首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
盛杰  郑永光  沈新勇 《气象学报》2020,78(6):877-898
华北线状对流系统精细气候分布及其所产生的极端天气特征尚不清楚,本研究利用雷达拼图资料和客观识别方法普查2013—2018年华北171例线状对流系统的时、空分布特征,根据其所致强对流天气的统计结果,发现华北地区至少有2类线状对流系统,分别产生极端强雷暴大风和极端强降水。分析了这2类线状对流系统的环流形势、环境条件、地形作用和关键中尺度系统地面冷池等的特征。主要结论如下:华北线状对流系统的空间分布尤其是初始形成位置与大地形关系密切,京津冀的太行山和燕山山脚区域为其中的一个高发区;2类线状对流系统发生月份、空间尺度、移动速度、形成时刻和维持时间等都具有显著差异;2类线状对流系统的环流背景、环境条件和冷池也差别明显。强雷暴大风型线状对流系统的环境大气斜压性强,中层干和大的垂直减温率造成的最优对流有效位能、下沉对流有效位能大值区是产生极端大风的重要环境条件,地面强冷池以及0—3 km风垂直切变对前向传播起到了重要作用。强降水型线状对流系统产生的降水极端性较前一类型更为凸出,天气尺度强迫相对较弱,水汽条件极其充沛,地面弱冷池或地形与低层南风气流相互作用维持的后向传播是其发展和缓慢移动的主要机制,也是产生极端强降水的直接原因。   相似文献   

2.
王晓芳 《气象学报》2012,70(5):924-935
利用2010年6-7月长江流域雷达拼图、各种观测资料和NCEP逐日再分析资料,合成分析了长江中下游地区梅雨期线状中尺度对流系统的环境特征及典型个例.结果表明,长江中下游地区梅雨期线状中尺度对流系统环境风相对对流线分量的垂直分布是决定线状中尺度对流系统组织模型的重要因子.尾随层状降水中尺度对流系统和邻接层状单向发展中尺度对流系统垂直对流线的风分量在对流层是从前向后,而前导层状降水中尺度对流系统垂直对流线的风分量在对流层中低层为从前向后,至中高层转为从后向前,这3类中尺度对流系统平行对流线的风分量都随高度明显增加;尾随层状降水中尺度对流系统和前导层状降水中尺度对流系统对流层风垂直切变主要是垂直于对流线,邻接层状单向发展中尺度对流系统则主要是平行于对流线方向.平行层状降水中尺度对流系统和准静止后向建立中尺度对流系统对流层平行于对流线的风分量占绝对优势,且随高度增大,前者增大得更显著,垂直于对流线的风分量较小.7月8日邻接层状单向发展中尺度对流系统形成于地面冷锋北侧的高湿、不稳定的环境中;6月7日准静止后向建立中尺度对流系统形成于一个变化的高温高湿的地面环境场中.高温高湿环境是各类线状中尺度对流系统发展环境的共同特征.  相似文献   

3.
孙靖  王建捷 《气象》2010,36(12):19-27
2008年8月10日白天到夜间,北京地区发生了全市性强降水,其中10日下午15:00-18:00经过城区的三个β中尺度对流单体不但产生强的降水(局地达到45 mm/h和12 mm/5 min的雨强),还出现了明显的组织化发展的迹象。利用北京地区多种高时空观测数据(包括地面自动站、多普勒雷达、风廓线、微波辐射计等)和雷达变分同化分析系统(VDRAS)的高分辨率分析场资料,重点分析研究了这三个对流单体组织发展的特征和成因。结果显示:(1)10日下午城区的短时暴雨与大范围降水云系前部(北京城区南部到房山东部)近地面层β中尺度切变线的产生直接相关,该切变线触发了对流,使对流单体组织化发展成为准南北向排列的β中尺度线状对流系统影响了城区;(2)降水发生前2小时左右,北京本站边界层环境风风向由西南向偏东的转变以及城区局地对流有效位能的短时快速积累,是城区对流得以发展的关键局地环境因素;(3)10日下午北京西北部山区的层状降水系统的低层(500 m以下)形成的西北冷性水平出流与北京东南部低层东南暖平流在城南一带汇合形成的风切变是导致对流单体移进北京后组织化和进一步发展的直接原因。因此,在有利的大尺度环流背景下,对于北京大范围降水而言,预报中需特别注意降水云系移动的近前方、边界层环境风风向的变化(即偏东风的出现),因为大范围降水发生后近地面层所形成的水平出流,可能与其前部偏东环境风构成明显风切变而激发对流的产生和组织化。  相似文献   

4.
利用地面加密自动站观测资料以及NCEP再分析资料,对1211号“海葵”台风登陆后在江苏引发的两段降水对流特征差异明显的大暴雨天气进行对比分析。结果表明:第一段区域性大暴雨天气发生在台风环流中心及北侧偏东风急流附近,此时台风环流完整,中心维持正压结构,环流中心及其北侧偏东急流附近伴有较大范围的水汽辐合和强上升运动,有利于区域性大暴雨天气发生,但降水发生在近乎中性的层结下,降水分布较均匀,发展平缓,降水期间对流活动较弱;第二段大暴雨则发生在远离环流中心的台风倒槽顶部,降水期间暴雨区中高层伴有较明显的冷平流,有利于对流不稳定层结发展,降水发展过程中,地面风场出现中尺度扰动,增强了局地辐合和气旋性涡度,加之地面锋区发展,促进了中尺度对流系统的形成和发展,此段降水中尺度特征显著,发展迅速,雨强大,伴有明显的对流特征,导致出现局地特大暴雨天气。  相似文献   

5.
利用伊宁新一代天气雷达资料,结合高空和地面观测资料,分析了2010年7月19日伊犁地区一次局地暴雨天气过程。结果表明:此次强对流天气过程的主要影响系统为500 hPa中亚低槽、200hpa高空急流、低层风速辐合和地面雷暴高压。较强的层结不稳定和低层垂直风切变有利于对流的产生;云图和雷达资料分析表明,此次局地暴雨是由中尺度强对流云团产生,具有典型的对流单体形成、发展成回波短带合并形成带状回波,该带状回波最后演变成一个尺度较大的弓形回波。  相似文献   

6.
北方一次暖区大暴雨强降水成因探讨   总被引:19,自引:11,他引:8  
徐珺  杨舒楠  孙军  张芳华  谌芸 《气象》2014,40(12):1455-1463
2012年7月7日黄淮出现一次典型暖区大暴雨过程,降水持续时间长、强度大和强降水范围集中,中尺度特征明显。本文通过常规和非常规观测、NCEP分析资料对该次黄淮暖切变线引发的豫东北、鲁南和苏北等地大暴雨天气过程的成因进行探讨,结果表明:整层高湿环境有利于降低暖区暴雨对抬升条件的要求、提高降水效率和局地不断产生中尺度对流系统;低层垂直风切变和超低空急流在对流触发和维持中可能有重要作用;次天气及以下尺度的抬升条件,如地面辐合线、925和850 hPa切变和低空急流出口区的风速辐合等均可导致强降水,降水落区一般位于低层多层风速辐合的叠置区;暖区暴雨的雷达回波具有明显的后向传播、列车效应和热带降水型特点。  相似文献   

7.
风切变对中尺度对流系统强度和组织结构影响的数值试验   总被引:5,自引:0,他引:5  
郑淋淋  孙建华 《大气科学》2016,40(2):324-340
采用我国实际观测的探空作为中尺度模式Weather Research and Forecasting(WRF)的理想试验的背景场,分别改变整层、低层和中层的垂直风切变,研究其对中尺度对流系统强度和组织结构的影响。结果表明,改变整层垂直风切变对对流系统的强度和组织结构影响最显著,增加整层垂直风切变,对流强度增强且易组织成线状,减小整层垂直风切变,对流强度弱且呈分散状态。从垂直速度、水平风场、散度场和冷池的三维结构特征分析了其影响的机制:(1)风切变增加,上升气流与下沉气流的相互干扰减弱,有利于垂直速度的维持和增强;(2)垂直风切变增加造成水平涡度增加,扭转项的作用分别使上升和下沉运动得到加强;(3)垂直风切变增加,冷池强度和高度增加且集中在系统后部,使系统线状组织性增强。研究还发现,增加垂直风切变造成近地面大风和降水增强,且强降水出现在大风之后,这主要是因为在对流发展阶段上升运动与下沉运动互不干扰情况下,强下沉运动造成的近地面大风,而成熟阶段上升运动不断增强或维持造成雨水比湿不断增加形成强降水。  相似文献   

8.
柳艳菊  丁一汇 《气象学报》2005,63(4):443-454
通过对1998年南海季风爆发过程中大尺度风场、温度场、厚度场、地面气压场以及视热源与视水汽汇的演变分析研究了对流活动对大尺度场的作用,结果表明:大尺度环流与中尺度对流活动之间可能存在着一种正反馈机制。在季风爆发早期,大尺度背景与中尺度对流活动的关系主要表现为前者为季风爆发以及中尺度对流活动的发生提供有利的天气和动力条件;季风爆发后期持续的大范围中尺度对流活动反过来会对大尺度环流存在明显的反馈作用。由对流活动强烈发展产生的凝结潜热释放在南海北部造成了显著的大气加热,使对流层中上层出现一明显的加热中心,这导致:(1)南海上空经向温度梯度由高层向低层发生反向,形成北高南低的温度梯度,从而使大尺度环流发生季节性改变;(2)相应南海北部地面气压不断加深,形成宽广的季风槽和明显的减压区,促使副热带高压从南海地区最后撤离;(3)随着中低层低压环流的不断发展,对流系统和降水区进一步加强并向南扩展,有利于南海季风在南海中、南部地区爆发和维持;(4)季风槽的加深使其南侧的季风气流与水汽输送进一步加强,促使季风爆发过程达到盛期。  相似文献   

9.
王晓芳  崔春光 《气象学报》2012,70(5):909-923
利用2010年6—7月长江流域雷达拼图和观测资料,统计分析了长江中下游地区梅雨期中尺度对流系统的类型和活动特征。结果表明,长江中下游地区梅雨期线状中尺度对流系统发生个数比非线状中尺度对流系统发生个数略多,存在8类典型的线状中尺度对流系统:尾随层状降水中尺度对流系统(TS)、准静止后向建立中尺度对流系统(BB)、邻接层状单向发展中尺度对流系统(TL/AS)、前导层状降水中尺度对流系统(LS)、平行层状降水中尺度对流系统(PS)、断裂线状中尺度对流系统(BL)、镶嵌线状中尺度对流系统(EL)、长带层状降水中尺度对流系统(LL)。其中,有6类和已有的研究结果类似,EL中尺度对流系统和LL中尺度对流系统是长江流域梅雨期新统计的两类线状中尺度对流系统。TS、LS、PS和BL等4类中尺度对流系统是移动性的,TL/AS、BB、EL和LL类中尺度对流系统为移动缓慢相对静止的。线状中尺度对流系统平均持续时间大多数在7h以上,TL/AS和TS类持续时间较长。线状中尺度对流系统多形成在长江两岸附近,重庆北部至鄂西沿江地带、江汉平原地区、皖南和赣北地区、大别山地区是中尺度对流系统的多发地;中尺度对流系统移动路径分为东、东偏北、东偏南、南等4种,这与环境场的引导气流有关。长江中下游地区中尺度对流系统发展阶段日变化呈现多峰型特征,在成熟阶段的下午至夜间发生强降水的概率明显大于凌晨至上午。  相似文献   

10.
2009年7月7日南京短时暴雨的中尺度特征分析   总被引:7,自引:3,他引:4  
王啸华  吴海英  唐红昇  喜度 《气象》2012,38(9):1060-1069
利用FY-2C卫星红外辐射亮度温度(TBB)资料、多普勒天气雷达资料、加密自动站资料、NECP再分析资料、常规观测资料对2009年7月7日发生在南京地区的一次短时大暴雨过程的中尺度特征进行分析,结果表明:在有利的天气尺度背景形势下,多个中尺度对流系统在南京地区合并,合并后的中尺度对流系统强度强,移速慢,造成了南京地区的强降水。这次短时暴雨的中尺度特征在云图TBB资料上表现为对流云团合并后强度和范围显著增强,移速缓慢,TBB梯度大值区在南京地区停留;在地面风场上体现为南移的中尺度辐合线与南京地区局地生成的中尺度辐合中心合并,使得地面风场辐合显著增强;在雷达回波上表现为,南京地区上空不断有对流单体并入形成大面积高效率降水回波,镶嵌其中的γ尺度对流单体沿着相同方向依次通过南京地区。分析中还发现,低空急流、低空切变线是这次短时暴雨天气过程的重要影响系统,利用多普勒雷达资料可以识别和分析它们的发展、变化特征,为短时暴雨的临近预报提供依据。  相似文献   

11.
A strong cyclonic wind perturbation generated in the northern South China Sea (SCS) moved northward quickly and developed into a mesoscale vortex in southwest Guangdong Province, and then merged with a southward-moving shear line from mid latitudes in the period of 21-22 May 2006, during which three strong mesoscale convective systems (MCSs) formed and brought about torrential rain or even cloudburst in South China. With the 1° ×1° NCEP (National Centers for Environment Prediction) reanalysis data and the Weather and Research Forecast (WRF) mesoscale model, a numerical simulation, a potential vorticity inversion analysis, and some sensitivity experiments are carried out to reveal the formation mechanism of this rainfall event. In the meantime, conventional observations, satellite images, and the WRF model outputs are also utilized to perform a preliminary dynamic and thermodynamic diagnostic analysis of the rainstorm systems. It is found that the torrential rain occurred in favorable synoptic conditions such as warm and moist environment, low lifting condensation level, and high convective instability. The moisture transport by strong southerly winds associated with the rapid northward advance of the cyclonic wind perturbation over the northern SCS provided the warm and moist condition for the formation of the excessive rain. Under the dynamic steering of a southwesterly flow ahead of a north trough and that on the southwest side of the West Pacific subtropical high, the mesoscale vortex (or the cyclonic wind perturbation), after its genesis, moved northward and brought about enormous rain in most parts of Guangdong Province through providing certain lifting forcing for the triggering of mesoscale convection. During the development of the mesoscale vortex, heavy rainfall was to a certain extent enhanced by the mesoscale topography of the Yunwu Mountain in Guangdong. The effect of the Yunwu Mountain is found to vary under different prevailing wind directions and intensities. The location o  相似文献   

12.
This paper presents the results of a diagnostic study of a typical case of very heavy rainfall during the South Asian summer monsoon when a mesoscale low in a desert climate merged with a diffused tropical depression. The former low was located over Pakistan‘s desert region and the latter depression originated over the Bay of Bengal. Surface and NCEP reanalysis data supported by satellite and radar images were incorporated in the diagnosis. The relationship between the heavy precipitation process and large-scale circulations such as monsoon trough, subtropical high, westerly jet, low level jet and water vapor transport were investigated to further understand the mechanism of this peculiar interaction. It was found that: (1) the mesoscale low developed as a result of cold air advection aloft from northern latitudes and strong convection over the region of humidity convergence on 24 July 2003 over the lndian Rajistan area. (2) On the same day, a low that formed over the Bay of Bengal was transformed into a monsoon depression and moved westward to the mesoscale low which existed over southwest India and the adjoining southeastern parts of Pakistan. (3) Initially, the mesoscale low received moisture supply from both the Bay of Bengal as well as the Arabian Sea, whereas the Bay of Bengal maintained the continuous supply of moisture to the monsoon depression. (4) After the depression crossed central India, the Bay‘s moisture supply was cut off and the Arabian Sea became the only source of moisture to both the closely located systems. On 27 July, both of the systems merged together and the merger resulted in a heavy downpour in the Karachi metropolitan and in its surroundings. (5) With the intensification as well as the southeastward extensionof the subtropical high and the shift of the monsoon trough axis from southwest-west to northeast-east,the monsoon depression moved southwestward. In this situation, there existed a very favourable condition for a merger of the two systems in the presence of cross-latitude influence. (6) A number of convective cloud clusters were developed and organized in the mesoscale low. Probably, interactions existed among the multi-scale systems.  相似文献   

13.
Summary This study analyzes the mechanisms of the development of a heavy rainfall event (17 June 1987) over the lee side of the Central Mountain Range (CMR) in northeastern Taiwan during the southwesterly monsoon. This heavy rainfall event was examined using gridded data from the European Centre for Medium-Range Weather Forecasts, surface rainfall data and numerical model results, employing a non-hydrostatic fifth-generation mesoscale model (MM5) developed by the National Center for Atmospheric Research and Pennsylvania State University. A tropical depression was simulated over the northern South China Sea on 16 June. Convergence, resulting from the southeasterly winds associated with the circulation from the tropical depression, and northeasterly winds over the Taiwan Strait, occurred over the northern Bashi Channel at 850 hPa. The convergence amplified planetary vorticity and the vorticity associated with the intensifying tropical depression. Consequently, a mesovortex with low pressure over the northeastern edge of the tropical depression near southern Taiwan was produced. Additional convergence over the ocean adjacent to southern Taiwan caused by the interaction between the northeasterly flow, which was deflected over the southeastern slope of the CMR, and the southeasterly flow of the tropical depression, also affected the intensity of the mesovortex. When the mesovortex moved northward and reached southern Taiwan, the southeasterly flow associated with it interacted with an east-southeasterly flow, which was related to the tropical depression, to form a mesoscale convective system (MCS) over the ocean adjacent to southeastern Taiwan. As the mesovortex moved northward, the MCS, which was embedded in the southeasterly flow, also drifted inland toward northeastern Taiwan. The orographic lifting and the ascending motion associated with the deceleration of the easterly flow near the CMR enhanced the MCS over northeastern Taiwan and produced heavy rainfall. To examine the role of Taiwan’s orography on the modelled rainfall, two simulations were conducted; one which included Taiwan’s orography and one which excluded it. In both simulations, the mesovortex in the northern Bashi Channel and the MCS near southeastern Taiwan were reproduced. However, in the simulation excluding the orography, the mesovortex was slightly less intense. In addition, without the extra orographic lifting and the ascending motion caused by flow deceleration, rainfall over northeastern Taiwan was weaker than in the simulation with the orography.  相似文献   

14.
边界层急流在粤东暴雨中心两次极端强降水过程中的作用   总被引:1,自引:0,他引:1  
基于广东省气象观测资料、汕尾多普勒天气雷达产品和全球再分析资料CSFR,分析了2013年8月和2018年8月发生在粤东暴雨中心的破纪录极端强降水过程,阐明边界层急流的作用。结果表明:(1)两次过程的主要影响系统分别为长时间缓慢移动的1311号台风尤特残余环流和季风低压外围环流,当粤东暴雨中心处于台风环流东南侧和季风低压东侧时,边界层急流在该区域辐合抬升,形成的中尺度能量锋利于强降水的触发;(2)边界层急流为强降水提供了充沛的、源源不断的水汽条件,同时配合特殊地形的摩擦、阻挡等作用,在粤东暴雨中心内形成了明显的水汽通量辐合;(3)持续性强降水发展期间,大气层结长时间处于不稳定状态与对流层低空暖湿平流的不断输送密切相关。两次过程中不同点主要表现为边界层急流强度和风向不同,由此带来的气流辐合方式和强降水范围有明显的差异,季风低压影响过程中边界层急流作用更显著。  相似文献   

15.
受季风槽影响,2018年8月30—31日华南地区出现一次极端暴雨过程,单日站点累计降水量达1?056.7 mm,刷新了广东有历史纪录以来新的极值。对于此次极端降水事件,常用的业务模式包括欧洲中期天气预报中心全球模式(ECMWF)、日本气象厅谱模式(JMA)和中国气象局广东快速更新同化数值预报系统(CMA-GD),都低估了降水强度。利用深圳市气象局业务对流尺度集合预报系统分析了此次特大暴雨过程,结果表明:对流尺度集合预报系统对本次特大暴雨过程具有比较好的预报能力,概率匹配平均最大雨量达348.7 mm·(24 h)-1,集合平均的强降水中心和观测基本一致,观测极值附近区域发生大暴雨(≥150 mm)概率最大值达到80%。选取了较“好”和较“差”集合成员预报进行对比分析,发现较“好”成员预报的强降水中心位置和观测基本一致,而较“差”成员预报的降水中心位置则偏向福建地区。较 “好”成员预报出莲花山南侧地面中尺度辐合线较长时间的维持和缓慢移动,导致强降水雨团在莲花山脉附近不断地触发和维持,同时地形的阻挡作用使得对流系统在地形附近区域持续维持,造成了罕见的特大暴雨;而较“差”成员辐合区位于莲花山以北,对流形成后向东、向北移动,最终导致强降水预报位置偏向福建地区。  相似文献   

16.
夏茹娣  赵思雄 《大气科学》2009,33(3):468-488
通过对雷达、卫星、地面等观测资料的诊断分析以及数值模拟研究, 对2005年6月广东 (粤中) 地区特大持续性暴雨的β中尺度系统进行了研究, 得出以下结果: (1) β中尺度系统是该次广东持续性暴雨的直接制造者, 当地的喇叭口地形非常有利于β中尺度系统的触发与维持。β中尺度系统发展初期有一些更小的γ中尺度系统的活动, 它们形成带状, 逐渐发展合并为β中尺度系统。 (2) 在较为成功的模拟的基础上, 采用模式输出资料对β中尺度对流雨团P作了仔细分析, 结果显示低层对应风场的辐合, 高层对应风场的辐散, 这种高低空散度场配置非常有利于强降水的产生和维持, β中尺度雨团中心对应着上升运动, 而在雨团北侧有弱下沉气流的补偿。引起降水的β中尺度系统多位于锋前暖区的相对更暖区域。 (3) 在同一次暴雨过程中, 粤桂两地同处锋前暖区, 对其风场上的异同点作了比较。共同点是低层均存在风场的辐合。但广西为风速辐合, 辐合中心具移动性, 而广东为风向辐合, 有明显辐合线, 辐合中心, 稳定少动。 (4) 地面辐合线上的扰动以及地面较强的温湿对比区的热力作用对于β中尺度系统的触发可能有重要的影响。地面资料提供了很有用的信息, 是一种重要的工具。 (5) 在此基础上提出了锋前暖区中尺度对流系统及地形、地面风、温、湿分布对其影响的概念模型。  相似文献   

17.
Mesoscale modeling study of severe convection over complex terrain   总被引:1,自引:0,他引:1  
Short squall lines that occurred over Lishui, southwestern Zhejiang Province, China, on 5 July 2012, were investigated using the WRF model based on 1°× 1° gridded NCEP Final Operational Global Analysis data. The results from the numerical simulations were particularly satisfactory in the simulated radar echo, which realistically reproduced the generation and development of the convective cells during the period of severe convection. The initiation of this severe convective case was mainly associated with the uplift effect of mesoscale mountains, topographic convergence, sufficient water vapor, and enhanced low-level southeasterly wind from the East China Sea. An obvious wind velocity gradient occurred between the Donggong Mountains and the southeast coastline, which easily enabled wind convergence on the windward slope of the Donggong Mountains; both strong mid–low-level southwesterly wind and low-level southeasterly wind enhanced vertical shear over the mountains to form instability; and a vertical coupling relation between the divergence on the upper-left side of the Donggong Mountains and the convergence on the lower-left side caused the convection to develop rapidly. The convergence centers of surface streams occurred over the mountain terrain and updrafts easily broke through the lifting condensation level(LCL) because of the strong wind convergence and topographic lift, which led to water vapor condensation above the LCL and the generation of the initial convective cloud. The centers of surface convergence continually created new convective cells that moved with the southwest wind and combined along the Donggong Mountains, eventually forming a short squall line that caused severe convective weather.  相似文献   

18.
2014年3月底广东省开汛期间,出现了大范围的多灾种连续强对流天气。利用区域加密地面自动站资料、风廓线雷达资料、常规观测和NCEP再分析资料,分析了此次连续强对流发生期间大尺度环流背景条件和动力热力条件,重点讨论了大气层结不稳定维持的原因。动力分析发现,强对流天气出现在低空急流的中尺度大风速中心前方强烈的辐合区和上升气流中,垂直风切变在强对流天气发生前迅速增大,具有一定的预报指示意义。中尺度低压和地面辐合线在对流落区预报中具有较好的指示性;热力分析和热流量方程诊断表明,低空西南急流由北部湾附近暖区沿温度梯度方向不断向广东输送强暖平流,使得不稳定能量得到补充,是导致广东大气层结不稳定维持的根本原因;对于广东开汛期间的强对流天气,业务预报中需要特别关注低空急流的演变及其与温度场的配置。  相似文献   

19.
A long-lived, quasi-stationary mesoscale convective system (MCS) producing extreme rainfall (maximum of 542 mm) over the eastern coastal area of Guangdong Province on 20 May 2015 is analyzed by using high-resolution surface observations, sounding data, and radar measurements. New convective cells are continuously initiated along a mesoscale boundary at the surface, leading to formation and maintenance of the quasi-linear-shaped MCS from about 2000 BT 19 to 1200 BT 20 May. The boundary is originally formed between a cold dome generated by previous convection and southwesterly flow from the ocean carrying higher equivalent potential temperature (θ e) air. The boundary is subsequently maintained and reinforced by the contrast between the MCS-generated cold outflow and the oceanic higher-θ e air. The cold outflow is weak (wind speed ≤ 5 m s ?1), which is attributable to the characteristic environmental conditions, i.e., high humidity in the lower troposphere and weak horizontal winds in the middle and lower troposphere. The low speed of the cold outflow is comparable to that of the near surface southerly flow from the ocean, resulting in very slow southward movement of the boundary. The boundary features temperature contrasts of 2–3°C and is roughly 500-m deep. Despite its shallowness, the boundary appears to exert a profound influence on continuous convection initiation because of the very low level of free convection and small convection inhibition of the near surface oceanic air, building several parallel rainbands (of about 50-km length) that move slowly eastward along the MCS and produce about 80% of the total rainfall. Another MCS moves into the area from the northwest and merges with the local MCS at about 1200 BT. The cold outflow subsequently strengthens and the boundary moves more rapidly toward the southeast, leading to end of the event in 3 h.  相似文献   

20.
In general, the overall differences in activity and timing of convection are a result of the influence of large-scale regional and synoptic flow patterns on the local mesoscale environment. The linkage between the space?Ctime variability of observed clouds and rainfall, with large-scale circulation patterns and mesoscale variables over north India during the pre-monsoon season (March to May) is the focus of this paper. We use harmonic analysis to identify the first hour of rainfall for 42 stations spread over the north Indian region during the pre-monsoon summer season (March to May), from 1980 to 2000. The variability is observed to be systematic, with large regions having similar timing for occurrence of rainfall. The stations located in the foothills of the Himalayas have a late night to early morning maximum of first hour rainfall. In the northwestern plains, the first hour of rainfall mostly starts in the early afternoon to evening hours. Further eastward, the rainfall occurs in the late evening hours. Overall, there is a gradient in the occurrence of first rainfall events from late afternoon hours in the southern sections of the north Indian region to nocturnal maxima in the higher altitude regions. Five of these stations, located in different regions of homogenous timing of rainfall occurrence, were selected to analyze in detail the variable trigger for convection. Our results indicate that convective episodes occur mostly in association with the passage of westerly troughs over this region. These upper atmosphere troughs enable moisture to flow from the surrounding oceanic regions to the dry inland regions and also provide some dynamic support to the episodes of convection. However, the actual occurrence of convection is triggered by local factors, giving rise to the mesoscale structure of the weather systems during this season. Specifically, over the plains of northwest India, convection is triggered in a moistened environment by diurnal solar heating. The late night to early morning convection over the foothills is triggered by the orography, when the moistened airflow is normally incident on the mountain slopes. Further eastward, the primary trigger for localized moist convection is downdrafts from south-eastward propagating convective systems that originate at a north?Csouth dry line over north India. These systems propagate with a speed of about 15?m?s?1. The above results are supported by geostationary satellite brightness temperature data for March to May 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号