首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
????GRACE??????????????3??????????????2011??07??09????????????????????仯??????????????2009???2010??????????仯??????б???????????2009???о????????????仯??????????μ????????????????????????仯????????4??10 -8 ms -2??????????????????????????????2010??????????仯??С??2011??????????????仯??????????????2009??仯???6??10 -8 ms -2 ????????????????仯???????  相似文献   

2.
?????й?????黮???????????????????GL???????????й???????105??E????????????????1975????????62??4.7?????????????????????????????д???????1??3????????????????????????仯??????????????м??????????????С???????????????????????????????????????????仯???????????????????????????λ?й????????С?????????仯?????????????????????????????????????????仯????????  相似文献   

3.
??2012-06-24????5.7??????????????г?????????????仯??????????????????????????????????????????????????????????????????????????????????÷??????仯???????????????  相似文献   

4.
????????????λ??????仯???????仯??????????????о?3???????????????????????????????????????? ???? ????????????????????????????????????1??????????λ????????????仯???????????仯?????С??2?????????仯???????????????? 3?????????????仯?????????仯??????????λ??????С??  相似文献   

5.
????????????????GNSS??????????????о???????????1???????????????????仯?????????????仯????????仯???????仯?й??2???????????????????????????????????????????????仯????????С??3?????3.5 m????????????????????????????????????????  相似文献   

6.
μ����ص��α������о�   总被引:2,自引:1,他引:1  
?????л???????????α????GPS????????????2001??2008??μ??????????????仯??????????????????????λ???????о????????????????????????????????????????????????????2004??????μ??????3??仯???????????????????????????仯?????????????????  相似文献   

7.
�й���½������������̬�仯ͼ��   总被引:19,自引:4,他引:15  
????1998???????й?????????????硢?й????????????????????????????????????й????1998??????2??3??????й??????????????仯?????????й???????????????????????????????????????й??????????????仯????????????й?????????????????????????????????????  相似文献   

8.
�ϲ�λ������ĵر������仯�����о�   总被引:10,自引:8,他引:2  
??????????????????????????????????ζ??λ??????????????仯????????о????????????????????????????????仯???????????????1)??1??????????????????仯?У??????仯?????????????仯????λ??仯?????????С???????????????????С?????????????????仯?????????2?????????????????Σ??????????????????????仯???????????λ??????????????????????????????仯????????????????????????????????????仯???????????  相似文献   

9.
?????????????????????2007??9??12??????????????M8.5??2011??3??11???????M9.0??2008??5??12??????M8.0????2008??9-11????????????????????о?????????????λ???仯?????????????????????????λ???Ч?????????????????????????  相似文献   

10.
????????????????????????????????????????????????????仯???仯??????????????У??о??????????????????????????????????????????????С?????????????Ч??????????????????????????Ч??????????????÷?????????????????????????????????????????????????????????????????????????Ч??????????????????????????????????  相似文献   

11.
This study reports on the clean ice area and surface elevation changes of the Khersan and Merjikesh glaciers in the north of Iran between 1955 and 2010 based on several high to medium spatial resolution remote sensing data.The object-oriented classification technique has been applied to nine remote sensing images to estimate the debris-free areas.The satellite-based analysis revealed that the clean ice areas of Khersan and Merjikesh glaciers shrank since 2010 with an overall area decrease of about 45% and 60% respectively.It means that the dramatic proportions of 1955 glaciers surface area are covered with debris during the last five decades.Although the general trend is a clean ice area decrease,some advancement is observed over the period of 1997-2004.During 1987-1991 the maximum decrease in the clean ice area was observed.However,the clean ice area had steadily increased between 1997 and 2010.To quantify the elevation changes besides the debris-free change analysis,several Digital Elevation Models(DEMs) were extracted from aerial photo(1955),topographic map(1997),ASTER image(2002) and Worldview-2 image(2010) and after it a 3-D Coregistration and a linear relationship adjustments techniques were used to remove the systematic shifts and elevation dependent biases.Unlike the sinusoidal variation of our case studies which was inferred from planimetric analysis,the elevation change results revealed that the glacier surface lowering has occurred during 1955-2010 continuously without any thickening with the mean annual thinning of about 0.4 ± 0.04 m per year and 0.3 ± 0.026 m per year for Khersan and Merjikesh glaciers,respectively.The maximum thinning rate has been observed during 1997-2002(about 1.1 ± 0.09 per year and 0.96 ± 0.01 mper year,respectively),which was compatible partially with debris-free change analysis.The present result demonstrates that although in debris-covered glaciers clean ice area change analysis can illustrate the direction of changes(retreat or advance),due to the high uncertainty in glacier area delineation in such glaciers,it cannot reveal the actual glacier changes.Thus,both planimetric and volumetric change analyses are very critical to obtain accurate glacier variation results.  相似文献   

12.
In recent years, sedimentation conditions in Dongting Lake have varied greatly because of significant changes in runoff and sediment load in the Changjiang (Yangtze) River following the construction of Three Gorges Dam. The topography of the lake bottom has changed rapidly because of the intense exchange of water and sediment between the lake and the Changjiang River. However, time series information on lake-bottom topographic change is lacking. In this study, we introduced a method that combines remote sensing data and in situ water level data to extract a record of Dongting Lake bottom topography from 2003 to 2011. Multi-temporal lake land/water boundaries were extracted from MODIS images using the linear spectral mixture model method. The elevation of water/land boundary points were calculated using water level data and spatial interpolation techniques. Digital elevation models of Dongting Lake bottom topography in different periods were then constructed with the multiple heighted waterlines. The mean root-mean-square error of the linear spectral mixture model was 0.036, and the mean predicted error for elevation interpolation was -0.19 m. Compared with field measurement data and sediment load data, the method has proven to be most applicable. The results show that the topography of the bottom of Dongting Lake has exhibited uneven erosion and deposition in terms of time and space over the last nine years. Moreover, lake-bottom topography has undergone a slight erosion trend within this period, with 58.2% and 41.8% of the lake-bottom area being eroded and deposited, respectively.  相似文献   

13.
GPS measurement,an effective method for surveying glacier surface topography,has been applied in some glaciers for many years.The Shuiguan River No.4 glacier,a small glacier with its area of 1.84 km2 in 1972,located in the east of the Qilian Mountains,China,was selected to study its ice elevation change using GPS measurement in 2007.This study was conducted on the ablation area with GPS-measured area 0.5 km2.The ice elevation change of the glacier was obtained by comparing the DEM obtained by a 1:50 000 topographic map made in 1972 with the DEM by GPS-measured data acquired in 2007.The differences of the two DEMs showed the thinning condition of the glacier was apparent.The mean thinning was 15±8 m with the mean thinning rate of 0.42±0.22 m a-1 for 1972-2007 in the measurement area,which equaled 0.38±0.20 m yr-1 in water equivalent(w.e.).The prominent thinning occurred on the south part of the glacier,which was the area near the glacier terminus with the maximum thinning of 41±8 m.Assuming the thinning value of 15±8 m for the glacier area below 4640 m a.s.l.,the wasting ice mass was calculated to be 6.4±3.2×10-3 km3 for 1972-2007,corresponding to 5.7±2.8×10-3 km3 w.e.,which meant that the montane runoff released by the glacier was at least 5.7±2.8×106 m3 between 1972-2007.  相似文献   

14.
三峡工程建设期库区耕地的时空变化及驱动力分析   总被引:1,自引:0,他引:1  
本文通过三峡工程建设前后15年三峡库区耕地的遥感动态监测和耕地变化分析,揭示出耕地变化的影响因子。2007年三峡库区耕地垦殖指数为0.25,三峡工程建设期,耕地资源减少4%,平均每年递减3 977hm2。耕地占补比例为26:1,占补不平衡,土地承载能力不足;减少耕地中优质耕地占61%,耕地质量总体下降;库区2007年人...  相似文献   

15.
The present study was conducted in Solan Forest Division of Himachal Pradesh covering an area of about 57,158 ha. The aim was to estimate and assess the temporal change in carbon stock of the Chil Working Circle, in two forest ranges of the Division, Solan and Dharampur, over the period of 1956-2011. The inventory data of the working plans of Solan Forest Division from 1956-1957, 1984-1985 and 2002- 2003 were used in the present study while field data for biomass estimation was collected for the year 2011. The results showed a declining trend in carbon stock over 1956-1984 period, however, an increasing trend over 1984-2002 was observed, which showed a further increase for the period 2002-2011. These fluctuating trends in the forest carbon stock can be related to increasing anthropogenic pressure on forests and the subsequent introduction of a ban on green felling envisaging efficient forest management, both of which affect the forest carbon pool significantly.  相似文献   

16.
本文以扬州市市辖区为例,利用2001年的ETM影像与2007年的ALOS影像两期遥感数据,采用面向对象的信息提取方法,获取了扬州市2001年与2007年两期土地利用空间分布图.在此基础上,研究了CLUE-S模型的原理及CLUE-S模型的应用;探讨了CLUE-S模型所需数据、驱动因子选取、模拟参数设置、模拟结果获取等,进...  相似文献   

17.
采用1948-2007年共60年的NCEP/NCAR资料,计算了夏季青藏高原地区的可降水量,并采用小波分析方法对可降水量的变化特征进行分析.结果表明:夏季青藏高原上有一个明显的"湿池",湿池有3个可降水量中心,分别位于高原西南部、高原南侧和高原东南部.湿池3个中心的可降水量变化有着明显的年代际特征,高原西南部以13.9a的周期变化最为明显,高原南侧9.2a的周期变化最为明显,高原东南部时间尺度2.6a的周期变化最为明显.趋势分析表明,高原西南部的可降水量可能开始增加,而高原南侧和高原东南部的可降水量应该依然处于偏少的阶段.  相似文献   

18.
Glaciers play an important role in the climate system. The elevation change of a glacier is an important parameter in studies of glacier dynamics. Only a few ground-based measurements of high mountain glaciers are available due to their remoteness, high elevation, and complex topography. The acquisition from the German Tan DEM-X(Terra SAR-X add-on for Digital Elevation Measurement) SAR imaging configuration provides a reliable data sources for studying the elevation change of glaciers. In this study, the bistatic Tan DEM-X data that cover the Geladandong Mountain on the Tibetan Plateau were processed with SAR interferometry technique and the elevation changes of the mountain's glaciers during 2000–2014 were obtained. The results indicated that although distinct positive and negative elevation changes were found for different glacier tongues, the mean elevation change was about-0.14±0.26 m a-1. Geoscience Laser Altimeter System(GLAS) data were obtained for comparison and verification. The investigation using GLAS data demonstrated the efficacy of the proposed method in determining glacier elevation change. Thus, the presented approach is appropriate for monitoring glacier elevation change and it constitutes a valuable tool for studies of glacier dynamics.  相似文献   

19.
Accurate measurements of glacier elevation changes play a crucial role in various glaciological studies related to glacier dynamics and mass balance. In this paper, glacier elevation changes of Urumqi Glacier No.1 between August 2015 and August 2017 were investigated using Sentinel-1 A data and DInSAR technology. Meanwhile, the atmospheric delay error was corrected with the MODIS MOD05_L2 products. The weight selection iteration method was applied to calibrate the glacier elevation changes in the mass balance years 2015-2016 and 2016-2017. Finally, the geodetic method was employed to calculate the elevation change values of individual stakes of Urumqi Glacier No.1. Moreover, the elevation change values corrected by the weight selection iteration method were verified. Results showed as follows:(1) the elevation of Urumqi Glacier No.1 glacier affected by atmospheric delay was 1.270 cm from 2015 to 2016. The glacier elevation affected by atmospheric delay from 2016 to 2017 was 1.071 cm.(2) The elevation change value of Urumqi Glacier No.1 was-1.101 m from 2015 to 2016, and the elevation of Urumqi Glacier No.1 decreased by 1.299 m from 2016 to 2017. The overall thickness of Urumqi Glacier No. 1 was thinning.(3) By comparing the elevation change results of individual stakes with corresponding points corrected by the weight selection iteration method, the mean squared errors of difference were 0.343 m and 0.280 m between the two mass balance years, respectively.(4) The accuracy of elevation change in non-glaciated areas was 0.039 m from 2015 to 2016 and 0.034 m from 2016 to 2017. Therefore, it is reliable to use Sentinel-1 A data and the study method proposed in this paper to calculate the elevation change of mountain glaciers with very low horizontal movement.  相似文献   

20.
《山地科学学报》2020,17(1):1-15
Glacier recession is a globally occurring trend. Although a rich body of work has documented glacial response to climate warming, few studies have assessed vegetation cover change in recently deglaciated areas, especially using geospatial technologies. Here, vegetation change at two glacier forefronts in Glacier National Park, Montana, U.S.A.was quantified through remote sensing analysis,fieldwork validation, and statistical modeling.Specifically, we assessed the spatial and temporal patterns of landcover change at the two glacier forefronts in Glacier National Park and determined the role of selected biophysical terrain factors(elevation, slope, aspect, solar radiation, flow accumulation, topographic wetness index, and surficial geology) on vegetation change(from nonvegetated to vegetated cover) at the deglaciated areas.Landsat imagery of the study locations in 1991, 2003,and 2015 were classified and validated using visual interpretation. Model results revealed geographic differences in biophysical correlates of vegetation change between the study areas, suggesting that terrain variation is a key factor affecting spatialtemporal patterns of vegetation change. At Jackson Glacier forefront, increases in vegetation over some portion or all of the study period were negatively associated with elevation, slope angle, and consolidated bedrock. At Grinnell Glacier forefront,increases in vegetation associated negatively with elevation and positively with solar radiation.Integrated geospatial and field approaches to the study of vegetation change in recently deglaciated terrain are recommended to understand and monitor processes and patterns of ongoing habitat change in rapidly changing mountain environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号