首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations and compositions of rare earth elements (REE) in three micronodule fractions (50–250, 250–500, and >500 μm), coexisting macronodules, and host sediments are examined. The samples were collected from three sites (Guatemala Basin, Peru Basin, and northern equatorial Pacific) located in elevated bioproductivity zones of the surficial water. The influence of micronodule size is dominant for REE compositions and subordinate for REE concentrations. For example, the Ce concentration inversely correlates with the micronodule fraction dimension and drops to the lowest value in macronodules and host sediments. The Ce decrease is generally accompanied by the Mn/Fe increase in micro- and macronodules. Hence, the role of diagenetic source of material directly correlates with the micronodule dimension. The contribution of diagenetic source is maximal for macronodules. The REE signature distinctions of micronodules and macronodules can be attributed to variations of hydrogenic iron oxyhydroxides and diagenetic (hydrothermal) iron hydroxophosphates that are the major REE carriers in ferromanganese ore deposits. The relationship and general trend in the chemistry of coexisting macronodules suggest that they can represent products of the initial stage of nodule formation.  相似文献   

2.
Processes governing the formation of rare earth elements (REE) composition are considered for ferromanganese deposits (nodules, separate parts of nodules, and micronodules of different fractions) within the Clarion–Clipperton ore province in the Pacific Ocean. It is shown that ferromanganese oxyhydroxide deposits with different chemical compositions can be produced in sediments under similar sedimentation conditions. In areas with high bioproductivity, the size of micronodules has a positive correlation with the Mn content and Mn/Fe and P/Fe ratios and a negative correlation with Fe, P, REE, and Ce anomaly. The behavior of REE in micronodules from sediments within bioproductive zones is related to increase of the influence of diagenetic processes in sediments as a response to the growth of the size of micronodules. Distinctions in the chemical composition of micronodules and nodules are related to their interrelations with associated sediments. Micronodules grow in sediments using hydrogenous ferromanganese oxyhydroxides. As they grow, micronodules are enriched in the labile fraction of sediments reworked during diagenesis. Sources of the material of ferromanganese nodules are governed by their formation at the water bottom interface. Their upper part is formed by direct settling of iron oxyhydroxides from the bottom water, whereas the lower part is accumulated due to diagenetic processes in sediments. Differences of REE compositions in ferromanganese deposits are caused by the reduction of manganese during diagenesis and its separation from iron. Iron oxyhydroxides form a sorption complex due to the sorption of phosphate-ion from bottom and pore waters. The sorption of phosphate-ion results in an additional sorption of REE.  相似文献   

3.
Processes of authigenic manganese ore formation in sediments of the northern equatorial Pacific are considered on the basis of study of the surface layer (<2 mm) of ferromanganese nodule and four micronodule size fractions from the associated surface sediment (0–7 cm). Inhomogeneity of the nodule composition is shown. The Mn/Fe ratio is maximal in samples taken from the lateral sectors of nodule at the water-sediment interface. Compositional differences of nodules are related to the preferential accumulation of microelements in iron oxyhydroxides (P, Sr, Pb, U, Bi, Th, Y, and REE), manganese hydroxides (Co, Ni, Cu, Zn, Cd, Mo, Tl, W), and lithogenous component trapped during nodule growth (Ga, Rb, Ba, and Cs). The Ce accumulation in the REE composition is maximal in the upper and lower parts of the nodule characterized by the minimal Mn/Fe values. The compositional comparison of manganese micronodules and surface layers of the nodule demonstrated that the micronodule material was subjected to a more intense reworking during the diagenesis of sediments. The micronodules are characterized by higher Mn/Fe and P/Fe ratios but lower Ni/Cu and Co/Ni ratios. The micronodules and nodules do not differ in terms of contents of Ce and Th that are least mobile elements during the diagenesis of elements. Differences in the chemical composition of micronodules and nodules are related not only to the additional input of Mn in the process of diagenesis, but also to the transformation of iron oxyhydroxides after the removal of Mn from the close association with Fe formed in the suspended matter at the stage of sedimentation.  相似文献   

4.
Authigenic ferromanganese formations in sediments from two horizons (0–10 and 240–250 cm) located in the low/high bioproductive transitional zone of the Pacific Ocean were studied. In addition to the compositionally different two types of micronodules, crusts and ferromanganese nodules were detected in the surface horizon (0–1 cm). Three size fractions (50–100, 100–250, and 250–500 μm) of manganese micronodules were investigated. In terms of surface morphology, color, and shape, the micronodules are divided into the dull round (MN1) and angular lustrous (MN2) varieties with different mineral and chemical compositions. The dull MN1 are enriched in Mn and depleted in Fe as compared with the lustrous MN2. The Mn/Fe value in the dull MN1 varies from 13 to 14. Asbolane-buserite and birnessite are the major manganese minerals in them. The lustrous MN2 is mainly composed of vernadite with Mn/Fe = 4.3–4.8. Relative to the dull MN1, fraction 50–100 μm of the lustrous MN2 is enriched in Fe (2.6 times), W (1.8), Mo (3.2), Th (2.3), Ce (5.8), and REE (1.2–1.8). Relative to counterparts from the dull MN1, separate fractions of the lustrous MN2 are characterized by a greater compositional difference. For example, increase in the size of micronodules leads to decrease in contents of the following elements: Fe (by 10 rel %), Ce (2 times), W (2.1 times), Mo (2.2 times), and Co (1.5 times). At the same time, one can see increase in contents of other elements: Th and Cu (2.1 times), Ni (1.9 times), and REE (1.2–1.6 times). Differences in the chemical and mineral compositions of MN1 and MN2 fractions can be related to alternation of oxidative and suboxidative conditions in the sediments owing to the input of a labile organic matter, which serves as the major reducer, and the allochthonous genesis of MN2.  相似文献   

5.
Geochemistry of Rare Earth Elements in the Ocean   总被引:4,自引:0,他引:4  
This work briefly outlines modern ideas on geochemistry of rare earth elements (REE) in the ocean. Sources of REE and chemical properties of these elements, which govern their migration ability in natural processes, are considered. The REE behavior in the river water–seawater mixing zone is analyzed. The fractionation of dissolved and suspended REE in oceanic water in both aerobic and anaerobic conditions is also considered. It is shown that the variability of REE composition in pelagic sediments reflects the fractionation of these elements in the oceanic water as a consequence of material differentiation in the ocean. The REE distribution in terrigenous, authigenic, hydrothermal, and biogenic constituents of sediments, such as clay, bone debris, barite, phillipsite, Fe–Mn oxyhydroxides (ferromanganese nodules and micronodules), Fe–Ca hydroxo-phosphate, diatoms, and foraminifers, is considered.  相似文献   

6.
The shale-normalized REE patterns of manganese nodules from the northwest Atlantic show enrichment in Sm and Eu relative to the heavier and lighter REE, excluding Ce, and are similar to the patterns previously observed in deep water (> 3000m) nodules from the Pacific. The inverse relation of this pattern to that of sea water and the high Ce anomaly (average 5.5) indicate that probably the REE in the nodules originate from sea water and the nodules are possibly hydrogenous. The patterns for micronodules are similar to those of the nodules but the concentrations of REE were substantially higher in two of them.The red clay occurring on abyssal hills where nodules and micronodules are found also shows higher REE concentrations over terrigenous gray clay. The latter is devoid of nodules and micronodules and occurs in abyssal plains. The excess REE in the red clay also show a pattern similar to those of the nodules and micronodules. Most of the micronodule samples show a lower Ce anomaly (1.7) and lower Co concentration compared to the nodules, so it is inferred that at least some micronodules were formed during post-depositional periods when the conditions were less oxidizing than average.  相似文献   

7.
The Sr isotope stratigraphy of the biogenic apatite was used to determine the age of pelagic sediments in the Brazil Basin (Station 1541) that contain ferromanganese micronodules, nodules, and coatings on the weathered volcanic rocks. The age of sediments at horizons 0–5 and 86–90 cm was estimated at 24.1 ± 0.2 Ma and 24.8 ± 0.2 Ma, respectively. The average sedimentation rate in the Late Oligocene was about 13 mm/ka. The hydrogenous Fe–Mn nodule on the sediment surface with the Mn/Fe value of 1.05–1.95 was formed at a rate of 1.2–2.4 mm/Ma, which is 1000 times lower than the growth rate of buried nodule (Mn/Fe 0.4) at depth of 83 cm. Diagenesis provoked changes in the mineral composition of the buried nodule (asbolane-buserite partially replaced by goethite), leading to the loss of a part of Mn, Ni, Li, and Tl but accumulation of trace elements linked with iron oxyhydroxides (Ce, Th, Be, As, and V) were retained. The composition of manganese micronodules at two studied depths in sediments evolved in the course of two stages of ore formation: related to the oxic and suboxic diagenesis. The Sr isotopic composition in manganese micronodules from both horizons do not differ from that of dissolved Sr in the ocean water. The 143Nd/144Nd ratio, which reflects the Nd isotopic composition in the paleocean during the micronodule formation, varies in manganese micronodules from different horizons and is constant in different size fractions.  相似文献   

8.
Enrichments of REY (rare earth + yttrium) and other trace metals (Co and Ni) in deep-sea ferromanganese (FeMn) micronodules have received increasing attention in both deep-sea research and mineral exploration. Due to the presence of multiple, easily-crushed and poorly-crystallized phases in micronodules, the genesis of micronodules and their adsorption of various trace elements are poorly understood. To address this gap, we examined the spatial distributions of elements in cross-sections of micronodules from the western tropical North Pacific Ocean using high-resolution (HR) LA-ICP-MS raster mapping coupled with laser Raman and X-ray photoelectron spectroscopy (XPS). The ferromanganese micronodules we studied are dominated by Fe and Mn oxides with minor carbonate minerals, such as siderite, rhodochrosite and calcite. LA-ICP-MS maps show that these micronodules consist of a Mn-rich core and a Fe-rich rim. The Fe-enriched rim is enriched in As and surrounds a Mg, Mn, Cu, Co and Ni concreted core. Laser Raman maps show that the micronodule core contains more birnessite, an important scavenger of trace metals in deep sea sediments, than the rim. The birnessite filled core of these micronodules does not have elevated REY. Indeed, birnessite line channels may feed metal-rich fluid containing REY to adjacent minerals, including well-crystallized bio-apatite and zeolite, as high Ce and Y levels are spatially correlated with these minerals. The observed element profiles and XPS observations showing the coexistence of multiple oxidation states of Mn (+2, +3 and +4), Fe (+2 and +3) and Ce (+3, +4) demonstrate that the FeMn phases of these micronodules are of a diagenetic origin and that they are sites of redox-driven metal enrichment in deep-sea sediment.  相似文献   

9.
Summary The abundance, morphology, internal structure, mineralogy and composition of manganese micronodules from seven areas in the equatorial and South-West Pacific have been evaluated and compared. Micronodule abundance appears to be inversely related to sedimentation rate with highest abundances occurring in dark brown clays where sedimentation rates are low. Morphology and internal structure are dependent on the nature of the seed material in which the micronodule forms, of which calcareous tests, siliceous tests and volcanoclastic material are the most important. SEM studies show quite marked variations in the external and internal characteristics of the micronodules from different areas. The mineralogy and composition of the micronodules tend to follow those of macronodules from the same location with biogenic processes leading to the formation of todorokite and high Ni + Cu contents in equatorial Pacific micronodules, for example. Nonetheless, significant differences are apparent in composition between micronodules and macronodules from the same location. Diagenetic processes lead to remobilization of manganese within the sediment column. This influences the distribution and composition of micronodules within the various sediment size fractions and with depth in the sediment column. The characteristics of the micronodules studied here are strongly influenced by the nature of the sedimentary environment in which they form. Micronodules are therefore seen not to have a uniform mode of formation but rather to reflect a variety of influences on their growth.
Vergleichende Untersuchungen von Mikromanganknollen des äquatorialen und des südwestlichen Pazifik
Zusammenfassung Manganmikroknollen aus 7 verschiedenen Gebieten des Pazifischen Ozeans werden untersucht und miteinander verglichen. In Abhängigkeit von der Sedimentfazies lassen sich deutliche Unterschiede in der Häufigkeit, der Morphologie und inneren Struktur sowie in der Mineralogie und chemischen Zusammensetzung der Mikroknollen beobachten. Die Menge an Manganmikroknollen im Sediment scheint umgekehrt proportional der Sedimentationsrate zu sein. Höchste Gehalte an Mikroknollen finden sich in extrem langsam abgelagerten braunen pelagischen Tonen (z.B. Südwest-Pazifisches Becken). Die Morphologie und die innere Struktur der Mikroknollen hängt entscheidend vom Nukleusmaterial (kieselige, kalkige Organismen, vulkanoklastisches Material) ab. Biogene Anreicherung, hydrogenetische und hydrothermale Metallzufuhr sowie diagenetische Mobilisationsprozesse bestimmen, ähnlich wie bei Manganmakroknollen, die Mineralogie und chemische Zusammensetzung der Manganmikroknollen, wobei diagenetische Prozesse von größter Bedeutung sind. Sie erklären die Unterschiede in der chemischen Zusammensetzung zwischen Mikro- und Makromanganknollen aus dem gleichen Untersuchungsgebiet. Diagenetische Mobilisierung von Mangan und anderen Elementen im Sediment bestimmt Verteilung und Chemismus der Mikroknollen in tieferen Sedimentschichten. Mikroknollen lassen sich nicht durch einen einfachen Bildungsprozeß erklären. Ihr Auftreten wird durch eine Reihe von Einflüssen wie Redoxpotential, Sedimentationsrate, Nukleusmaterial, biogene Anreicherungsprozesse, Diagenese und Tiefenwasserströmungen kontrolliert.


With 8 Figures  相似文献   

10.
The sedimentation and ore formation were studied in sediments from nine stations located in the 24°W profile in the Brazil Basin of the Atlantic Ocean. The sediments are represented by mio- and hemipelagic muds, which are variably enriched in hydrothermal iron and manganese oxyhydroxides. As compared to the sediments from other basins of the Atlantic Ocean, these rocks are marked by extremely high manganese contents (up to 1.33%) and maximal enrichment in Ce. It was shown that the positive Ce anomaly is related to the REE accumulation on iron oxyhydroxides. Influence of hydrothermal source leads to the decrease of Ce anomaly and LREE/HREE ratio. In the reduced sediments, preservation of positive Ce anomaly and/or its disappearance was observed after iron and manganese reduction. The REE contents were determined for the first time in the Ethmodiscus oozes of the Brazil Basin. Ore deposits of the Brazil Basin are represented by ferromanganese crust and ferromanganese nodules. Judging from the contents of iron, manganese, rare, and trace elements, these formations are ascribed to the sedimentation (hydrogenic) deposits. They are characterized by a notable positive Ce anomaly in the REE pattern. The extremely high Ce content (up to 96% of total REE) was discovered for the first time in the buried nodules (Mn/Fe = 0.88).  相似文献   

11.
Deep-sea sediments can contain relatively high concentrations of rare earth elements and yttrium (REY), with a growing interest in their exploitation as an alternative to land-based REY resources. To understand the processes that lead to enrichment of the REY in deep-sea sediments, we have undertaken a detailed geochemical study of sediments recovered from the Atlantic Ocean, on a transect along ~ 24°N that includes the deep Nares Abyssal Plain and the Canary and North America Basins.Total REY concentrations (ΣREY) range from 7.99 to 513 ppm, and total concentrations of the heavy REY (Eu - Lu) range from 0.993 to 56.3 ppm. REY concentrations are highest in slowly accumulating pelagic red clays, especially in samples that contain ferromanganese micronodules. Factor analysis reveals that hydrogenous Fe- and Mn-(oxyhydr)oxides are the primary REY carrier phase in the red clays. In situ analysis of individual micronodules confirms that they have high ΣREY (up to 3620 ppm). REY concentrations are higher in micronodules that have a hydrogenous source, characterised by higher Fe/Mn, compared to micronodules that have a diagenetic source.The ΣREY content of North Atlantic deep-sea sediments is ~ 4 times lower than in Pacific deep-sea sediments. We calculate that the area of seafloor required to extract ~ 10% of the global annual REY demand is ~ 100 km2, assuming removal of the upper 1 m of sediment.  相似文献   

12.
珠江三角洲地区上更新统与全新统之间广泛发育1层杂色黏土,其成因多认为主要是由上更新统沉积物在末次冰盛期暴露于地表风化而成。对取自珠江三角洲3条钻孔(PRD09、PRD16和PRD17)的岩心样品分析表明,受风化作用的影响,其稀土元素含量和分异特征发生了较明显的变化。杂色黏土层的稀土总量大大低于下伏沉积物,而在邻近风化层的下伏沉积物中稀土元素却表现为明显富集,尤其是重稀土元素的富集。风化作用强度较大的PRD09孔和PRD17孔下伏沉积物中的稀土富集程度高于风化作用强度相对较小的PRD16孔。珠江三角洲在末次冰盛期时普遍发育的酸性介质条件,促进了风化层的稀土元素发生溶解和迁移。在风化过程中,由于轻、重稀土元素具有不同的溶解迁移能力和吸附能力,导致杂色黏土层的REE指标值(LREE/HREE、(La/Gd)N和(La/Yb)N)高于下伏沉积物。风化过程对Ce、Eu异常有一定的影响,但不十分明显,杂色黏土层的Ce、Eu异常值仅略低于下伏沉积物。  相似文献   

13.
Analyses have been made of REE contents of a well-characterized suite of deep-sea (> 4000 m.) principally todorokite-bearing ferromanganese nodules and associated sediments from the Pacific Ocean. REE in nodules and their sediments are closely related: nodules with the largest positive Ce anomalies are found on sediments with the smallest negative Ce anomalies; in contrast, nodules with the highest contents of other rare earths (3 + REE) are found on sediments with the lowest 3 + REE contents and vice versa. 143Nd144Nd ratios in the nodules (~0.51244) point to an original seawater source but an identical ratio for sediments in combination with the REE patterns suggests that diagenetic reactions may transfer elements into the nodules. Analysis of biogenic phases shows that the direct contribution of plankton and carbonate and siliceous skeletal materials to REE contents of nodules and sediments is negligible. Inter-element relationships and leaching tests suggest that REE contents are controlled by a P-rich phase with a REE pattern similar to that for biogenous apatite and an Fe-rich phase with a pattern the mirror image of that for sea water. It is proposed that 3 + REE concentrations are controlled by the surface chemistry of these phases during diagenetic reactions which vary with sediment accumulation rate. Processes which favour the enrichment of transition metals in equatorial Pacific nodules favour the depletion of 3 + REE in nodules and enrichment of 3 + REE in associated sediments. In contrast, Ce appears to be added both to nodules and sediments directly from seawater and is not involved in diagenetic reactions.  相似文献   

14.
Indicator role of trace elements in sedimentation and ore formation is considered for sediments from Station 2182 in the Angola Basin. It is shown that pelagic sediments were formed from two main sources: biogenic calcium carbonate and lithogenic sediment component compositionally similar to the miopelagic clay. Increase of the Mn/Al ratio, Ce anomaly in the REE composition, Co/Ni and Mo/W ratios, and anomalous accumulation of Tl, Pb, Bi and other microelements indicate that sediments from horizons 15–20 and 30–35 cm contain significant amounts of hydrogenic material as Fe-Mn oxyhydroxides. Manganese micronodules (MN) were extracted from different horizons (10–15, 15–20, and 30–35 cm) and analyzed to study the hydrogenic component. Their development is related to retardation of biogenic and lithogenic sedimentation. The studied manganese micronodules are represented by the hydrogenic-diagenetic formations >100 μm in size with Mn/Fe = 2.0–2.8, Co/Ni = 0.2–0.4, Ce an = 4.2–5.7, and Mo/W = 5.2–7.9. The MN content is too low to affect the major and trace element composition of sediments. The main part of Fe and Mn is confined to fraction <10 μm.  相似文献   

15.
Fourteen ferromanganese nodule–sediment pairs from different sedimentary environments such as siliceous ooze (11), calcareous ooze (two) and red clay (one) from Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements (REE) to understand the possible elemental relationship between them. Nodules from siliceous and calcareous ooze are diagenetic to early diagenetic whereas, nodule from red clay is of hydrogenetic origin. Si, Al and Ba are enriched in the sediments compared to associated nodules; K and Na are almost in the similar range in nodule–sediment pairs and Mn, Fe, Ti, Mg, P, Ni, Cu, Mo, Zn, Co, Pb, Sr, V, Y, Li and REEs are all enriched in nodules compared to associated sediments (siliceous and calcareous). Major portion of Si, Al and K in both nodules and sediments appear to be of terrigenous nature. The elements which are highly enriched in the nodules compared to associated sediments from both siliceous and calcareous ooze are Mo – (307, 273), Ni – (71, 125), Mn – (64, 87), Cu – (43, 80), Co – (23, 75), Pb – (15, 24), Zn – (9, 11) and V – (8, 19) respectively. These high enrichment ratios of elements could be due to effective diagenetic supply of metals from the underlying sediment to the nodule. Enrichment ratios of transition metals and REEs in the nodule to sediment are higher in CIOB compared to Pacific and Atlantic Ocean. Nodule from red clay, exhibit very small enrichment ratio of four with Mn and Ce while, Al, Fe, Ti, Ca, Na, K, Mg, P, Zn, Co, V, Y and REE are all enriched in red clay compared to associated nodule. This is probably due to presence of abundant smectite, fish teeth, micronodules and phillipsite in the red clay. The strong positive correlation (r ? 0.8) of Mn with Ni, Cu, Zn and Mo and a convex pattern of shale-normalized REE pattern with positive Ce-anomaly of siliceous ooze could be due to presence of abundant manganese micronodules. None of the major trace and REE exhibits any type of inter-elemental relationship between nodule and sediment pairs. Therefore, it may not be appropriate to correlate elemental behaviour between these pairs.  相似文献   

16.
We have collected ∼500 stream waters and associated bed-load sediments over an ∼400 km2 region of Eastern Canada and analyzed these samples for Fe, Mn, and the rare earth elements (REE + Y). In addition to analyzing the stream sediments by total digestion (multi-acid dissolution with metaborate fusion), we also leached the sediments with 0.25 M hydroxylamine hydrochloride (in 0.05 M HCl), to determine the REE + Y associated with amorphous Fe- and Mn-oxyhydroxide phases. We are thus able to partition the REE into “dissolved” (<0.45 μm), labile (hydroxylamine) and detrital sediment fractions to investigate REE fractionation, and in particular, with respect to the development of Ce and Eu anomalies in oxygenated surface environments. Surface waters are typically LREE depleted ([La/Sm]NASC ranges from 0.16 to 5.84, average = 0.604, n = 410; where the REE are normalized to the North America Shale Composite), have strongly negative Ce anomalies ([Ce/Ce]NASC ranges from 0.02 to 1.25, average = 0.277, n = 354), and commonly have positive Eu anomalies ([Eu/Eu]NASC ranges from 0.295 to 1.77, average = 0.764, n = 84). In contrast, the total sediment have flatter REE + Y patterns relative to NASC ([La/Sm]NASC ranges from 0.352 to 1.12, average = 0.778, n = 451) and are slightly middle REE enriched ([Gd/Yb]NASC ranges from 0.55 to 3.75, average = 1.42). Most total sediments have negative Ce and Eu anomalies ([Ce/Ce]NASC ranges from 0.097 to 2.12, average = 0.799 and [Eu/Eu]NASC ranges from 0.39 to 1.43, average = 0.802). The partial extraction sediments are commonly less LREE depleted than the total sediments ([La/Sm]NASC ranges from 0.24 to 3.31, average = 0.901, n = 4537), more MREE enriched ([Gd/Yb]NASC ranges from 0.765 to 6.28, average = 1.97) and Ce and Eu anomalies (negative and positive) are more pronounced.The partial extraction recovered, on average ∼20% of the Fe in the total sediment, ∼80% of the Mn, and 21-29% of the REEs (Ce = 19% and Y = 32%). Comparison between REEs in water, partial extraction and total sediment analyses indicates that REEs + Y in the stream sediments have two primary sources, the host lithologies (i.e., mechanical dispersion) and hydromorphically transported (the labile fraction). Furthermore, Eu appears to be more mobile than the other REE, whereas Ce is preferentially removed from solution and accumulates in the stream sediments in a less labile form than the other REEs + Y. Despite poor statistical correlations between the REEs + Y and Mn in either the total sediment or partial extractions, based on apparent distribution coefficients and the pH of the stream waters, we suggest that either sediment organic matter and/or possibly δ-MnO2/FeOOH are likely the predominant sinks for Ce, and to a lesser extent the other REE, in the stream sediments.  相似文献   

17.
Rare earth elements in ferromanganese nodules and other marine phases   总被引:1,自引:0,他引:1  
The concentrations of rare-earth elements (REE) have been measured in 31 ferromanganese nodules from the Pacific and Indian Oceans and vary by almost a factor of 5. Too few nodules have been analyzed to define possible regional trends. The shale-normalized patterns, however, permit division of nodules into two groups: those from depth greater than 3000–3500 m and those from less depth. The factors that determine this change in the relative concentration of REE may be related to the mineralogy of manganese phases and/or the transport of REE to the deep ocean by particulate matter.Comparison of the REE patterns of nodules with those of phillipsite, phosphorite, clays, CaCO3 and seawater suggests that the patterns of these phases reflect fractionation from an initial pattern closely resembling that of shale. By assuming that the accumulation rate of REE in clays, CaCO3 and nodules is represented by that for surface sediments, it has been possible to estimate an accumulation rate of phillipsite in pelagic sediments of the Pacific of 0.02 mg/cm2/yr.  相似文献   

18.
The composition of sand-silt and pelite fractions of deep-sea sediments deposited under different hydrodynamic conditions was studied. Assemblages of clastic, clayey, biogenic, and authigenic minerals formed under the influence of surface and bottom currents were traced. It is shown that biogenic opal, fine-dispersed celestobarite, and authigenic protosyngenetic ferromanganese micronodules, which are composed of only manganese phases, represent indicators of cyclonic gyres characterized by enhanced bioproductivity. Collophane (bone detritus), phillipsite, palagonite, and large celestobarite crystals prevail in mineral assemblages below the anticyclonic gyres, whereas ore micronodules are depleted in manganese. Surface and bottom currents control the distribution of clastic (terrigenous edaphogenic, terrestrial-volcanogenic) and clay minerals, as well as biogenic opal in the form of Ethmodiscus frustules in sediments. Edaphogenic mineral assemblages represent the reliable indicators of bottom currents.  相似文献   

19.
Rare earth elements in the sedimentary cycle: A summary   总被引:2,自引:0,他引:2  
The relative and absolute concentrations of rare earth elements (REE) in authigenic and biogenic phases of deep-sea sediments are quite different. Competition between these phases for REE has resulted in fractionation from the parent material, the latter consisting predominantly of terrigenous material, but with a contribution from marine volcanism. The strongest feature of this fractionation is a depletion of Ce, relative to La, in CaCO3, opalline silica, phillipsite, phosphorite, barite, and montmorillonitic clays; and a Ce enrichment in Fe/Mn nodules. The distribution of REE in different masses of seawater strongly reflects their fractionation in sediments. Whereas the relative concentration of REE in rivers resembles that of shale, their removal from seawater by authigenic and biogenic phases results in: (1) a decrease of their total concentration; (2) a depletion of Ce; and (3) an enrichment of heavy REE relative to light REE. The order of fractionation for water masses in the Atlantic Ocean is:Antarctic intermediate water > North Atlantic deep water > Antarctic bottom water> shelf water > river water ~ shale.The shale-normalized pattern for the sum of REE in the authigenic and biogenic phases of pelagic sediment and in seawater resembles that of an admixture of shale and basalt corresponding presumably to the realtive inputs from continents and marine volcanism respectively. The estimated rate of accumulation of each REE in the sediment, however, is approximately 12 times the estimated rate of input of REE from these two sources.  相似文献   

20.
Partial fusion hypotheses have been proposed for the origin of lherzolite-harzburgite alpine peridotite associations. Analyzed lherzolites from Othris, Ronda, Lanzo and Beni Bouchera, have light REE depleted to chondritic REE abundances, and clinopyroxenes contain most of the REE relative to depleted olivine and orthopyroxene. Variation in the level of REE enrichment within these lherzolites indicates mantle heterogeneity probably caused by partial melting processes. The Beni Bouchera spinel lherzolite and the Othris plagioclase lherzolite are the best candidates for relatively undepleted mantle based on REE studies. Fractional fusion calculations (15–25%) reveal that partial melts have REE characteristics somewhat similar to oceanic tholeiites. Conversely, computed source peridotites from oceanic tholeiites (Schilling, 1975) are similar to the alpine lherzolites reported here. Alpine lherzolites are, however, depleted in trace elements (K, Rb, Sr and Ba, Menzies and Murthy 1976). Since the lherzolites have an undepleted major, minor and REE chemistry close to that of pyrolite, the lost trace element-rich fraction must represent a small degree of melting. It is proposed that alpine lherzolites are residue left after the loss of a nephelinitic/alkalic fraction, ([Ce/Yb]N=2.0–4.01) representing a small degree of partial fusion. This labile fraction may have existed as an intergranular phase or hydrous mineral prior to melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号