洋壳1-D速度结构进行对比研究,获得了不同扩张速率下洋中脊洋壳速度结构差异以及洋中脊与非洋中脊洋壳速度结构差异的新认识:(1)快速、慢速和超慢速扩张洋中脊的平均正常洋壳厚度分别为6.4km、7.2km和5.3km,其中洋壳层2的厚度基本相似,洋壳厚度差异主要源自洋壳层3;其洋壳厚度变化范围分别为4.9~8.1km、4.6~8.7km和4.2~10.2km,随着洋中脊扩张速率减小,洋壳厚度的变化范围逐渐增大;(2)快速扩张洋中脊的洋壳速度大于慢速和超慢速,可能与快速扩张脊洋壳生成过程中深部高密度岩浆上涌比较充足有关;(3)非洋中脊(10Ma)的洋壳比洋中脊(10Ma)的洋壳厚~0.3km,表明洋壳厚度与洋壳年龄有一定的正相关性.  相似文献   

4.
20 Ma以来Mohns洋中脊的非对称扩张速率与地壳结构   总被引:1,自引:1,他引:0       下载免费PDF全文
超慢速扩张的Mohns洋中脊共轭两侧的地球物理场与地壳结构具有显著的非对称性.利用我国第五次北极科学考察采集的水深、重力与磁力数据,结合历史资料,我们计算了14条垂直Mohns洋中脊剖面的扩张速率、剩余水深、剩余地幔布格重力异常(RMBA)、地壳厚度和非均衡地形.对洋中脊共轭两侧以上计算结果的进一步对比发现,Mohns洋中脊两侧整体(下文均指同一地质时刻各剖面的平均值)的非对称性呈现明显的两段性:20~10.5 Ma,相比Mohns洋中脊东侧,西侧的扩张速率更慢、地壳更厚、非均衡地形更低;10.5~0 Ma,扩张速率、地壳厚度和非均衡地形的非对称的极性与20~10.5 Ma期间完全相反.后一阶段,整体扩张速率在西侧更快、剩余水深更浅,但是对应更薄的地壳和更高的非均衡地形.我们推断前者为冰岛沿Kolbeinsey洋中脊的作用增厚了Mohns洋中脊西侧地壳并使得洋中脊向西侧跳动,而后一阶段反映了岩浆供给减少后西侧集中的构造活动导致的更多的拉伸与隆升.沿各剖面上,10.5~0 Ma期间构造活动集中的洋中脊西侧均具有薄地壳和高非均衡地形,但构造拉伸的增加并不总是对应增快的扩张速率.岩浆在浅部更多地向东侧的分配以及洋中脊向西侧的跳动可能使得东西两侧具有相近的扩张速率.  相似文献   

5.
洋中脊及邻区洋盆的洋壳厚度能很好地反映区域岩浆补给特征,对于研究洋中脊内部及周缘岩浆活动和构造演化过程具有很好的指示意义.西北印度洋中脊作为典型的慢速扩张洋中脊,其扩张过程与周缘构造活动具有很强的时空关系.本文利用剩余地幔布格重力异常反演了西北印度洋洋壳厚度,由此分析区域内洋壳厚度分布和岩浆补给特征.研究发现,西北印度洋洋壳平均厚度为7.8 km,受区域构造背景影响厚度变化较大.根据洋壳厚度的统计学分布特征,将区域内洋壳分为三种类型:薄洋壳(小于4.5 km)、正常洋壳(4.5~6.5 km)和厚洋壳(大于6.5 km),根据西北印度洋中脊周缘(~40 Ma内)洋壳厚度变化特征可将洋中脊划分为5段,发现洋中脊洋壳厚度受区域构造活动和地幔温度所控制,其中薄洋壳主要受转换断层影响造成区域洋壳厚度减薄,而厚洋壳主要受地幔温度和地幔柱作用影响,并在S4洋中脊段显示出较强的热点与洋中脊相互作用,同时微陆块的裂解和漂移也可能是导致洋壳厚度差异的原因之一.  相似文献   

6.
洋脊俯冲与斑岩铜金矿成矿   总被引:17,自引:0,他引:17       下载免费PDF全文
很多大型、超大型斑岩铜、金矿都与洋脊俯冲密切相关. 环太平洋地区是世界上探明的超大型斑岩铜、金矿聚集的地区, 其中东太平洋沿岸中、南美洲的智利、秘鲁等地分布着多个正在俯冲的洋脊, 多数洋脊俯冲带都形成了大型、超大型斑岩铜、金矿; 而西太平洋的洋脊俯冲的数量少、规模小, 相应的斑岩铜、金矿的规模和数量都明显少于东太平洋, 造成了环太平洋地区斑岩铜、金矿分布不均一的特征. 其原因在于, 在洋脊俯冲过程中, 热的、年轻的洋壳容易发生部分熔融形成埃达克岩, 由于铜、金是中度不相容元素, 其在洋壳中的含量远比地幔和陆壳的平均丰度高, 因此, 洋壳部分熔融形成的岩浆具有系统偏高的铜、金含量, 有利于形成斑岩铜、金矿. 在中国东部、中亚造山带等地区剥蚀程度较低的地段寻找洋脊俯冲的迹象将有助于寻找大型、超大型斑岩铜、金矿以及其他相关矿床.  相似文献   

7.
西南印度洋洋中脊(SWIR)是超慢速扩张洋脊的代表,是海洋地学研究热点.本文从SWIR多波束水深数据、重、磁数据和地震结构等几方面,阐述了SWIR热液活动区(49°39′E)的综合地质地球物理特征.SWIR热液活动不仅与扩张速率有关,构造作用更是一个重要控制因素;热液活动区位于Indomed和Gallieni转换断层之间,从水深地形上看,该区段洋脊是SWIR上水深最浅的区域之一,水深与MBA存在良好的镜像关系,MBA和RMBA低值意味着较厚的地壳厚度与较高的地幔温度,洋脊段27地壳厚度大于9km,可能是受到Crozet热点的影响;磁条带数据表明,此区段洋脊南北两翼呈不对称扩张,形成南翼的浅离轴域比北翼宽;在洋脊段28发现的活动热液喷口刚好位于热液蚀变形成的低磁强区内,具有良好的硫化物资源.这些认识必将为在该区首次实施的三维地震探测研究的地质地球物理解释及活动热液喷口的动力学机制研究打下坚实基础.  相似文献   

8.
为了研究九州—帕劳洋脊(KPR)俯冲部分与同震破裂扩展、地震活动性和浅部甚低频地震的关系,对南海海槽西部俯冲带日向滩地区进行了三维地震层析成像。结合岸上和近海记录的主动源和被动源地震数据,成像了从该海槽轴附近到海岸地区的深部板块。我们的结果表明,俯冲的九州—帕劳洋脊为西北—东南向的低速带,向下扩展到约30km的深度。在这个深度,我们认为俯冲的九州—帕劳洋脊与板块分离,成为上覆大陆板块的底座。由于过去大地震的同震滑动地区没有延伸到俯冲的九州—帕劳洋脊,我们认为九州—帕劳洋脊可能阻碍了破裂的扩展。俯冲的九州—帕劳洋脊的内部在很宽的深度上分布有活跃的板内地震活动。浅部甚低频地震在俯冲的九州—帕劳洋脊上部连续发生,而在俯冲的九州—帕劳洋脊的东北部却是间歇地出现。因此,俯冲的九州—帕劳洋脊看来是这个地区同震破裂扩展和地震现象的一个重要因素。  相似文献   

9.
为了研究九州-帕劳洋脊(KPR)俯冲部分与同震破裂扩展、地震活动性和浅部甚低频地震的关系,对南海海槽西部俯冲带日向滩地区进行了三维地震层析成像。结合岸上和近海记录的主动源和被动源地震数据,成像了从该海槽轴附近到海岸地区的深部板块。我们的结果表明,俯冲的九州-帕劳洋脊为西北-东南向的低速带,向下扩展到约30km的深度。在这个深度,我们认为俯冲的九州-帕劳洋脊与板块分离,成为上覆大陆板块的底座。由于过去大地震的同震滑动地区没有延伸到俯冲的九州-帕劳洋脊,我们认为九州-帕劳洋脊可能阻碍了破裂的扩展。俯冲的九州-帕劳洋脊的内部在很宽的深度上分布有活跃的板内地震活动。浅部甚低频地震在俯冲的九州-帕劳洋脊上部连续发生,而在俯冲的九州-帕劳洋脊的东北部却是间歇地出现。因此,俯冲的九州-帕劳洋脊看来是这个地区同震破裂扩展和地震现象的一个重要因素。  相似文献   

10.
本文给出了洋脊附近深海丘陵地貌的全球和区域随机分析结果.该分析包括利用Sea Beam资料估计达到4阶的随机参数.这些参数提供了深海丘陵的重要定量物理信息,包括它们的均方根高度、方位定向、特征宽度、形态比、Hausdorff维数、偏斜度、倾角和峰度.全球数据库由64条Sea Beam条带组成,这些条带靠近东太平洋隆起、大西洋中脊和印度洋中心脊的里韦拉、科科斯和纳斯卡扩张区,一种分析形式是将扩张速率集合中的参数平均,每个扩张速率子集至少在一种形态中能从其它子集中被唯一地分拼出来.最慢的扩张速率子集(大西洋中脊数据)呈现出深海丘陵的最大尺度(均方根高度及特征宽度和长度),当扩张速军增至快扩张速率值(太平洋一科科斯),且从快扩张速率向更快扩张速率(太平洋一纳斯卡)增加时.这些参数普遍降低.这表明扩张速生和深海丘陵地貌相互关系的某种复杂性.对于快扩张速率数据子集.平面视形态比几乎是其它任何子集的两倍大,但对更快扩张速率数据子集,平面视形态比却最小.断裂大小基本上与所有扩张速率子集相同.对于慢和中等扩张速率数据,垂直偏斜度为正.表明峰比谷要大;而对于快扩张速率数据,垂直偏斜度为负,表明谷比峰要大.峰态,即峰度每处都比3的高斯值大,而且大西洋的比太平洋的趋势更大.倾角参数提供了实质性证据,表明中等和快扩张速率数据中向内的坡度较陡.但在慢扩张速率数据中,该参数仅为边缘证据.参数相关分析发现,子集特性有时不同于整个数据库,尤其在全球数据库中,当对均方根高度投影,特征宽度呈分辨较好的正趋势时,这些参数在大西洋中脊为渐变较好的正趋势,而在太平洋一科科斯为负趋势.另外,当全球数据库的平面视形态比与均方根高度普遍不相关时,太平洋一科科斯数据库的平面视形态比与均方根高度却为负相关.这些结果强调了与全球数据库其余有关的太平洋数据的强烈独特性.太平洋一科科斯数据由27条集中于锡墓尔罗斯和奥罗斯科断裂带之间的条带组成.这些数据较好地覆盖了深海丘陵.该范围为成图完善和研究较好的区域;并且形成了洋脊地貌和随机深海丘陵参数之间相关分析区域的基础.该分析发现深海丘陵参数与相都洋脊轴高度相关,表明可能相对岩浆供给丰度控制洋脊轴深度的,也许对深度丘陵形成有重大影响.  相似文献   

11.
洋中脊构造及地震调查现状   总被引:1,自引:0,他引:1  
介绍了洋中脊的全球分布和构造特征,对全球主要的、不同扩张速率的洋中脊进行了分类和列表描述;对洋中脊的构造特征,如地形特征、地壳厚度与扩张速率的关系及扩张轴下的岩浆房的特征、洋中脊与地幔柱的相互作用进行了阐述。回顾了海底地震仪在洋中脊构造调查中的应用及取得的主要成果。简要介绍了我国将用海底地震仪开展洋中脊构造调查的技术路线。  相似文献   

12.
西南印度洋岩浆补给特征研究:来自洋壳厚度的证据   总被引:1,自引:0,他引:1       下载免费PDF全文
西南印度洋中脊为典型的超慢速扩张洋中脊,其岩浆补给具有不均匀分布的特征.洋壳厚度是洋中脊和热点岩浆补给的综合反映,因此反演洋壳厚度是研究大尺度洋中脊和洋盆岩浆补给过程的一种有效方法.本文通过对全球公开的自由空气重力异常、水深、沉积物厚度和洋壳年龄数据处理得到剩余地幔布格重力异常,并反演西南印度洋地区洋壳厚度,定量地分析了西南印度洋的洋壳厚度分布及其岩浆补给特征.研究发现,西南印度洋洋壳平均厚度7.5 km,但变化较大,标准差可达3.5 km,洋壳厚度的频率分布具有双峰式的混合偏态分布特征.通过分离双峰统计的结果,将西南印度洋洋壳厚度分为0~4.8 km的薄洋壳、4.8~9.8 km的正常洋壳和9.8~24 km的厚洋壳三种类型,洋中脊地区按洋壳厚度变化特征可划分为7个洋脊段.西南印度洋地区薄洋壳受转换断层控制明显,转换断层位移量越大,引起的洋壳减薄厚度越大,减薄范围与转换断层位移量不存在明显相关性.厚洋壳主要受控于该区众多的热点活动,其中布维热点、马里昂热点和克洛泽热点的影响范围分别约340 km,550 km和900 km.Andrew Bain转换断层北部外角形成厚的洋壳,具有与快速扩张洋中脊相似的转换断层厚洋壳特征.  相似文献   

13.
大洋中脊玄武岩磁性研究是了解洋脊磁异常机理和洋壳圈层结构等基础科学问题的重要手段,但由于深海样品采集难度较大,岩浆后期氧化和热液蚀变如何改变岩石磁性至今仍然是研究的瓶颈.本文从磁性矿物类型、岩石磁性能和磁性颗粒特征等方面概述了大洋中脊玄武岩的岩石磁性特征,其主要的磁性矿物是钛磁铁矿,平均居里温度274℃,具有较高的Q比.这表明在磁法勘探正演与资料解释过程中,不能忽视岩石剩余磁化和感应磁化的共同作用,通过重点对比分析超慢速扩张西南印度洋中脊的玄武岩磁性特征,认为该区的岩石磁性研究将为磁法勘探提供约束务件,同时有望基于岩石磁性研究,在热液蚀变过程定量化研究,与超慢速扩张洋中脊下地壳演化模型等研究方面取得突破.  相似文献   

14.
根据2001年8月台湾和中国大陆合作开展的深部地震调查,给出了横跨南海(SCS)东北部被动大陆缘的地壳构造。将一条NW-SE向剖面上的48道地震反射数据和11台海底地震仪的反射和折射的垂直分量数据整合在一起,依次得到了沉积层上部(1.6~2.4km/s)、下部(2.5~2.9km/s)、压实层(3~4.5km/s)以及结晶地壳上部(4.5~5.5km/s)、中部(5.5~6.5km/s)和下部(6.5~7.5km/s)的成像。速度模型表明,压实沉积物的厚度(0.5~3km)和基底变化很大,这是由于南海海底扩张以后的岩浆入侵和火成岩活动导致的。更进一步从模型中识别出,在南海东北部边缘下陆坡之下的洋陆过渡带(OCT)的上/中地壳(7~10km厚)存在一些火山和火成岩,下地壳下面存在高速层(0~5km厚)。还得到了南海东北部陆缘洋陆过渡带的西北为薄陆壳、东南为厚洋壳的影像。但是这些过渡性地壳不能归类为洋陆过渡带,这是由于它们的地壳厚度、有限的火山、岩浆体和高速层所决定的。紧邻重力低区和从台西南海盆延伸而来的沉陷带的陆壳拉伸可能是欧亚板块向马尼拉海沟下插的结果,而厚洋壳的形成则是由于南海海底扩张之后洋壳中过度的火山活...  相似文献   

15.
西南印度洋中脊(SWIR)增生的洋壳面积仅占印度洋的15%左右,但其具有比东南印度洋中脊和西北印度洋中脊更悠久而复杂的演化历史.基于已有的地质、地球物理和地球化学等资料,系统总结了SWIR的地质构造特征,并讨论了SWIR的演化过程、洋脊地幔的不均一性、洋脊周边海底高原成因等核心问题.SWIR地形中段高、东西两段低,空间重力异常基本与地形变化一致.按转换断层一级边界可将SWIR划分为20个一级段.SWIR的磁异常条带呈现两端渐进式分布和中段带状分布特征,对应洋脊的三期演化历史.SWIR的地幔源区极不均一,尤其是中新元古代造山带根部集中拆离的中段.源区地幔的不均一性与大陆裂解和洋脊演化过程密切相关.SWIR的东端与西北印度洋中脊和东南印度洋中脊的邻近洋脊段具有地球化学亲缘性,西端与大西洋中脊和南美洲—南极洲洋中脊的邻近洋脊段具有地球化学亲缘性,这与SWIR的渐近式扩张有关.SWIR周边海底高原普遍具有较大的地壳厚度,其成因除了陆壳基底之外,可能与热点火山作用、热点-洋脊相互作用或热点-三联点相互作用有关,目前尚未形成统一的认识.SWIR的形成演化及其作用域内的熔融异常(如海底高原)是冈瓦纳大陆裂解、残留岩石圈地幔、软流圈地幔和深部地幔热柱物质共同作用的结果.了解SWIR的演化过程对揭示冈瓦纳大陆的裂解过程和印度洋的演化具有重要意义.  相似文献   

16.
"三联点"是全球板块运动系统的重要组成部分.扩张的智利洋脊向南美板块俯冲形成了智利三联点,并造成了智利三联点以南数百千米范围内剧烈的地形变化.智利三联点区域的初始板块俯冲角度、洋脊扩张速率等因素的差异对南美板块岩石层热结构及地形起伏造成了显著影响.本文采用有限差分方法,构建了智利三联点区域洋脊俯冲的二维数值模型,模拟洋...  相似文献   

17.
智利三联点(CTJ)位于纳兹卡板块、南极洲板块与南美板块的交界处,由南极洲—纳兹卡板块之间的智利洋脊俯冲到智利海沟而形成.巴塔哥尼亚板片窗的发展是智利洋脊长期扩张俯冲的结果之一.随着纳兹卡板块的不断东向俯冲,纳兹卡板块范围逐渐变小,CTJ同时向北移动.本文采用数值模拟方法,建立了关于洋脊海沟碰撞的简单二维模型,来研究智利三联点南部扩张洋脊俯冲区域岩石层的热结构.模拟结果表明,洋脊的位置、板块相对汇聚速度及上覆大陆板块的存在均对俯冲区域海洋板块的温度结构有着很大影响,并且大陆板块下方海洋板块温度变化最大的位置距洋脊的水平距离与洋脊到板片窗范围的水平距离两者之间具有较好的一致性.同时,当存在两两板块间的相对汇聚时,洋脊右侧大陆板块下表面的温度升高,俯冲带内海洋板块温度接近于地幔温度.纳兹卡板块以7.8 cm·a~(-1)的速度急速俯冲于南美板块之下的过程中,同时伴随着智利洋脊的持续扩张俯冲,在智利三联点南部,南美板块之下纳兹卡板块的温度因而可以更快地达到地幔软流层的约1300℃温度,并最终消亡于地幔之中.  相似文献   

18.
海洋多道反射地震成像是研究大洋岩石圈结构、岩浆系统和热液活动等信息的重要手段.受限于缆长、水深和采集方式等因素,水听器拖缆接收到的用于速度建模的壳内折射震相通常仅出现在较远偏移距,同时仅利用走时信息反演获得的速度模型只含有长波长的结构信息,严重制约了速度模型分辨率与地震成像效果.本文在传统初至波走时层析成像方法的基础上,加入地震波场的向下延拓、全波形反演和逆时偏移成像,发展了一套能显著提高洋中脊浅部结构分辨率的地震数据处理、建模与成像流程,并成功应用到东太平洋北部洋中脊五条垂直于洋脊轴的代表测线中.速度模型显示上地壳2A和2B层分别表现为高和低速度梯度特征,上地壳速度结构呈现不连续的低速异常特征,且与断裂或热液活动信号具有较好的空间对应关系.同时,地震成像也显示了2A/2B层存在明显的非均质性,表明上地壳结构受到岩浆-构造-热液作用的共同影响.本研究不仅为建立快速扩张洋中脊三维岩浆-构造-热液地质模型提供了支撑,同时为这套流程在其他研究区的应用提供了方法基础.  相似文献   

19.
洋脊中轴裂谷是板块的创生边界,是与地球内部联系最紧密的地表区域之一。多年来一直吸引着地球科学家们的注意。但是,对于中轴裂谷的成因,至今没有得到圆满的解释。本文利用文献[1]所提出的上涌流动模式,利用电子计算机进行了数值计算,得出了裂谷深度和宽度。其结果均与观测数据符合得较好,从而给出了洋脊中轴裂谷地形成因的一个动力学解释。  相似文献   

20.
扩张期洋中脊热液循环系统的热排出与岩浆系统的热注入共同控制着洋壳厚度的生成,而岩浆流体是热液循环系统的流体成分之一,往往与下渗海水混合参与各圈层能量和物质传递,但其能量传递对洋壳厚度的影响机制目前还不清楚.利用有限元的数值模拟手段,对扩张期热液循环系统中岩浆流体与洋壳厚度的关系进行研究.结果表明:(1)相较于只有海水参与的对流循环,含有岩浆流体的热液循环造成的洋壳厚度的减薄量更大、热液喷口温度更高.(2)岩浆流体对洋壳厚度的二次减薄作用随其含量的增大而减弱,热液喷口温度随其含量的增大而升高.(3)南海岩浆水、地幔水含量和洋壳厚度的分布具有非均质性,东部次海盆的地幔水、岩浆水含量高于西南次海盆,前者的平均洋壳厚度也大于后者,并且在海盆残余扩张脊附近存在异常薄洋壳.结合模型结果分析认为,残余扩张脊附近的薄洋壳可能受到扩张期热液循环或后期岩浆流体的影响,而东部、西南次海盆的洋壳厚度差异可能是由于前者的岩浆流体含量高于后者而造成的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号