首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 314 毫秒
1.
新疆黄山铜镍硫化物矿床成矿岩浆作用过程   总被引:10,自引:0,他引:10  
黄山铜镍硫化物矿床镁铁.超镁铁质岩体岩相发育良好,主要包括橄榄岩、辉石岩、辉长岩和闪长岩,橄榄岩中部分橄榄石包含有硫化物珠滴。对该岩体不同岩相进行了主元素、微量元素、铂族元素和单矿物的分析,结果表明,不同类型岩石的化学组成受橄榄石、辉石和斜长石结晶分异作用的控制。微量元素和稀土元素具有相似的分布模式,(La/Yb)N介于1.14—3.65之间,明显亏损Nb和Ta,富集Sr。含矿岩石Cu/Pd和Ti/Pd比值大于原生地幔岩浆。上述结果揭示黄山镁铁-超镁铁质岩体不同岩性的岩石具有不同的主元素和微量元素特征,但母岩浆来自同一源区。根据橄榄石的F0值和全岩的主要氧化物组成估算出母岩浆为高镁(MgO约为15%)玄武岩岩浆,在岩浆作用过程中地壳富硅组分的混染是导致硫化物熔离的主要机制。  相似文献   

2.
桂北宝坛地区作为为数不多的新元古代岩浆Ni-Cu硫化物矿田,对区内成矿岩体开展岩浆演化过程和构造背景方面研究具有重要意义。本文以地苏赋矿镁铁质—超镁铁质岩体为研究对象,进行岩相学特征、锆石U-Pb年龄、地球化学等方面的综合分析。分析结果显示,岩体自西向东发育三个脉动韵律:辉石岩、辉橄岩-橄辉岩-辉石岩-辉长岩、闪长岩,铜镍硫化物矿化形成于前两个韵律底部;闪长岩锆石U-Pb年龄857±8Ma限定其成矿时代为新元古代早期;岩体Mg~#值为71.91~80.07,m/f比值为2.56~4.02,MgO与Al_2O_3、CaO负相关。稀土元素配分曲线显示轻稀土富集、重稀土平坦的配分模式。大离子亲石元素Rb、Th、U相对富集,高场强元素Nb、Ta、Ti明显亏损,与陆缘弧亚碱性玄武岩相似;δ34S值在2.3‰~3.8‰之间,与MORB地幔结果不同(-1.57‰~+0.60‰)。岩石组合和地球化学特征表明岩浆源区为受过地壳混染和流体交代改造的部分熔融岩石圈地幔,具有岛弧岩浆的地球化学特征,表明桂北宝坛铜镍硫化物矿床形成于俯冲环境。岩浆侵位过程中地壳物质混染、岩浆结晶分异作用是促使桂北宝坛地区镁铁质—超镁铁质岩浆发生硫饱和及硫化物熔离的主要因素。  相似文献   

3.
马云飞  焦建刚  郭天牧  闫馨云  刘健  高超  王静  李峰 《地质学报》2022,96(12):4312-4330
内蒙古四子王旗小南山铜镍矿床及外围分布几处镁铁质- 超镁铁质岩体,其成因联系及成矿潜力尚不清晰,制约了该地区铜镍硫化物矿床的找矿工作。本文对小南山、土脑包和白音敖包岩体开展了年代学、岩石学及地球化学研究,结果显示,小南山地区存在两类镁铁质- 超镁铁质岩:小南山、土脑包含铜镍硫化物岩体由辉长岩、辉石岩组成,矿物组合以斜长石、单斜辉石为主,含少量斜方辉石和橄榄石,发育次闪石化、滑石化和绿泥石化;而白音敖包辉长岩不含铜镍硫化物,矿物组合以斜长石、单斜辉石为主,发育绿泥石化和钠黝帘石化,白音敖包辉长岩锆石U- Pb年龄为277. 2±7. 3 Ma,与小南山岩体(272. 7±2. 9 Ma)同期。此外,小南山和土脑包辉长岩Mg#值为0. 56~0. 67,m/f值为1. 25~1. 98,MgO与Ni、Co负相关,Ni与Cu/Zr值正相关,稀土元素配分曲线为右倾型;白音敖包辉长岩Mg#值为0. 50~0. 51,m/f值为0. 97~1. 02,MgO与Ni、Co相关性不明显,Cu/Zr值集中在1附近,稀土元素配分曲线为平坦型。岩石地球化学数据指示小南山和土脑包岩体是源自流体交代岩石圈地幔部分熔融,原生岩浆为高镁拉斑玄武质岩浆,岩浆上升过程受到10%~20%陆壳混染,外来硫的加入和分离结晶作用导致硫化物熔离成矿;白音敖包辉长岩由派生岩浆结晶形成,其岩浆源区受到交代作用不明显,岩浆上升过程仅受到5%左右的地壳物质混染,钻探验证没有发现矿体。  相似文献   

4.
沙加岩体是化隆基性-超基性岩带中的一个含铜镍硫化物的基性杂岩体,其岩体规模较小,岩相分带弱,矿体呈透镜状产于岩体中,苏长岩为主要赋矿岩相。对其进行岩石地球化学及硫化物Re-Os同位素测试,结果表明:岩体属钙碱性、铁质系列,富集轻稀土元素,亏损Nb、Ta等高场强元素。硫化物187Os/188Os初始值为0.3469~0.4071,γOs为180~228,说明岩体遭受了显著的地壳混染作用,地壳物质加入比例大于30%。地壳混染可能在岩浆达到S饱和进而熔离出硫化物熔体的过程中起到了重要作用。  相似文献   

5.
王旋  曹俊  张盖之 《地球科学》2021,46(11):3829-3849
位于中亚造山带南缘的新疆东天山地区因其出露大量的二叠纪镁铁质-超镁铁质岩体并产出一系列铜镍硫化物矿床而成为近年来地质学界关注的焦点.选择新疆东天山地区黄山南含铜镍矿镁铁质-超镁铁质岩体为研究对象,对其开展了系统的岩石学、矿物学和地球化学研究,以探讨造山带铜镍硫化物矿床的岩浆起源与性质.黄山南岩体主要由方辉橄榄岩、二辉橄榄岩、橄榄二辉岩、(橄榄)辉长苏长岩和闪长岩组成.各岩相显示富集大离子亲石元素和轻稀土元素、强烈亏损Nb-Ta、Ti,类似于典型岛弧火山岩特征.黄山南镁铁质-超镁铁质岩具有较大变化范围的εNd(t=282.5 Ma)值(-1.31~4.22)和(87Sr/86Sr)i比值(0.703 2~0.706 9)以及高的(206Pb/204Pb)i比值(17.67~18.90),暗示其来源于一个适度富集的亏损地幔并经历了5%~20%新生地壳物质混染和~5%上地壳物质混染.根据橄榄石最高Fo牌号(摩尔含量为86.6%)计算的黄山南母岩浆为苦橄质岩浆(MgO=12.11%、FeOTotal=11.14%、Ni=306×10-6),指示其岩浆源区应为软流圈和交代地幔楔共同熔融的源区.黄山南橄榄石低的Ca(< 725×10-6)和100×Mn/Fe(1.18~1.38)、高的Ni(1 451×10-6~2 813×10-6)和Mn/Zn(11.09~23.53),暗示黄山南母岩浆来源于含有辉石岩的不均一橄榄岩地幔源区.因此,我们推测黄山南岩体的原始岩浆来源于早期经历过俯冲流体改造的含有辉石岩的交代岩石圈地幔源区.   相似文献   

6.
对阿尔泰造山带南缘喀拉通克和锡泊渡两个杂岩体的Sr—Nd-O同位素研究表明,两个杂岩体的同位素特征相似,均具有低的(^87Sr/^86Sr),和高的εNd(t)值(6.3~9.1),表明其来源于亏损的软流圈地幔,但是其δ^18O值(‰)大多大于6(5.4~10.2),表明有地壳物质的加入。Sr和O同位素表明,这种地壳物质的混入主要是源区的混入。根据Nd同位素模式年龄以及区域构造演化特征,可能是混入有早期俯冲的洋壳(可能是早古生代)的亏损地幔熔融的结果。然而,与锡泊渡杂岩体不同的是,喀拉通克杂岩体局部还经历了上部地壳的混染作用。此外,额尔齐斯深大断裂南北两侧镁铁质-超镁铁质杂岩体源区特征的相似性可能暗示了该断裂可能不是阿尔泰造山带和准噶尔造山带的分界线。  相似文献   

7.
新疆新近发现的圪塔山口镍铜硫化物矿床位于东天山康古尔-黄山镍铜硫化物成矿带的东端。矿区包含4个镁铁-超镁铁质岩体,其中Ⅰ、Ⅱ、Ⅲ号岩体均见镍铜硫化物矿化。本文利用SIMS锆石U-Pb法测得Ⅰ号矿化岩体辉长岩年龄为282.6±1.9Ma,不仅与东天山地区其它含Ni-Cu矿化的镁铁-超镁铁质岩体形成时代一致,而且与塔里木玄武岩、镁铁质岩墙及北山地区的镁铁-超镁铁质岩体形成时限相一致。其形成可能与造山后伸展背景下的地幔柱叠加作用有关。地球化学数据表明圪塔山口岩体具有高Mg特征,除2个辉长岩样品m/f值较低外,其余14个样品集中于2.73~5.05之间,属铁质超基性岩。岩石稀土元素配分模式为右倾式,轻、重稀土比2.64~3.39;含长角闪辉橄岩及部分含长角闪橄辉岩和含长橄辉岩δEu具正异常,可能与这3个岩相中存在斜长石的结晶有关。微量元素蛛网图表明岩石富集大离子亲石元素Cs、Rb、Ba、K、Sr,富集高场强元素U、Pb,亏损高场强元素Th、Nb等特征。主量元素SiO2-(Na2O+K2O)与(FeOT/MgO)-FeOT图解、微量元素相关图及微量元素比值相关图说明圪塔山口岩体成岩物质为来源于亏损地幔的钙碱性玄武质岩浆,成岩作用以岩浆结晶分异为主导,并受到地壳的混染作用,具有较好的镍铜硫化物矿床成矿潜力。  相似文献   

8.
滇西金宝山铂钯矿床元素地球化学   总被引:2,自引:1,他引:1  
金宝山铂钯矿床位于扬子板块西缘红河断裂东侧,宁蒗-弥渡镁铁-超镁铁岩带内,矿体呈似层状、透镜状产于辉石橄榄岩中。辉石橄榄岩和铂钯矿石均富集LREE,具有弱的Eu负异常和较强的Sr、Ba负异常;与N-MORB相比,辉石橄榄岩具有较低的(Nb/Th)PM比值和较高的(Th/Yb)PM比值,表明金宝山岩体受到了地壳物质混染;通过(Th/Yb)PM-(Nb/Yb)PM图解估算得到地壳混染程度在55%~70%之间,强烈地壳混染表明岩浆中的S达到饱和并使得硫化物发生大规模熔离。而利用硅酸盐岩浆/硫化物的质量比值(R因子)方程进行模拟计算,得到金宝山矿床R因子集中于5000~1000之间,明显大于金川、图拉尔根、白马寨等典型岩浆硫化物矿床,说明金宝山岩体形成时岩浆中的硫化物熔离程度较低。辉石橄榄岩和铂钯矿石的S/Se和Cu/Pd比值也同样反映了硫化物低程度熔离的特征。与Nb、Th等元素含量相对稳定的高场强元素相比,S、Se、Pd等元素在硫化物部分熔解以及热液作用过程中更容易发生迁移。类似于River Valley和Platreef矿床等大型层状PGE矿床,金宝山铂钯矿床的形成是一个两阶段的过程,早阶段在岩浆通道或深部岩浆房中,地壳混染使得硫化物发生强烈熔离并在有限的空间内大量聚集,产生富PGE岩浆;后由于硫化物的部分熔解,岩浆中硫化物熔体富集Se、Pd,亏损S、Fe,岩浆中的S由饱和变为不饱和。晚阶段在浅部岩浆房,少量地壳S的加入并未使得S饱和从而发生硫化物大规模熔离。金宝山岩体具有较低的Cu/Pd、Cu/Pt比值,即出现Cu/Pd比值较低的岩体也可能有较大的成矿潜力,这与传统意义上所认为的具有较高Cu/Pd、Cu/Pt比值的矿体不同。  相似文献   

9.
张乐  任钟元 《岩石学报》2013,29(10):3581-3591
岩浆的分离结晶作用和地壳同化混染作用是造成硫饱和的重要因素。本文以金平-Song Da地区二叠纪低钛苦橄岩为原生岩浆,使用MELTS程序模拟了岩浆在分离结晶和围岩同化混染作用的控制下达到硫饱和,发生硫化物熔体的熔离。模拟结果表明,低钛苦橄质岩浆从源区上升到浅部岩浆房的过程中发生了约10%的橄榄石的分离结晶,形成高镁的玄武质岩浆。高镁玄武质岩浆在浅部岩浆房内同化混染>18%的围岩,并经历约27%硅酸盐矿物的分离结晶后达到硫饱和。熔离的硫化物熔体在岩浆通道内聚集形成了白马寨铜镍硫化物矿。经历硫化物熔体熔离后的残余岩浆喷出地表形成了金平地区亏损Ni和Cu并具有强烈地壳混染特征的低钛玄武岩。  相似文献   

10.
峨眉火成岩省内带岩浆硫化物含矿岩体橄榄石的成因意义   总被引:4,自引:0,他引:4  
峨眉火成岩省内带出露数十个含Ni-Cu-铂族元素(PGE)硫化物矿床(或矿化)的镁铁质-超镁铁质侵入岩体.根据铂族元素(PGE)含量的不同,这些岩浆硫化物矿床可分为Ni-Cu型(如力马河和清水河)、Ni-Cu-PGE型(如清矿山和黄草坪)和PGE型(如金宝山和杨合武).不同类型含矿岩体的橄榄石电子探针分析表明,除了清矿山岩体少数几个橄榄石晶体属于镁橄榄石外(Fo90.1~Fo93.1),其余均为贵橄榄石(Fo76.8~Fo89.6).不同矿化类型的岩体的橄榄石成分差异明显.Ni-Cu型硫化物含矿岩体的橄榄石Fo为77~87,Ni含量变化范围为(976~2176)×10-6.Ni-Cu-PGE型硫化物含矿岩体的橄榄石Fo为80~86,Ni含量范围为(1024~2543)×10-6.PGE型硫化物含矿岩体的橄榄石Fo为78~84,Ni含量在(776~1755)×10-6之间变化.清矿山Ni-Cu-PGE型硫化物含矿岩体橄榄石具有高Fo(最高达93.1)和CaO含量(0.245%~1.14%)、以及非常低的Ni(266×10-6)的特征,可能是同化混染作用的结果.利用力马河岩体最高Fo含量的橄榄石成分计算表明,母岩...  相似文献   

11.
岩浆通道系统与岩浆硫化物成矿研究新进展   总被引:6,自引:1,他引:5       下载免费PDF全文
大型-超大型岩浆硫化物矿床的形成需要满足3个基本条件:(1)大量幔源岩浆参与成矿;(2)岩浆演化导致硫化物熔离;(3)硫化物在有限空间聚集。然而,除Sudbury矿床外,全球与镁铁质岩浆有关的超大型铜镍硫化物矿床都发现于小的镁铁-超镁铁岩体中。近10年来的研究表明这些含矿岩体实际上都是岩浆通道系统的一部分,中国金川、杨柳坪、喀拉通克、红旗岭等大型和超大型Ni-Cu-(PGE)硫化物矿床都形成于岩浆通道系统中,正是岩浆通道这样特殊的开放系统为大规模岩浆硫化物矿床提供了成矿条件。总结国内外最新研究结果,可以发现与成矿有关的岩浆通道系统都分布在深大断裂附近,大规模的幔源岩浆补充与地幔柱、大陆裂谷、碰撞造山后伸展等地质事件有密切的关系。尽管研究证明硫化物熔离都与地壳物质的混染有关,但矿石各种元素的品位却受母岩浆性质、硫化物熔离强度、与新注入镁铁质岩浆反应、以及硫化物本身结晶分异等多重因素的影响;含矿岩体和硫化物矿体的形态和大小都强烈地受围岩地质特征的控制。进一步明确这类矿床的地质特征、形成机制、成矿背景和成矿标志,对未来的研究和找矿工作都是非常必要的。  相似文献   

12.
水体中硫化物测定方法探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对测定硫化物标准曲线的质量保证及不同污染程度水样的前处理方法的探讨,得出硫化物标准溶液需现用现配及针对污染程度不同的水样分别采取直接测定、抽滤测定和酸化-吹气法测定的结论.  相似文献   

13.
A feedforward neural network with one hidden layer and five neurons was trained to recognize the distance to kuroko mineral deposits. Average amounts per hole of pyrite, sericite, and gypsum plus anhydrite as measured by X-rays in 69 drillholes were used to train the net. Drillholes near and between the Fukazawa, Furutobe, and Shakanai mines were used. The training data were selected carefully to represent well-explored areas where some confidence of the distance to ore was assured. A logarithmic transform was applied to remove the skewness of distance and each variable was scaled and centered by subtracting the median and dividing by the interquartile range. The learning algorithm of annealing plus conjugate gradients was used to minimize the mean squared error of the scaled distance to ore. The trained network then was applied to all of the 152 drillholes that had measured gypsum, sericite, and pyrite. A contour plot of the neural net predicted distance to ore shows fairly wide areas of 1 km or less to ore; each of the known deposit groups is within the 1 km contour. The high and low distances on the margins of the contoured distance plot are in part the result of boundary effects of the contouring algorithm. For example, the short distances to ore predicted west of the Shakanai (Hanaoka) deposits are in basement. However, the short distances to ore predicted northeast of Furotobe, just off the figure, coincide with the location of the Nurukawa kuroko deposit and the Omaki deposit, south of the Shakanai-Hanaoka deposits, seems to be on an extension of short distance to ore contour, but is beyond the 3 km limit from drillholes. Also of interest are some areas only a few kilometers from the Fukazawa and Shakanai groups of deposits that are estimated to be many kilometers from ore, apparently reflecting the network's recognition of the extreme local variability of the geology near some deposits.  相似文献   

14.
A new geological map of the Rustenburg Layered Suite south of the Ysterberg–Planknek fault of the northern/Potgietersrus limb of the Bushveld Complex is presented, displaying features that were not available for publication in the past and are considered contributing to the complexity of this region. The northern limb is known for the Platreef, atypical mafic lithologies in sections of the layered sequence and the unusual development of the ultramafic Lower Zone as satellite bodies or offshoots at the base of the intrusion. The outcrop and suboutcrop pattern of Lower Zone Grasvally body and its relation to the surrounding geology of Main Zone, Critical Zone, and floor rocks is described. The extent of the base metal sulfide (BMS) and platinum-group element (PGE)-mineralized cyclic unit 11 of the Drummonlea harzburgite–chromitite sub zone is shown. Only that which is considered to be the equivalents of the mafic Upper Critical Zone has thus far been traced south of Potgietersrus/Mokopane. The Platreef is traced from the farm Townlands and further northwards. The presence of Platreef proper south of Potgietersrus/Mokopane appears to be speculative. However, Merensky Reef, UG 2, and equivalent layers outcrop or were intersected to the south of the town. The Kleinmeid Syncline comprising Main Zone/Critical Zone layers and its structure is discussed. The lateral lithological transfomation of the Merensky Reef/UG 2 and equivalent layers south of the Ysterberg–Planknek fault to Platreef north of this fault is recorded. Attenuation of both the Main Zone and Upper Zone is observed from the northwest towards the town and resulted in only the lower units being developed. The lateral change of Main Zone and Upper Zone lithologies from the northwest towards the town is described. The PGE and BMS economic potential south of the town are briefly tabulated.  相似文献   

15.
橄榄石通常是玄武质岩浆最早结晶出的矿物之一,其化学成分可以很好地反演母岩浆成分、岩浆结晶分异、硫化物熔离等成岩及成矿信息。本文以土墩镁铁质-超镁铁质杂岩体为研究对象,采用电子探针对岩体中的橄榄石矿物颗粒进行化学成分测试。利用橄榄石的Fo值和其中Ni含量,计算得到土墩杂岩体母岩浆中Mg O含量约为12.95%,是一种富镁的玄武质岩浆。同时,定量模拟结果表明,土墩杂岩体母岩浆中硫化物熔离几乎与橄榄石结晶作用同时进行,早阶段由橄榄石结晶(分离结晶程度约2%)而导致硫化物的熔离程度为0.2%。随后,橄榄石分离结晶程度在6%~7%时,硫化物熔体的熔离程度仅为0.01%。这些表明土墩杂岩体发生过一定程度的硫化物熔离,但成矿前景不是很好。此外,部分数据显示出Ni-Fo的负相关性,表明少许富铁橄榄石和晶间硫化物熔浆发生了Fe-Ni物质交换反应,这对橄榄石的成分有重要影响。  相似文献   

16.
为探讨硫化物熔离对含矿岩体中橄榄石Ni含量的影响,在前人橄榄石结晶硫化物熔离模型的基础上,定量模似计算了分离结晶过程中橄榄石Ni含量,并将其应用于金川橄榄石成园研究。研究表明,部分橄榄石落于无硫化物熔离橄榄石结晶趋势线下方,暗示其母岩浆为S饱和。根据模拟计算S饱和母岩浆橄榄石分离结晶趋势线,指出金川深部岩浆房中母岩浆橄榄石的分离结晶程度小于或等于3%,而由橄榄石结晶所导致熔离的硫化物熔体与橄榄石之间质量比约为40。  相似文献   

17.
甘肃北山黑山岩浆铜镍硫化物矿床橄榄石特征及成因意义   总被引:7,自引:2,他引:5  
黑山铜镍硫化物矿床是近年在甘肃北山发现的大型岩浆铜镍硫化物矿床,含矿岩体主要由含矿橄榄岩相和南部边缘的角闪辉长岩相构成。研究发现含矿岩体中的橄榄石属贵橄榄石(Fo值为81.54~86.87),其w(Ni)介于(801.53~2 703.19)×10-6;利用橄榄辉长岩中最高Fo值和主量元素反演,表明原始岩浆属高镁玄武质岩浆,w(MgO)=11.65%,w(FeO)=10.12%;橄榄石分离结晶模拟计算结果表明,橄榄石结晶过程中伴随有0.12%~0.17%硫化物熔离,深部岩浆房中橄榄石分离结晶程度小于3%,橄榄石与硫化物最小质量比约14∶1;隙间硅酸盐熔浆和硫化物熔浆作用明显,是造成早期结晶橄榄石成分变化的重要原因。  相似文献   

18.
阐述了煤中矿物学的研究意义,讨论了煤中常见矿物(粘土类、碳酸盐、石英和硫化物类矿物)的成分、性质特征及其与含煤盆地地质背景、含煤岩系所经历的各种地质过程及煤层的古沉积环境之前的关系,详述了国内外煤中矿物学的研究概况,并对其进行了总结。  相似文献   

19.
The Reshian-Lamnian area within the Hazara-Kashmir syntaxis in Pakistan is composed mainly of the rocks of the Salkhala, Panjal and Murree formations. Base metal sulfide mineralization in the form of sphalerite and galena with lesser amounts of chalcopyrite and pyrite is present within the Salkhala Formation of the study area. Chemically all these ore phases are homogeneous in composition. The Pb isotopic composition of galena from the area suggests that there is very little or negligible variation in the ratios of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb. Modal ages ranging from 509 to 562 Ma and the μ values of 10.71 to 10.93 have been calculated for the studied Pb-Zn mineralization. On the basis of field features, mineralogy and Pb-isotope signatures, it is concluded that the Pb-Zn sulfide mineralization in the Reshian-Lamnia area is pre-Himalayan in age and can be correlated with the Cambro-Ordovician (Pan-African) orogenic event.  相似文献   

20.
褐铁矿是铁帽型金矿和铁矿的重要矿产类型,但目前对其从矿物学的微观角度研究较少。本文采用粉晶X射线衍射(XRD)以及场发射扫描电镜(SEM)矿物学研究手段,对铜陵矿集区新桥矿田褐铁矿的矿物组成、微结构进行研究。根据矿物组成及微结构将新桥褐铁矿分为两种成因类型:Ⅰ型褐铁矿,该类型褐铁矿主要起源于黄铁矿矿石,矿石多具蜂窝状构造。主要组成矿物为针铁矿,次要矿物为赤铁矿,含有少量石英,针铁矿晶体长度一般介于500 nm~2μm,长度/半径比值(长径比)较大;Ⅱ型褐铁矿,由原生菱铁矿矿石风化而成,矿石多具肾状构造。矿物组成主要为针铁矿,其次为赤铁矿、锰氧化物和伊利石等粘土矿物,针铁矿晶体长度一般小于500 nm,具有较小的长径比。褐铁矿矿物学和微结构不仅可以初步确定原生矿物和矿石类型,而且对寻找铁帽金矿床也具有重要指示意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号