首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The wave pressure and uplift force due to random waves on a submarine pipeline (resting on bed, partially buried and fully buried) in clayey soil are measured. The influence of various parameters viz., wave period, wave height, water depth, burial depth and consistency index of the soil on wave pressures around and uplift force on the submarine pipeline was investigated. The wave pressures were measured at three locations around the submarine pipeline (each at 120° to the adjacent one). It is found that the wave pressure and uplift force spectrum at high consistency index of the soil is smaller compared to that of low consistency index. Just burying the pipeline (e/D=1.0) in clayey soil reduces the uplift force to less than 60% of the force experienced by a pipeline resting on the seabed (e/D=0.0) for Ic=0.33.  相似文献   

2.
A series of regular wave experiments have been done in a large-scale wave flume to investigate the wave-induced pore pressure around the submarine shallowly embedded pipelines.The model pipelines are buried in three kinds of soils,including gravel,sand and silt with different burial depth.The input waves change with height and period.The results show that the amplitudes of wave-induced pore pressure increase as the wave period increase,and decay from the surface to the bottom of seabed.Higher pore pressures are recorded at the pipeline top and the lower pore pressures at the bottom,especially in the sand seabed.The normalized pressure around pipeline decreases as the relative water depth,burial depth or scattering parameters increase.For the silt seabed,the wavelet transform has been successfully used to analyze the signals of wave-induced pore pressure,and the oscillatory and residual pore pressure can be extracted by wavelet analysis.Higher oscillatory pressures are recorded at the bottom and the lower pressures at the top of the pipeline.However,higher residual pressures are recorded at the top and the lower pressures at the bottom of the pipeline.  相似文献   

3.
Experiments on three types of soil (d50=0.287, 0.057 and 0.034 mm) with pipeline(D=4 cm) either half buried or resting on the seabed under regular wave or combined with current actions were conducted in a large wave flume to investigate characteristics of soil responses. The pore pressures were measured through the soil depth and across the pipeline. When pipeline is present the measured pore pressures in sandy soil nearby the pipeline deviate considerably from that predicted by the poro-elasticity theory. The buried pipeline seems to provide a degree of resistance to soil liquefaction in the two finer soil seabeds. In the silt bed, a negative power relationship was found between maximum values of excess pore pressure pmax and test intervals under the same wave conditions due to soil densification and dissipation of the pore pressure. In the case of wave combined with current, pore pressures in sandy soil show slightly decrease with time, whereas in silt soil, the current causes an increase in the excess pore pressure build-up, especially at the deeper depth. Comparing liquefaction depth with scour depth underneath the pipeline indicates that the occurrence of liquefaction is accompanied with larger scour depth under the same pipeline-bed configuration.  相似文献   

4.
Submarine pipelines are always trenched within a seabed for reducing wave loads and thereby enhancing their stability. Based on Biot's poroelastic theory, a two-dimensional finite element model is developed to investigate non-linear wave-induced responses of soil around a trenched pipeline, which is verified with the flume test results by Sudhan et al. [Sudhan, C.M., Sundar, V., Rao, S.N., 2002. Wave induced forces around buried pipeline. Ocean Engineering, 29, 533–544] and Turcotte et al. [Turcotte, B.R., Liu, P.L.F., Kulhawy, F.H., 1984. Laboratory evaluation of wave tank parameters for wave-sediment interaction. Joseph H. Defree Hydraulic Laboratory Report 84-1, School of Civil and Environmental Engineering, Cornell University]. Non-linear wave-induced transient pore pressure around pipeline at various phases of wave loading is examined firstly. Unlike most previous investigations, in which only a single sediment layer and linear wave loading were concerned, in this study, the influences of the non-linearity of wave loading, the physical properties of backfill materials and the geometry profile of trenches on the excess pore pressures within the soil around pipeline, respectively, were explored, taking into account the in situ conditions of buried pipeline in the shallow ocean zones. Based on the parametric study, it is concluded that the shear modulus and permeability of backfill soils significantly affect the wave-induced excess pore pressures around trenched pipeline, and that the effect of wave non-linearity becomes more pronounced and comparable with that of trench depth, especially at high wave steepness in shallow water.  相似文献   

5.
Experimental investigations are carried out on wave-induced pressures and uplift forces on a submarine pipeline (exposed, half buried and fully buried) in clayey soil of different consistency index both in regular and random waves. A study on scour under the pipeline resting on the clay bed is also carried out. It is found that the uplift force can be reduced by about 70%, if the pipeline is just buried in clay soil. The equilibrium scour depth below the pipeline is estimated as 42% of the pipe diameter for consistency index of 0.17 and is 34% of the pipe diameter for consistency index of 0.23. The results of the present investigations are compared with the results on sandy soil by Cheng and Liu (Appl. Ocean Res., 8(1986) 22) to acknowledge the benefit of cohesive soil in reducing the high pore pressure on buried pipeline compared to cohesionless soil.  相似文献   

6.
The hydrodynamic pressures induced by regular waves around the circumference of a pipeline normal to the wave direction and near a rigid bed of slope 1:10 have been investigated in a wave flume. The pressures were integrated to obtain the force time history, from which the peak horizontal and vertical forces are evaluated. The maximum and root mean square horizontal and transverse force coefficients are correlated with the Keulegan–Carpenter (KC) number. The effect of the distance between the sloping bed and the pipeline on the force coefficients is discussed. The force coefficients are found to decrease with an increase in KC number and with the decrease in the relative clearance of the pipeline from the boundary. In addition, the reflection characteristics of the sloping bed in the presence of the pipeline as a function of surf similarity parameter and their comparison with the results from existing literature are also reported. The details of the model setup, experimental procedure, results and discussion are presented in this paper.  相似文献   

7.
The paper presents an experimental investigation of seabed evolution behavior around a submarine pipeline and the hydrodynamic forces on the pipeline under regular waves. Unlike the previous flume tests that have largely used beds with median sands, this study focuses on fine sediments such as sandy silt and silt. The primary objective of the study was to investigate: (i) the scour process under different wave conditions and with different sediments and (ii) the influence of the bedform evolution on the hydrodynamic forces experienced by the pipeline. In terms of scour and ripple formation, four distinct regimes of the near-field bed evolution behavior are identified which are: (I) no scour, (II) scour without ripples, (III) scour with small ripples and (IV) scour with large ripples. The influence of bedform evolution on wave forces was found to vary significantly in different regimes. In regime I, the wave forces were quite stable; in regime II and III, the wave forces underwent a gradual reduction before reaching their equilibrium values at fairly early stages of the scour process; in regime IV, the wave forces were significantly affected by the migrating ripples and can be rather unsteady throughout the testing period.  相似文献   

8.
The present paper proposes a numerical model to determine horizontal and vertical components of the hydrodynamic forces on a slender submarine pipeline lying at the sea bed and exposed to non-linear waves plus a current. The new model is an extension of the Wake II type model, originally proposed for sinusoidal waves (Soedigdo et al., 1999) and for combined sinusoidal waves and currents (Sabag et al., 2000), to the case of periodic or random waves, even with a superimposed current. The Wake II type model takes into account the wake effects on the kinematic field and the time variation of drag and lift hydrodynamic coefficients. The proposed extension is based on an evolutional analysis carried out for each half period of the free stream horizontal velocity at the pipeline. An analytical expression of the wake velocity is developed starting from the Navier–Stokes and the boundary layer equations. The time variation of the drag and lift hydrodynamic coefficients is obtained using a Gaussian integration of the start-up function. A reduced scale laboratory investigation in a large wave flume has been conducted in order to calibrate the empirical parameters involved in the proposed model. Different wave and current conditions have been considered and measurements of free stream horizontal velocities and dynamic pressures on a bottom-mounted pipeline have been conducted. The comparison between experimental and numerical hydrodynamic forces shows the accuracy of the new model in evaluating the time variation of peaks and phase shifts of the horizontal and vertical wave and current induced forces.  相似文献   

9.
This paper presents the results of an experimental investigation on three-dimensional local scour below a rigid pipeline subjected to wave only and combined wave and current conditions. The tests were conducted in a conventional wave flume. The major emphasis of the investigation was on the scour propagation speed (free span expansion rate) along the pipeline after local scour was initiated at a controlled location. The effects of flow ratio (steady current velocity vs. combined waves/current velocity), flow incidence angle and pipeline initial embedment depth on free span expansion rate were investigated. It was observed that the scour along the pipeline propagated at a constant rate under wave only conditions. The scour propagation rate decreased with increasing embedment depth, however, increased with the increasing Keuglegan–Carpenter (KC) number. Under combined wave and current conditions, the effect of velocity ratio on scour propagation velocity along the pipeline was quantified. Empirical relationships between the scour propagation rate (Vh) and key parameters such as the KC number and embedment depth (e/D) were established based on the testing results.  相似文献   

10.
软粘土在波浪荷载作用下,可能发生强度软化,使埋设在软粘土层中的海底管道的受力状态或支撑条件发生变化,从而出现上浮或下沉的趋势,对管道的稳定性发生影响。本文通过在振动台上进行的模型试验来模拟当土性因动荷作用而发生变化时管道的稳定情况,对这个问题进行了探索,得出了一些规律性的认识,可供海底管道的设计者参考。  相似文献   

11.
A laboratory investigation of wave forces induced by a regular train of waves on a large pipeline resting on the bed and at various clearances from the bed is presented. From considerations of dimensional analysis horizontal and vertical components of wave forces acting on the pipeline are expressed as force coefficients which are shown to be functions mainly of H/2a, gT2/2a, d/a and e/2a. A simple unseparated flow model based on potential flow theory and Morison's equation is presented for evaluating the maximum forces on the pipeline. The experimental results are com3ared with the theoretical results and data from existing literature. Based on the experimental results, hydrodynamic coefficients CM and CL have been evaluated  相似文献   

12.
The variation of the dynamic pressures around a circular cylinder due to regular waves is studied in a wave basin of constant water depth of 3 m. The measuring segment consisted of 12 pressure transducers placed at an elevation of 0.8 m below the still water level. The tests were conducted with the cylinder axis inclined with respect to the vertical plane along and against wave direction. The results on the variation of dimensionless pressures with the non-dimensional input wave parameters are reported for different angles of orientation of the cylinder. The sectional normal force obtained by integrating the pressures is also presented as a function of wave steepness and the effect of angle of orientation of the cylinder is also reported.  相似文献   

13.
海底管道阻流板(Spoiler)自沉埋技术是一种新型管道自埋技术,为深入了解其作用机制及其效果,本文通过分析安装有阻流板的杭州湾海底管道历年检测资料,结合管道附近海域海床、潮流动力特性,深入探讨了阻流板装置在实际工程中的运行效果,分析了其作用机制及其适用条件。研究发现安装阻流板装置的杭州湾海底管道在往复潮流作用下逐渐埋入海床,其埋入段长度由2005年的50%增加到2013年的80%以上,而且平均埋入深度超过2.6 m,自埋效果较好;而在管道路由与海流平行段或管道敷设于抗冲刷强海床上时,阻流板作用不能有效发挥,管道仍然呈现裸露状态。  相似文献   

14.
《Coastal Engineering》2006,53(11):965-982
Tests on two fine sandy soils (d50 = 0.134 mm and 0.092 mm) under monochromatic wave actions were conducted in a wave flume of 37 m (L) by 1.2 m (H) by 1 m (W) to investigate characteristics of fluidized responses. The pore pressure measurements demonstrate only an unfluidized response in the coarser sandy bed, while in the finer one, two more feature fluidized responses. Fluidized responses are similarly classified into resonantly and non-resonantly fluidized according to Foda and Tzang [Foda, M.A., Tzang, S.-Y., 1994. Resonant fluidization of silty soil by water waves. J. Geophys. Res., 99-C10: 20463–20475.]. At a given depth, they are in principle defined by magnitude of fluidization ratio between excess pore pressure and static soil stresses and by the occurrence of a resonance event in the same test series. Inside the sandy bed, the excess pore pressures of a fluidized response are almost initiated simultaneously. Their magnitudes are essentially in static balance to the integrated weight of overlaying fluidized soil layers. Comparisons with previously reported data from a silty bed (d50 = 0.05 mm) by Foda and Tzang have immediately indicated the importance of grain fraction. With less fine constituents, surface layers of the two sandy soils are less susceptible to fluidization. Resonance mechanism is evidently diminishing in a resonantly fluidized response, and re-fluidization becomes less potential in the subsequent tests. In a resonantly fluidized response, pore pressures at a given depth would start to resonantly grow from a fluidization ratio of 7–14%. In a few wave cycles, resonant growth subsides at a fluidization ratio of greater than 50%, which value increases with depth. The analyses clearly illustrate that fluidization tends to be initiated in surface layers and fast spreads into lower layers. Fluidization is dependent on finer constituting grains, smaller shear modulus G and permeability k and thinner boundary layers in bed soils. Measurements of previous silt tests are analyzed to show that lower limits of wave steepness on resonantly fluidizing a soil bed increase linearly with relative water depth ranging from 0.13 to 0.23. Data of present fine sand tests have preliminarily confirmed the linear trend. Over a fluidized sandy bed, similar vivid sediment suspensions were observed during wave generations as had been reported in silt tests.  相似文献   

15.
Abstract

From September 1975 to April 1976 offshore production Platform V in South Pass, Block 28 (East Bay, Louisiana), was instrumented to measure the effect of storm waves on the soft sediments typical of the Mississippi delta (in a project given the acronym SEASWAB). A portion of this project consisted of four identifiable units of instrumentation (see note): (1) an accelerometer package buried 1 m in the sediment to measure three‐dimensional sediment accelerations and an associated pressure transducer, which measured wave‐induced pressures; (2) an array of instruments that included a wave staff, electromagnetic current meter, and a pressure transducer to examine various relationships between wave properties; (3) a wave‐, current‐, and wind‐measuring station 3.35 km inshore of Platform V to determine the transformation of the waves as they moved over the sediments; and (4) a transponder buried in the mud, the position monitored so that long‐term mudflow could be measured. The direct measurement of seafloor oscillations required the unique instrumentation of the accelerometer system. Three Bruel and Kjaer 8306 accelerometers mounted at right angles to each other made possible the measurement of small oscillations (~0.01 m) at low frequencies (0.1–0.3 Hz). The acoustic method of measuring long‐term mudflow was subject to problems associated with sound propagation in shallow water. The range of the system was found to be 2.74 km, apparently independent of depth. Multiple returns received after single interrogations of the transponder decreased the accuracy of the system.  相似文献   

16.
收集埕岛海域地区近十余年的地质勘察资料,汇总该区地质灾害的类型及其分布情况,发现该区存在着凹坑、冲沟、滑塌、泥流舌、海底穿刺、粗糙海底和埋藏古河道等地质灾害,在海域西北、中部和东南部均有分布,简要探讨形成机理,计算波浪循环荷载在海床中产生的循环应力比,以及根据标贯击数和黏粒含量建立土体的循环阻抗比,然后,计算不同风浪等级下每个钻孔1m深度处土体抗液化安全系数,采用surfer8.0软件绘制安全系数等值线图。发现抗液化性能较好的区域主要分布在海域中部三块地区,随着风浪等级增大,整个区域内液化面积也逐渐扩大,海域东南地区有少量油井和管线分布,区地质灾害发生频率较高,土体抗液化性能较差,工程设施应重视较大风浪期间土体液化对其安全性能的影响。  相似文献   

17.
《Coastal Engineering》1999,38(2):53-90
This paper presents the results of an experimental study where the sinking and floatation of a pipeline and other objects (namely, a sphere and a cube) in a silt bed was investigated. The bed was exposed to progressive waves. Two kinds of experiments were made: The undisturbed-flow experiments, and the experiments with the structure model (a pipeline, a sphere, and a cube). In the former experiments, the pore-water pressure was measured across the soil depth. The pore-water pressure built up, as the waves progressed. The soil was liquefied for wave heights larger than a critical value. Regarding the experiments with the structure model, the displacement of the structure (sinking or floatation) was measured simultaneously with the pore-water pressure. The influence of various parameters (such as the initial position of the object, the specific gravity, the soil layer thickness, and the wave height) was investigated. It was found that while the pipe sank in the soil to a depth of 2–3 times the pipe diameter, the sphere sank to even larger depths. The pipe with a relatively small specific gravity, initially buried, floated to the surface of the soil. The drag coefficients for the objects sinking in the liquefied soil were obtained.  相似文献   

18.
S. Cokgor  I. Avci 《Ocean Engineering》2003,30(12):1453-1466
This study deals with the forces on the circular cylinder, laid on, or partly buried in the bed with a parallel twin dummy cylinder nearby and without it. They were determined by measuring the pressure distribution on the cylinder in the case of wave at low KC numbers. The forces on the cylinder were calculated by the integration of the measured pressures determined by pressure transducers on the surface of the cylinder. Force coefficients were obtained for the low KC numbers (KC<5), for the burial-depth-to-the diameter ratio = 0-0.7. The distance between axis of the measurement and dummy cylinders to diameter ratio (x/D) was 2, 1.5 and 1. The dummy cylinder was replaced downstream and upstream of the measurement cylinder.  相似文献   

19.
《Coastal Engineering》2003,48(3):197-209
A new method is presented for identifying potential pipeline problems, such as hazardous exposures. This method comprises a newly developed sand wave amplitude and migration model, and an existing pipeline–seabed interaction model. The sand wave migration model is based on physical principles and tuned with field data through data assimilation techniques. Due to its physical basis, this method is trusted to be more reliable than other, mostly engineering-based methods. The model describes and predicts the dynamics of sand waves and provides the necessary bed level input for the pipeline–seabed interaction model. The method was tested by performing a hindcast on the basis of survey data for a specific submarine gas pipeline, diameter 0.4 m, on the Dutch continental shelf. Good agreement was found with the observed seabed–pipeline levels. The applicability of the method was investigated further through a number of test cases. The self-lowering of the pipeline, in response to exposures due to sand wave migration, can be predicted, both effectively and efficiently. This allows the use of the method as a tool for pipeline operation, maintenance and abandonment.  相似文献   

20.
The temporal growth of the envelope of bed motion owing to the migration of bedforms, which can be considered a proxy for maximum object burial depth, is examined using five different data sets. These data sets support the hypothesis that the envelope of bed motion will grow as an exponential taper, quickly at first, tapering off and approaching an asymptotic value. This growth is largest and fastest in the surf zone where wave and current flows are strong. Within the surf zone, envelopes owing solely to the migration of megaripples (bedforms with heights from 20 to 40 cm and lengths from 1 to 5 m) grow for about 8 d and reach an asymptote of about 40 cm. When wave energy becomes larger ( 1 m), bed envelopes are dominated by migrating sand bars and approach an asymptote of 3-4 m, but only after 2-12 years (depending on the beach). In addition, the frequency of object burial (the percentage of time that an object would be buried by the crests of migrating bedforms) is highest in the surf zone and grows rapidly with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号